
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

1. Prerequisites Revisited

1.2. Firmware Structuring

Firmware level

• At this level, the system is viewed as a collection of cooperating modules called
PROCESSING UNITS (simply: units).

• Each Processing Unit is

– autonomous

• has its own control, i.e. it has self-control capability, i.e. it is an active computational entity

– described by a sequential program, called microprogram.

• Cooperation is realized through COMMUNICATIONS

– Communication channels implemented by physical links and a firmware protocol.

• Parallelism between units.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

U1

Uj

Un

U2

.

. . .

Control Part j

Operating Part j

Examples

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

Cache Memory

.

.

.

Main Memory

Memory
Management

Unit

Processor
Interrupt
Arbiter

I/O1 I/Ok. . .

. . .

CPU

A uniprocessor architecture

In turn, CPU is a collection of

communicating units (on the

same chip)

Cache
Memory

In turn, the Cache Memory can be

implemented as a collection of

parallel units: instruction and data

cache, primary – secondary –

tertiary… cache

In turn, the Main Memory can be implemented as a

collection of parallel units: modular memory,

interleaved memory, buffer memory, or …

In turn, the Processor can be

implemented as a (large)

collection of parallel, pipelined

units

In turn, an advanced

I/O unit can be

a parallel architecture

(vector / SIMD

coprocessor / GPU /

…),

or a powerful

multiprocessor-based

network interface,

or ….

Firmware interpretation of assembly language

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

Hardware

Applications

Processes

Assembler

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

• The true architectural level.
• Microcoded interpretation of assembler

instructions.
• This level is fundamental (it cannot be

eliminated).

• Physical resources: combinatorial and
sequential circuit components, physical links

I

I

The firmware interpretation of any assembly

language instructions has a decentralized

organization, even for simple uniprocessor

systems.

The interpreter functionalities are partitioned

among the various processing units (belonging to

CPU, M, I/O subsystems), each unit having its

own Control Part and its own microprogram.

Cooperation of units through explicit message

passing .

Parallel architectures: (very) large collections of (small)
processing units

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

M

CPUCPU CPU CPU. . .

Shared memory multiprocessor

2100 2100 2100

2100

2100
2100 2100 2100

Distributed memory multicomputer: PC cluster,
Farm, Data Centre, …

“Limited degree” Interconnection Network
(“one-to-few”)

Instruction Level
Parallelism CPU (pipeline,

superscalar,
multithreading, …)

Processing Unit model: Control + Operation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

PC and PO are automata,
implemented by synchronous sequential networks (sequential circuits)

Clock cycle: time interval for executing a (any) microinstruction.
Synchronous model of computation.

External
outputs

External
inputs

Control Part

(PC)

Operating Part

(PO)

Condition variables

{x}

Control variables

g = {a}  {b}

Clock signal

Generation
of proper
values of
control
variables

Clock cycle: informal meaning

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

PC

PO

pulse width

(stabilization of register

contents)

{values of control variables

clock frequency f = 1/t e.g. t = 0,25 nsec f = 4 GHz

t
Execution of
A + B  C
(A, B, C: registers of
PO)

Execution of
input_C = A + B

Execution of
A + B  C, D + 1  D
in parallel in the
same clock cycle

Execution of
input_D = D + 1

C = input_C

D = input_D

Clock cycle, t = maximum stabilitation delay time for the execution of a (any)
microinstruction, i.e. for the stabilization of the inputs of all the PC and PO registers

input_C C

Register C

Clock cycle: formally

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

TwPC

PC

PO

TwPO
TsPO

TsPC

d pulse width

{x
}

{g}

clock cycle t = TwPO + max (TwPC + TsPO, TsPC) + d

wA: output function of
automata A

sA: state transition
function of automata A

TF: stabilization delay of
the combinatorial
network implementing
function F

Example of a simple unit design

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

Specification  IN: OUT = number_of_occurrences (IN, A)

Pseudo-code of interpreter:
while (true) do

 B = IN; C = 0;
for (J = 0; J < N; J ++)

if (A[J] == B) then C = C + 1;
OUT = C



Microprogram (= interpreter implementation)

0. IN  B, 0  C, 0  J, goto 1

1. if (J0 = 0) then zero (A[J] – B)  Z, goto 2

else C  OUT, goto 0

2. if (Z = 0) then J + 1  J, goto 1

else J + 1  J, C + 1  C, goto 1

// to be completed with synchronized communications //

A[N]

IN (stream)

32 32

U

Service time of U: T = k t = (2 + 2 N) t  2N t

N

N

1

0 1 2

1

Control Part state graph (automaton):

J0 = 0

J0 = 1

OUT (stream)

Integer array:
implemented as a register
RAM/ROM

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

BbB

IN

CbC

KCaC

0 Alu1

JbJ

KJaJ

0 Alu2

OUTbOUT

C

x0 = J0

ALU1 : -, +1

aAlu2

KALU1
aAlu1

outA C

Alu1

ALU2 : +1

Alu2

J

A [N]
outA

Jm

Z
bZ

x1 = Z

Jm

PO structure

Arithmetic-logic

combinatorial

circuit

Register array

(RAM/ROM), N words,

32 bits/word

Register (32 bits)

Multiplexer

to PC

from PC

B

Write-enable signal, from PC

1 bit
register

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

BbB

IN

CbC

KCaC

0 Alu1

JbJ

KJaJ

0 Alu2

OUTbOUT

C

x0 = J0

ALU1 : -, +1

aAlu2

KALU1
aAlu1

outA C

Alu1

ALU2 : +1

Alu2

J

A [N]
outA

Jm

Z
bZ

x1 = Z

Jm

PO structure

Data path
for the execution of

J + 1  J, C + 1  C

B

= 1

= 0

= 1

= 1

= 1

= 1

= 0

= 0

= 0

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

BbB

IN

CbC

KCaC

0 Alu1

JbJ

KJaJ

0 Alu2

OUTbOUT

C

x0 = J0

ALU1 : -, +1

aAlu2

KALU1
aAlu1

outA C

Alu1

ALU2 : +1

Alu2

J

A [N]
outA

Jm

Z
bZ

x1 = Z

Jm

PO structure

Data path
for the execution of

zero (A[J] – B)  Z

B

= 0

= 1

= 0

= 0 = 0 = 0

= 1

= - = -

Communications at the firmware level

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Dedicated links

Shared link: bus

In general, for computer
structures : parallel links
(e.g. one or more words)

Valid for
• a uniprocessor computer,
• a multiprocessor with

shared memory,
• some multicomputers

with distributed memory
(MPP)

Not valid for
• distributed architectures

with standard networks,
• some kind of simple I/O.

Basic firmware structure for dedicated links

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Usource Udestination

Output

interface
Input
interface

LINK

Usource::

while (true) do

 < production of message MSG >;

< send MSG to Udestination >



Udestination::

while (true) do

 < receive MSG from Usource >;

< process MSG >



Ready – acknowledgement protocol

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

RDY line (1 bit)

ACK line (1 bit)

U1

O

U

T
U2

I

N
MSG (n bit)

< send MSG > ::

 wait ACK;

write MSG into OUT, signal RDY



< receive MSG >::

 wait RDY;

utilize IN, signal ACK



Asynchronous communication

Implementation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

U1

O
U
T U2

I

N

ACK

(1 bit)

RDYOUT

ACKOUT

RDYIN

ACKIN

MSG (n bit)

bRDYOUT

bACKOUT

bRDYIN

bACKIN

RDY

(1 bit)

< send MSG > ::

 wait until ACKOUT;

MSG  OUT, set RDYOUT,

reset ACKOUT;



< receive MSG >::

 wait until RDYIN;

f(IN, …) …… , set ACKIN,

reset RDYIN;



clock

RDY

line  RDYIN

S

Y

Level-transition interface

Module-2 counter

Communication latency
and impact on service time

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

ACKRDY RDY

Ttr
t

Tcalc Tcom

T

Sender

Receiver

Clock cycle for calculation only

Clock cycle for calculation

and communication

Communication Latency

Lcom = 2 (Ttr + t)

Transmission Latency
(Link only)

Communication time NOT
overlapped to (i.e. not masked by)
internal calculation

Calculation time

Service time T = Tcalc + Tcom

…

…

Tcalc ≥ Lcom  Tcom = 0

Communication latency and impact on service time

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

Comm. Latency Lcom = 2 (Ttr + t)

Service time T = Tcalc + Tcom
Tcalc ≥ Lcom  Tcom = 0

efficiency e  1,

 ideal computation bandwidth (throughput)

• Impact of Ttr on service time T is significant

• e.g. memory access time = response time of “external” memory to processor

requests (“external” = outside CPU-chip)

• Inside the same chip: Ttr  0,

• e.g. between processor – MMU – cache

• except for on-chip interconnection structures with “long wires” (e.g. buses,

rings, meshes, …)

• With Ttr  0, very “fine grain” computations are possible without communication
penalty on service time: Lcom = 2t  if Tcalc ≥ 2t then T = Tcalc

• Important application in Instruction Level Parallelism processors and in
Interconnection Network switch-units.

Some interesting structures

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 19

… …E
0 E

1
E

i
E

n

W
1

W
i

W
n

C
1

C
i Cn C

0
… …

in p ut
stream

o utpu t
stream

Fig. 11 - Struttura farm basata su anelli / catene aperte

A FARM structure at the firmware
level:
Workers interconnected by tree
structures (emitter – collector
trees) …

… or by ring and/or linear chain
structures

E

E

E

W

W

W

W

C

C

C

input

stream

output

stream

Some interesting structures

• In general, all the most interesting interconnection structures for
– shared memory multiprocessors

– distributed memory multicomputer, cluster, MPP

are “limited degree” networks
– based on dedicated links

• Examples (Course Part 2):
– n-dimension cubes

– n-dimensione butterflys

– n-dimension Trees / Fat Trees

– rings and multi-rings

• Currently the best commercial networks belong to these classes:
– Infiniband

– Myrinet

– …

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 20

(Next) future

• On chip interconnection networks

• On chip optical interconnection networks

• Clear trend towards strong inter-relationship between HPC
and Telecommunications
– A unique feature of this Master Program

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 21

(Traditional, old-style) Bus

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 22

Sender behaviour Receiver behaviour

Serious problems of
bandwidth
(contention) for bus-
based parallel
structures.

Trend: replace buses
with limited degree
networks based on
dedicated links.

Arbiter mechanisms (for bus writing)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 23

Independent Request

Arbiters

• Daisy Chaining

• Polling (similar)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 24

Decentralized arbiters

• Token ring

• Non-deterministic with collision detection

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 25

