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1.1. System structuring by levels



Structured view of computing architectures

• System structuring:
– by Levels: 

• vertical structure, hierarchy of interpreters

– by Modules: 

• horizontal structure, for each level (e.g. processes, processing units)

– Cooperation between modules and Cooperation Models

• message passing, shared object, or both

• Each level (even the lowest ones) is associated a programming
language

• At each level, the organization of a system is derived by, 
and/or is strongly related to, the semantics of the primitives
(commands) of the associated language
– “the hardware – software interface”
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System structuring by hierarchical levels
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• “Onion like” structure

• Hierarchy of Virtual Machines (MV)

• Hierarchy of Interpreters: commands of MVi language are interpreted by

programs at level MVj, where j < i (often: j = i – 1)

Abstraction or 

Virtualization

Concretization or 

Interpretation

Object types (Ri) and language (Li) of level MVi



Compilation and interpretation

The implementation of some levels can exploit optimizations
through a static analysis and compilation process
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Level MVi, Language Li

Li commands (instructions):   Ca …          Cb ….        Cc

Level MVi-1, Language Li-1

Run-time support of Li

RTS(Li)

implemented by

programs written

in Li-1

------
------
------

------
------
------

One version of Ca

implementation:
pure 
interpretation

------
------
------

------
------
------

------
------
------

Alternative versions of Cb implementation, 
selected according to the whole computation in 
which Cb is present: (partial or full) compilation

------
------
------



Very simple example of
optimizations at compile time
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int A[N], B[N], X[N];
for (i = 0; i < N; i++)

X[i] = A[i]  B[i] + X[i]

int A[N], B[N]; int x = 0;
for (i = 0; i < N; i++)

x = A[i]  B[i] + x

• Apparently similar program structures

• A static analysis of the programs (data types manipulated inside the for loop) 
allows the compiler to understand important differences and to introduce 
optimizations

• First example: at i-th iteration of for command, a memory-read and a memory-
write operations of X[i] must be executed

• Second example: a temporary variable for x is initialized and allocated in a CPU 
Register (General Register), and only the exit of for commmand x value is
written in memory

• 2N  1 memory accesses are saved

• what about the effect of caching in the first example ?



Typical Levels
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Hardware

Applications

Processes

Assembler

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

• Sequential or parallel applications

• Implementation of applications as collection of
processes (threads).

• Concurrent language.
• Run-time support of concurrent language is

implemented at the lower levels.
• Also: Operating system services.

• Assembly language: Risc vs Cisc
• Intermediate level: does it favour

optimizations ?
• Could it be eliminated ?

• The true architectural level.
• Microcoded interpretation of assembler

instructions.
• This level is fundamental (it cannot be

eliminated).

• Physical resources: combinatorial and 
sequential circuit components, physical links

C = compilation

I = interpretation

C, or C + I

C + I

I

I



Examples

C-like application language

• Compilation of the majority of sequential code and data 
structures

– Intensive optimizations according to the assembler – firmware

architecture

• Memory hierarchies, Instruction Level Parallelism, co-processors

• Interpretation of dynamic memory allocation and related data 
structures

• Interpretation of interprocess communication primitives

• Interpretation of invocations to linked services (OS, 
networking protocols, and so on)
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Firmware level

• At this level, the system is viewed as a collection of cooperating modules called
PROCESSING UNITS (simply: units).

• Each Processing Unit is

– autonomous

• has its own control, i.e. it has self-control capability, i.e. it is an active computational entity

– described by a sequential program, called microprogram.

• Cooperation is realized through COMMUNICATIONS

– Communication channels implemented by physical links and a firmware protocol.

• Parallelism between units.
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U1

Uj

Un

U2

. . . . . .

. . .

Control Part j

Operating Part j



Modules at different levels

• The same definition of Processing Unit extends to Modules at any level:

• Each Module is

– autonomous

• has its own control, i.e. it has self-control capability, i.e. it is an active computational entity

– described by a sequential program, e.g. a process or a thread at the Process Level.

• Cooperation is realized through COMMUNICATIONS and/or SHARED OBJECTS

– depending on the level: at some levels both cooperation model are feasible (Process), in 

other cases only communication is a feasible module in a primitive manner (Firmware).

• Parallelism between Modules.
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M1

Mj

Mn

M2

. . . . . .

. . .
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Firmware

Hardware

Applications

Processes

Assembler

Application developed through
user-friendly tools

Parallel program as a collection
of cooperating processes
(message passing and/or 

shared variables)

compiled / 
interpreted into

compiled / interpreted
into a program executable

by

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP,  …

Architecture 1

Architecture 2

Architecture 3

Architecture m

Independent from the process concept

Architecture independent

Run-time support to
process cooperation: 
distinct and different
for each architecture

Course Big Picture



Cost models and abstract architectures

• Performance parameters and cost models

– for each level, a cost model to evaluate the system performance properties

• Service time, bandwidth, efficiency, scalability, latency, response time, …, 
mean time between failures, …, power consumption, …

• Static vs dynamic techniques for performance optimization

– the importance of compiler technology

– abstract architecture vs physical/concrete architecture

• abstract architecture: a semplified view of the concrete one, able to
describe the essential performance properties

– relationship between the abstract architecture and the cost model

– in order to perform optimizations, the compiler “sees” the abstract

architecture

• often, the compiler simulates the execution on the abstract architecture
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Example of abstract architecture
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Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

. . .

Interconnection Structure: fully interconnected (all-to-all)

• Processing Node= (CPU, memory hierarchy, I/O)

• Same characteristics of the concrete architecture node

• Parallel program allocation onto the Abstract Architecture: one process per node

• Interprocess communication channels: one-to-one correspondence with the Abstarct

Architecture interconnection network channels

Process Graph for the parallel program = 

Abstract Architecture Graph (same

topology)



Cost model for interprocess communication
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Tsend = Tsetup + L  Ttransm

• Tsend = Average latency of interprocess communication

– delay needed for copying a message_value into the target_variable

• L = Message length

• Tsetup, Ttransm: known parameters, evaluated for the concrete architecture

• Moreover, the cost model must include the characteristics of possible overlapping
of communication and internal calculation

Variables of type T

Source process

Destination process

Channel of type T

send (channel_identifier, mesage_value)

receive (channel_identifier, target_variable)



Parameters Tsetup, Ttransm evaluated as functions of several
characteristics of the concrete architecture
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M

CPUCPU CPU CPU. . .

Shared memory multiprocessor

2100 2100 2100

2100

2100
2100 2100 2100

Distributed memory multicomputer: PC cluster, 
Farm, Data Centre, …

“Limited degree” Interconnection Network 
(“one-to-few”)

Instruction Level
Parallelism CPU (pipeline, 

superscalar, 
multithreading, …)

Memory access time, interconnection network routing

and flow-control strategies, CPU cost model, and so on
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Firmware

Hardware

Applications

Processes

Assembler

Application developed through
user-friendly tools

Parallel program as a collection
of cooperating processes
(message passing and/or 

shared variables)

compiled / 
interpreted into

compiled / interpreted
into a program executable

by

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

Architecture 1

Architecture 2

Architecture 3

Architecture m

Independent from the process concept

Architecture independent

Run-time support to
process cooperation: 
distinct and different
for each architecture

Abstract architectures
and cost models

Abstract architecture

and associated cost models
for the different concrete architectures:

… Ti = fi (a, b, c, d, …)

Tj = fj (a, b, c, d, …) …

. . .


