<&\ Scuola Superiore
7%y) Sant’ Anna =
~ 7 di Studi Universitari e di Perfezionamento UNI"’ERSHA DI PISPL

Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

1. Prerequisites Revisited

1.3. Assembler level, CPU architecture, and 1/O

Uniprocessor architecture

Applications

Processes

Assembler

Firmware

Hardware

Main Memory

Management
Unit

T 3

Processor

The firmware interpretation of any assembly language
instructions has a decentralized organization, even for simple
uniprocessor systems.

The interpreter functionalities are partitioned among the various
processing units (belonging to CPU, M, 1/O subsystems), each
unit having its own Control Part and its own microprogram.

Cooperation of units through explicit message passing .

A uniprocessor architecture

DMA Bus

1/O Bus

Interrupt
Arbiter

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

Assembly level characteristics

e RISC (Reduced Instriction Set Computer) vs CISC (Complex
Instriction Set Computer)

— “The MIPS/Power PC vs the x86 worlds”

RISC:

* basic elementary arithmetic operations on integers,

* simple addressing modes,

* intensive use of General Registers, LOAD/STORE architecture

 complex functionalities are implemented at the assembler level by
(long) sequences of simple instructions

* rationale: powerful optimizations are (feasible and) made much
easier:

— Firmware architecture
— Code compilation for Caching and Instruction Level Parallelism

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms

Assembly level characteristics

CISC:

* includes complex istructions for arithmetic operations (reals,
and more),

 complex nested addressing modes,

* instructions corresponding to (parts of) systems primitives
and services

— process cooperation and management
— memory management

— graphics,

— networking

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

RISC and CISC approaches

RISC
architecture

Applications

Assemb Long Short

CISC
architecture

Sequence sequence sequence of

Single

of ' s i proper

. . instruction . : : .
instructions instructions | instructions

Firmware _

Hardware

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

Test: to be submitted and discussed

Basically, CISC implements at the firmware level what RISC implements at the
assembler level.

Assume:
o No Instruction Level Parallelism
o Same technology: clock cycle, memory access time, etc

Why the completion time could be reduced when implementing the same
functionality at the firmware level (“in hardware” ... 1) compared to the
implementation at the assembler level (“in software” ... 1)?

* Under which conditions is the ratio of completion times significant? Which
order of magnitude ?

* Exercise: answer these questions in a non trivial way, i.e. exploting the
concepts and features of the levels and level structuring.

* Write the answer (1-2 pages), submit the work to me, and discuss it at
Question Time.

» Goal: to highlight background problems, weaknesses, ... to gain aptitude.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms

Performance parameters

Average SERVICE TIME per instruction

YVi= 1,..., r. Ti = ki T Average service time of individual instructions

r ope .
Vi=l..r: p | Z p =1 Probab|!|ty MiX (occfurrence frequencies of
- instructions) for a given APPLICATION AREA

T :Zr:pi .T. =CPI -7
i=1

Global average SERVICE TIME per instruction

r CPI = average number of Clock cycles Per

CPI| = Z D, -CP|i Instruction
i=1
1 Performance = average number of executed
SO — instructions per second (MIPS, GIPS, TIPS, ...) =
T processing bandwidth of the system at the

assembler-firmware levels

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

Performance parameters

Completion time of a program

— Benchmark approach to performance evalutation (e.g., SPEC benchmarks)

— Comparison of distinct machines, differing at the assembler (and firmware)
level

— On the contary: the Performance parameters is meaningful only for the
comparison of different firmware implementations of the same assembler
machine.

m = average number of executed instructions

m
50 This simple formula holds rigorously for uniprocessors
without Instruction Level Parallelism

It holds with good approximation for Instruction Level

Parallelism (m = stream length),
or for parallel architectures.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms

RISC vs CISC

e RISC decreases T and increases m
e (CISCincreases T and decreases m
 Where is the best trade-off?

* For Instruction Level Parallelism machines: RISC optimizations may
be able to achieve a T decrease greater than the m increase

— cases in which the execution bandwidth has greater impact than the latency

* Where execution latency dominates, CISC achieves lower
completion time
— e.g. process cooperation and management, services, special functionalities, ...

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms

A possible trade-off

e Basically a RISC machine with the addition of specialized co-
processors or functional units for complex tasks

— Graphic parallel co-processors
— Vectorized functional units
— Network/Communication co-processors

* Concept: modularity can lead to optimizations
— separation of concerns and its effectiveness

* Of course, a CISC machine with “very optimized” compilers
can achieve the same/better results
— A matter of COMPLEXITY and COSTS / INVESTMENTS

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

Modularity and optimization of complexity / efficiency ratio

Main Memory

A uniprocessor architecture

Memory
Management
Unit
Interrupt
Processor Arbiter <

In turn, an advanced
I/0 unit can be
a parallel architecture
(vector / SIMD co-
processor / GPU /

),
or a powerful
multiprocessor-based
network interface,
or....

In turn, the Processor can be
implemented as a (large)
collection of parallel, pipelined
units

E.Q.
pipelined hardware

implementation of arithmetic

operations on reals,
or vector instructions

For interprocess
communication and
management:
communication co-
processors

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms

11

A “didactic RISC” 0

* See Patterson — Hennessy: MIPS assembler machine

* Inthe courses of Computer Architecture in Pisa: D-RISC

— adidactic version (on paper) of MIPS with few, inessential simplifications

— useful for explaining concepts and techniques in computer architecture and
compiler optimizations

— includes many features for code optimizations

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

D-RISC in a nutshell

* 64 General Registers: RG[64]
* Any instruction represented in a single 32-bit word

* All arithmetic-logical and branch/jump instructions operate on RG

— Integer arithmetic only
— Target addresses of branch/jump; relative to Program Counter , or RG contents

* Memory accesses can be done by LOAD and STORE instructions only

— Logical addresses are generated, i.c. CPU “sees” the Virtual Memory of running process
— Logical address computed as the sum of two GR contents (Base + Index mode)

* Input/output: Memory Mapped I/O through LOAD/STORE

— No special instructions

e Special instructions for
— Interrupt control: mask, enable/disable
— Process termination
— Context switching: minimal support for MMU
— Caching optimizations: annotations for prefetching, reuse, de-allocation, memory re-write
— Indivisible sequences of memory accesses and annotations (multiprocessor application)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Example of compilation

int A[N], B[N]:
for (i=0; i < N; i++)
Ali] = Ali] + B[i];

LOORP: LOAD RA, Ri, Ra
LOAD RB, Ri, Rb
ADD Ra, Rb, Rc
STORE RA, Ri, Rc
INCR Ri
IF < Ri, RN, LOOP
END

* R =keyword denoting “register address”
* For clarity of examples, register addresses are indicated by symbols
(e.g. RA =R27, then base address of A is the content RG[27])

REGISTER ALLOCATIONS and INITIALIZATIONS at COMPILE TIME:

* RA, RB: addresses of RG initialized at the base address of A, B

* Ri: address of RG containing variable I, initialized at 0

* RN: address of RG initialized at constant N

* Ra, Rb, Rc: addresses of RG containing temporaries (not initialized)

Virtual Memory denoted by VM
Program Counter denoted by IC

“NORMAL” SEMANTICS of SOME D-RISC INSTRUCTIONS:
LOAD RA, Ri, Ra::
RG[Ra] = MV[RG[RA] + RG[Ri]], IC=IC+ 1
ADD Ra, Rb, Rc::
RG[Rc] = RG[Ra] + RG[Rb], IC=I1C+1
IF < Ri, RN, LOOP ::
if RG[Ri] < RG[RN] then IC = IC + offset(LOOP) else IC=1C+1

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Compilation rules

compile(if C then B) =

compile(if C then B1 else B2) =

compile(while C do B) =

compile(do B while C) =

MCSN -

IF (not C) CONTINUE
compile(B)

CONTINUE: ...

THEN:

IF (C) THEN
compile(B2)
GOTO CONTINUE
compile(B1)

CONTINUE: ...

LOOP:

IF (not C) CONTINUE
compile(B)
GOTO LOOP

CONTINUE: ...

LOOP:

compile(B)
IF (C) LOOP

CONTINUE: ...

M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

|/O transfers

DMA Bus

Memory

: I
i Management I 1/O Bus
" Unit :
T i
: Interrupt :
: Processor Arbiter :
G CPU \——meeeee | DIRECT MEMORY ACCESS:
MEMORY MAPPED I/O: ' :\//|2r$12|rt; can access the Main
* Internal Memories of 1/O units are
extensions of the Main Memory SHARED MEMORY:
 Fully transpartent to the process: « Both techniques support sharing
LOAD and STORE contain logical addresses of memory between CPU-
« Compiler annotations drive the physical processes and 1/0O-processes (1/0
memory allocation Memory and/or Main Memory)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

Interrupt handling

* Signaling asynchronous events (asynchronous wrt the CPU
process) from the I/O subsystem

* Inthe microprogram of every instruction:

— Firmware phase: Test of interrupt signal and call of a proper
assembler procedure (HANDLER)

— HANDLER: specific treatment of the event signaled by the I/O unit

* |nstead, exceptions are synchronous events (e.g.
memory fault, protection violation, arithmetic error, and
so on), i.e. generated by the running process

— Similar technique for Exception Handling (Firmware phase + Handler)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

Firmware phase of interrupt handling

Interrupt Communication of 2
acknowledgement to words from 1/0O unit,
the selected I/O unit ___ T, |le——0 and procedure call
4 N\ 1
MMU
T
P
Arbiter — A /
/0

N /

* 1/0 unit identifier is not associated to the interrupt signal
* Once the interrupt has been acknowledged by P, the I/O unit sends a message
to CPU consisting of 2 words (via |/O Bus):
* An event identifier
* A parameter

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

