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1. Prerequisites Revisited

1.2. Firmware Structuring



Firmware level

• At this level, the system is viewed as a collection of cooperating modules called
PROCESSING UNITS (simply: units).

• Each Processing Unit is

– autonomous

• has its own control, i.e. it has self-control capability, i.e. it is an active computational entity

– described by a sequential program, called microprogram.

• Cooperation is realized through COMMUNICATIONS

– Communication channels implemented by physical links and a firmware protocol.

• Parallelism between units.
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Examples
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A uniprocessor architecture

In turn, CPU is a collection of

communicating units (on the 

same chip)

Cache 
Memory

In turn, the Cache Memory can be

implemented as a collection of

parallel units: instruction and data 

cache, primary – secondary –

tertiary… cache

In turn, the Main Memory can be implemented as a 

collection of parallel units: modular memory, 

interleaved memory, buffer memory, or …

In turn, the Processor can be

implemented as a (large) 

collection of parallel, pipelined

units

In turn, an advanced

I/O unit can be

a parallel architecture

(vector / SIMD 

coprocessor / GPU / 

…), 

or a powerful

multiprocessor-based

network interface,

or ….



Firmware interpretation of assembly language
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Hardware

Applications

Processes

Assembler

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

• The true architectural level.
• Microcoded interpretation of assembler

instructions.
• This level is fundamental (it cannot be

eliminated).

• Physical resources: combinatorial and 
sequential circuit components, physical links

I

I

The firmware interpretation of any assembly

language instructions has a decentralized

organization, even for simple uniprocessor

systems.

The interpreter functionalities are partitioned

among the various processing units (belonging to

CPU, M, I/O subsystems), each unit having its

own Control Part and its own microprogram.

Cooperation of units through explicit message

passing .



Parallel architectures: (very) large collections of (small) 
processing units
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M

CPUCPU CPU CPU. . .

Shared memory multiprocessor

2100 2100 2100

2100

2100
2100 2100 2100

Distributed memory multicomputer: PC cluster, 
Farm, Data Centre, …

“Limited degree” Interconnection Network 
(“one-to-few”)

Instruction Level
Parallelism CPU (pipeline, 

superscalar, 
multithreading, …)



Processing Unit model: Control + Operation
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PC and PO are automata,
implemented by synchronous sequential networks (sequential circuits)

Clock cycle: time interval for executing a (any) microinstruction. 
Synchronous model of computation.

External
outputs

External
inputs

Control Part 

(PC)

Operating Part 

(PO)

Condition variables

{x}

Control variables

g = {a}  {b}

Clock signal



Generation 
of proper
values of
control
variables

Clock cycle: informal meaning
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PC

PO

pulse width

(stabilization of register

contents)

{values of control variables

clock frequency f = 1/t e.g. t = 0,25 nsec f = 4 GHz

t
Execution of
A + B  C
(A, B, C: registers of
PO)

Execution of
input_C = A + B

Execution of
A + B  C, D + 1  D
in parallel in the
same clock cycle

Execution of
input_D = D + 1

C = input_C

D = input_D

Clock cycle, t = maximum stabilitation delay time for the execution of a (any) 
microinstruction, i.e. for the stabilization of the inputs of all the PC and PO registers

input_C C

Register C



Clock cycle: formally
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TwPC

PC

PO

TwPO
TsPO

TsPC

d pulse width

{x
}

{g}

clock cycle t = TwPO + max (TwPC + TsPO, TsPC) + d

wA: output function of
automata A

sA: state transition
function of automata A

TF: stabilization delay of
the combinatorial
network implementing
function F 



Example of a simple unit design
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Specification    IN:  OUT = number_of_occurrences (IN, A)

Pseudo-code of interpreter:
while (true) do

 B = IN; C = 0;
for (J = 0; J < N; J ++)

if ( A[ J ] == B) then C = C + 1;
OUT = C



Microprogram (= interpreter implementation)

0. IN  B, 0  C, 0  J, goto 1

1. if (J0 = 0) then zero (A[J] – B)  Z, goto 2

else C  OUT, goto 0

2. if (Z = 0) then J + 1  J, goto 1

else J + 1  J, C + 1  C, goto 1

// to be completed with synchronized communications //

A[N]

IN (stream)

32 32

U

Service time of U: T = k t = ( 2 + 2 N ) t  2N t

N

N

1

0 1 2

1

Control Part state graph (automaton):

J0 = 0

J0 = 1

OUT (stream)

Integer array: 
implemented as a register
RAM/ROM
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BbB

IN

CbC

KCaC

0 Alu1

JbJ

KJaJ

0 Alu2

OUTbOUT

C

x0 = J0

ALU1 : -, +1

aAlu2

KALU1
aAlu1

outA C

Alu1

ALU2 : +1

Alu2

J

A [N]
outA

Jm

Z
bZ

x1 = Z

Jm

PO  structure

Arithmetic-logic

combinatorial

circuit

Register array

(RAM/ROM), N words, 

32 bits/word

Register (32 bits)

Multiplexer

to PC

from PC

B

Write-enable signal, from PC

1 bit 
register
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BbB

IN

CbC

KCaC

0 Alu1

JbJ

KJaJ

0 Alu2

OUTbOUT

C

x0 = J0

ALU1 : -, +1

aAlu2

KALU1
aAlu1

outA C

Alu1

ALU2 : +1

Alu2

J

A [N]
outA

Jm

Z
bZ

x1 = Z

Jm

PO  structure

Data path
for the execution of

J + 1  J, C + 1  C

B

= 1

= 0

= 1

= 1

= 1

= 1

= 0

= 0

= 0
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BbB

IN

CbC

KCaC

0 Alu1

JbJ

KJaJ

0 Alu2

OUTbOUT

C

x0 = J0

ALU1 : -, +1

aAlu2

KALU1
aAlu1

outA C

Alu1

ALU2 : +1

Alu2

J

A [N]
outA

Jm

Z
bZ

x1 = Z

Jm

PO  structure

Data path
for the execution of

zero (A[J] – B)  Z

B

= 0

= 1

= 0

= 0 = 0 = 0

= 1

= - = -



Communications at the firmware level
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Dedicated links

Shared link: bus

In general, for computer 
structures : parallel links
(e.g. one or more words)

Valid for
• a uniprocessor computer, 
• a multiprocessor with

shared memory, 
• some multicomputers

with distributed memory
(MPP)

Not valid for
• distributed architectures

with standard networks,
• some kind of simple I/O.



Basic firmware structure for dedicated links
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Usource Udestination

Output

interface
Input 
interface

LINK

Usource::

while (true) do

 < production of message MSG >;

< send MSG to Udestination >



Udestination::

while (true) do

 < receive MSG from Usource >;

< process MSG >





Ready – acknowledgement protocol
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RDY line (1 bit)

ACK line (1 bit)

U1

O

U

T
U2

I

N
MSG (n bit)

< send MSG > ::

 wait ACK;

write MSG into OUT, signal RDY



< receive MSG >::

 wait RDY;

utilize IN, signal ACK



Asynchronous communication



Implementation
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U1

O
U
T U2

I

N

ACK

(1 bit)

RDYOUT

ACKOUT

RDYIN

ACKIN

MSG (n bit)

bRDYOUT

bACKOUT

bRDYIN

bACKIN

RDY

(1 bit)

< send MSG > ::

 wait until ACKOUT;

MSG  OUT, set RDYOUT,

reset ACKOUT;



< receive MSG >::

 wait until RDYIN;

f( IN, …) …… , set ACKIN,

reset RDYIN;



clock

RDY 

line  RDYIN

S

Y

Level-transition interface

Module-2 counter



Communication latency
and impact on service time
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ACKRDY RDY

Ttr
t

Tcalc Tcom

T

Sender

Receiver

Clock cycle for calculation only

Clock cycle for calculation

and communication

Communication Latency

Lcom = 2 (Ttr + t)

Transmission Latency
(Link only)

Communication time NOT 
overlapped to (i.e. not masked by) 
internal calculation

Calculation time

Service time T = Tcalc + Tcom

…

…

Tcalc ≥ Lcom  Tcom = 0



Communication latency and impact on service time
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Comm. Latency Lcom = 2 (Ttr + t)

Service time T = Tcalc + Tcom
Tcalc ≥ Lcom  Tcom = 0

efficiency e  1, 

 ideal computation bandwidth (throughput)

• Impact of Ttr on service time T is significant

• e.g. memory access time = response time of “external” memory to processor

requests (“external” = outside CPU-chip)

• Inside the same chip: Ttr  0, 

• e.g. between processor – MMU – cache

• except for on-chip interconnection structures with “long wires” (e.g. buses, 

rings, meshes, …)

• With Ttr  0, very “fine grain” computations are possible without communication
penalty on service time: Lcom = 2t  if Tcalc ≥ 2t then T = Tcalc

• Important application in Instruction Level Parallelism processors and in 
Interconnection Network switch-units.



Some interesting structures
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Fig. 11 - Struttura farm basata su anelli / catene aperte

A FARM structure at the firmware
level:
Workers interconnected by tree
structures (emitter – collector
trees) … 

… or by ring  and/or linear chain
structures
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Some interesting structures

• In general, all the most interesting interconnection structures for
– shared memory multiprocessors

– distributed memory multicomputer, cluster, MPP

are “limited degree” networks
– based on dedicated links

• Examples (Course Part 2):
– n-dimension cubes

– n-dimensione butterflys

– n-dimension Trees / Fat Trees

– rings and multi-rings

• Currently the best commercial networks belong to these classes:
– Infiniband

– Myrinet

– …
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(Next) future 

• On chip interconnection networks

• On chip optical interconnection networks

• Clear trend towards strong inter-relationship between HPC 
and Telecommunications
– A unique feature of this Master Program
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(Traditional, old-style) Bus
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Sender behaviour Receiver behaviour

Serious problems of
bandwidth
(contention) for bus-
based parallel
structures.

Trend: replace buses
with limited degree
networks based on 
dedicated links.



Arbiter mechanisms (for bus writing)
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Independent Request



Arbiters

• Daisy Chaining

• Polling (similar)
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Decentralized arbiters

• Token ring

• Non-deterministic with collision detection
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