
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

1. Prerequisites Revisited

Contents

1. System structuring by levels

2. Firmware machine level

3. Assembler machine level, CPU, performance

parameters

4. Memory Hierarchies and Caching

5. Input-Ouput

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

1. Prerequisites Revisited

1.1. System structuring by levels

Structured view of computing architectures

• System structuring:
– by Levels:

• vertical structure, hierarchy of interpreters

– by Modules:

• horizontal structure, for each level (e.g. processes, processing units)

– Cooperation between modules and Cooperation Models

• message passing, shared object, or both

• Each level (even the lowest ones) is associated a programming
language

• At each level, the organization of a system is derived by,
and/or is strongly related to, the semantics of the primitives
(commands) of the associated language
– “the hardware – software interface”

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

System structuring by hierarchical levels

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

• “Onion like” structure

• Hierarchy of Virtual Machines (MV)

• Hierarchy of Interpreters: commands of MVi language are interpreted by

programs at level MVj, where j < i (often: j = i – 1)

Abstraction or

Virtualization

Concretization or

Interpretation

Object types (Ri) and language (Li) of level MVi

Compilation and interpretation

The implementation of some levels can exploit optimizations
through a static analysis and compilation process

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

Level MVi, Language Li

Li commands (instructions): Ca … Cb …. Cc

Level MVi-1, Language Li-1

Run-time support of Li

RTS(Li)

implemented by

programs written

in Li-1

One version of Ca

implementation:
pure
interpretation

Alternative versions of Cb implementation,
selected according to the whole computation in
which Cb is present: (partial or full) compilation

Very simple example of
optimizations at compile time

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

int A[N], B[N], X[N];
for (i = 0; i < N; i++)

X[i] = A[i]  B[i] + X[i]

int A[N], B[N]; int x = 0;
for (i = 0; i < N; i++)

x = A[i]  B[i] + x

• Apparently similar program structures

• A static analysis of the programs (data types manipulated inside the for loop)
allows the compiler to understand important differences and to introduce
optimizations

• First example: at i-th iteration of for command, a memory-read and a memory-
write operations of X[i] must be executed

• Second example: a temporary variable for x is initialized and allocated in a CPU
Register (General Register), and only the exit of for commmand x value is
written in memory

• 2N  1 memory accesses are saved

• what about the effect of caching in the first example ?

Typical Levels

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

Hardware

Applications

Processes

Assembler

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

• Sequential or parallel applications

• Implementation of applications as collection of
processes (threads).

• Concurrent language.
• Run-time support of concurrent language is

implemented at the lower levels.
• Also: Operating system services.

• Assembly language: Risc vs Cisc
• Intermediate level: does it favour

optimizations ?
• Could it be eliminated ?

• The true architectural level.
• Microcoded interpretation of assembler

instructions.
• This level is fundamental (it cannot be

eliminated).

• Physical resources: combinatorial and
sequential circuit components, physical links

C = compilation

I = interpretation

C, or C + I

C + I

I

I

Examples

C-like application language

• Compilation of the majority of sequential code and data
structures

– Intensive optimizations according to the assembler – firmware

architecture

• Memory hierarchies, Instruction Level Parallelism, co-processors

• Interpretation of dynamic memory allocation and related data
structures

• Interpretation of interprocess communication primitives

• Interpretation of invocations to linked services (OS,
networking protocols, and so on)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

Firmware level

• At this level, the system is viewed as a collection of cooperating modules called
PROCESSING UNITS (simply: units).

• Each Processing Unit is

– autonomous

• has its own control, i.e. it has self-control capability, i.e. it is an active computational entity

– described by a sequential program, called microprogram.

• Cooperation is realized through COMMUNICATIONS

– Communication channels implemented by physical links and a firmware protocol.

• Parallelism between units.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

U1

Uj

Un

U2

.

. . .

Control Part j

Operating Part j

Modules at different levels

• The same definition of Processing Unit extends to Modules at any level:

• Each Module is

– autonomous

• has its own control, i.e. it has self-control capability, i.e. it is an active computational entity

– described by a sequential program, e.g. a process or a thread at the Process Level.

• Cooperation is realized through COMMUNICATIONS and/or SHARED OBJECTS

– depending on the level: at some levels both cooperation model are feasible (Process), in

other cases only communication is a feasible module in a primitive manner (Firmware).

• Parallelism between Modules.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

M1

Mj

Mn

M2

.

. . .

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

Firmware

Hardware

Applications

Processes

Assembler

Application developed through
user-friendly tools

Parallel program as a collection
of cooperating processes
(message passing and/or

shared variables)

compiled /
interpreted into

compiled / interpreted
into a program executable

by

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

Architecture 1

Architecture 2

Architecture 3

Architecture m

Independent from the process concept

Architecture independent

Run-time support to
process cooperation:
distinct and different
for each architecture

Course Big Picture

Cost models and abstract architectures

• Performance parameters and cost models

– for each level, a cost model to evaluate the system performance properties

• Service time, bandwidth, efficiency, scalability, latency, response time, …,
mean time between failures, …, power consumption, …

• Static vs dynamic techniques for performance optimization

– the importance of compiler technology

– abstract architecture vs physical/concrete architecture

• abstract architecture: a semplified view of the concrete one, able to
describe the essential performance properties

– relationship between the abstract architecture and the cost model

– in order to perform optimizations, the compiler “sees” the abstract

architecture

• often, the compiler simulates the execution on the abstract architecture
MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Example of abstract architecture

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

. . .

Interconnection Structure: fully interconnected (all-to-all)

• Processing Node= (CPU, memory hierarchy, I/O)

• Same characteristics of the concrete architecture node

• Parallel program allocation onto the Abstract Architecture: one process per node

• Interprocess communication channels: one-to-one correspondence with the Abstarct

Architecture interconnection network channels

Process Graph for the parallel program =

Abstract Architecture Graph (same

topology)

Cost model for interprocess communication

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

Tsend = Tsetup + L  Ttransm

• Tsend = Average latency of interprocess communication

– delay needed for copying a message_value into the target_variable

• L = Message length

• Tsetup, Ttransm: known parameters, evaluated for the concrete architecture

• Moreover, the cost model must include the characteristics of possible overlapping
of communication and internal calculation

Variables of type T

Source process

Destination process

Channel of type T

send (channel_identifier, mesage_value)

receive (channel_identifier, target_variable)

Parameters Tsetup, Ttransm evaluated as functions of several
characteristics of the concrete architecture

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

M

CPUCPU CPU CPU. . .

Shared memory multiprocessor

2100 2100 2100

2100

2100
2100 2100 2100

Distributed memory multicomputer: PC cluster,
Farm, Data Centre, …

“Limited degree” Interconnection Network
(“one-to-few”)

Instruction Level
Parallelism CPU (pipeline,

superscalar,
multithreading, …)

Memory access time, interconnection network routing

and flow-control strategies, CPU cost model, and so on

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

Firmware

Hardware

Applications

Processes

Assembler

Application developed through
user-friendly tools

Parallel program as a collection
of cooperating processes
(message passing and/or

shared variables)

compiled /
interpreted into

compiled / interpreted
into a program executable

by

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

Architecture 1

Architecture 2

Architecture 3

Architecture m

Independent from the process concept

Architecture independent

Run-time support to
process cooperation:
distinct and different
for each architecture

Abstract architectures
and cost models

Abstract architecture

and associated cost models
for the different concrete architectures:

… Ti = fi (a, b, c, d, …)

Tj = fj (a, b, c, d, …) …

. . .

