
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

1. Prerequisites Revisited

1.3. Assembler level, CPU architecture, and I/O

Uniprocessor architecture

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

Hardware

Applications

Processes

Assembler

Firmware

The firmware interpretation of any assembly language

instructions has a decentralized organization, even for simple

uniprocessor systems.

The interpreter functionalities are partitioned among the various

processing units (belonging to CPU, M, I/O subsystems), each

unit having its own Control Part and its own microprogram.

Cooperation of units through explicit message passing .

Cache Memory

.

.

.

Main Memory

Memory
Management

Unit

Processor
Interrupt
Arbiter

I/O1 I/Ok. . .

. . .

CPU

A uniprocessor architecture

Cache
Memory

I/O Bus

DMA Bus

Assembly level characteristics

• RISC (Reduced Instriction Set Computer) vs CISC (Complex
Instriction Set Computer)
– “The MIPS/Power PC vs the x86 worlds”

RISC:

• basic elementary arithmetic operations on integers,

• simple addressing modes,

• intensive use of General Registers, LOAD/STORE architecture

• complex functionalities are implemented at the assembler level by
(long) sequences of simple instructions

• rationale: powerful optimizations are (feasible and) made much
easier:
– Firmware architecture

– Code compilation for Caching and Instruction Level Parallelism

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

Assembly level characteristics

CISC:

• includes complex istructions for arithmetic operations (reals,
and more),

• complex nested addressing modes,

• instructions corresponding to (parts of) systems primitives
and services
– process cooperation and management

– memory management

– …

– graphics,

– …

– networking

– ….

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

RISC and CISC approaches

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

Hardware

Applications

Processes

Assembler

Firmware

Primitive 1

Primitive 2

Sequence
of

instructions

Single
instruction

microprogram

Long
sequence

of
instructions

Short
sequence of

proper
instructions

RISC
architecture

CISC
architecture

Test: to be submitted and discussed

Basically, CISC implements at the firmware level what RISC implements at the
assembler level.
Assume:

o No Instruction Level Parallelism

o Same technology: clock cycle, memory access time, etc

• Why the completion time could be reduced when implementing the same
functionality at the firmware level (“in hardware” … !) compared to the
implementation at the assembler level (“in software” … !)?

• Under which conditions is the ratio of completion times significant? Which
order of magnitude ?

• Exercise: answer these questions in a non trivial way, i.e. exploting the
concepts and features of the levels and level structuring.

• Write the answer (1-2 pages), submit the work to me, and discuss it at
Question Time.

 Goal: to highlight background problems, weaknesses, … to gain aptitude.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

Performance parameters

Average SERVICE TIME per instruction

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

 ii kTri :,...,1 Average service time of individual instructions

1:,...,1
1

 


r

i

ii ppri
Probability MIX (occurrence frequencies of
instructions) for a given APPLICATION AREA

i

r

i

i

i

r

i

i

CPIpCPI

CPITpT













1

1


Global average SERVICE TIME per instruction
CPI = average number of Clock cycles Per
Instruction

T

1


Performance = average number of executed
instructions per second (MIPS, GIPS, TIPS, …) =
processing bandwidth of the system at the
assembler-firmware levels

Performance parameters

Completion time of a program
– Benchmark approach to performance evalutation (e.g., SPEC benchmarks)

– Comparison of distinct machines, differing at the assembler (and firmware)
level

– On the contary: the Performance parameters is meaningful only for the
comparison of different firmware implementations of the same assembler
machine.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8




m
TmTc

m = average number of executed instructions

This simple formula holds rigorously for uniprocessors
without Instruction Level Parallelism

It holds with good approximation for Instruction Level
Parallelism (m = stream length),
or for parallel architectures.

RISC vs CISC

• RISC decreases T and increases m

• CISC increases T and decreases m

• Where is the best trade-off?

• For Instruction Level Parallelism machines: RISC optimizations may
be able to achieve a T decrease greater than the m increase

– cases in which the execution bandwidth has greater impact than the latency

• Where execution latency dominates, CISC achieves lower
completion time

– e.g. process cooperation and management, services, special functionalities, …

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9




m
TmTc

A possible trade-off

• Basically a RISC machine with the addition of specialized co-
processors or functional units for complex tasks
– Graphic parallel co-processors

– Vectorized functional units

– Network/Communication co-processors

– …

• Concept: modularity can lead to optimizations
– separation of concerns and its effectiveness

• Of course, a CISC machine with “very optimized” compilers
can achieve the same/better results
– A matter of COMPLEXITY and COSTS / INVESTMENTS

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

Modularity and optimization of complexity / efficiency ratio

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

Cache Memory

.

.

.

Main Memory

Memory
Management

Unit

Processor
Interrupt
Arbiter

I/O1 I/Ok. . .

. . .

CPU

A uniprocessor architecture

Cache
Memory

In turn, the Processor can be

implemented as a (large)

collection of parallel, pipelined

units

In turn, an advanced

I/O unit can be

a parallel architecture

(vector / SIMD co-

processor / GPU /

…),

or a powerful

multiprocessor-based

network interface,

or ….

E.g.

pipelined hardware

implementation of arithmetic

operations on reals,

or vector instructions

For interprocess

communication and

management:

communication co-

processors

A “didactic RISC”

• See Patterson – Hennessy: MIPS assembler machine

• In the courses of Computer Architecture in Pisa: D-RISC
– a didactic version (on paper) of MIPS with few, inessential simplifications

– useful for explaining concepts and techniques in computer architecture and

compiler optimizations

– includes many features for code optimizations

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

D-RISC in a nutshell

• 64 General Registers: RG[64]

• Any instruction represented in a single 32-bit word

• All arithmetic-logical and branch/jump instructions operate on RG
– Integer arithmetic only

– Target addresses of branch/jump; relative to Program Counter , or RG contents

• Memory accesses can be done by LOAD and STORE instructions only
– Logical addresses are generated, i.e. CPU “sees” the Virtual Memory of running process

– Logical address computed as the sum of two GR contents (Base + Index mode)

• Input/output: Memory Mapped I/O through LOAD/STORE
– No special instructions

• Special instructions for
– Interrupt control: mask, enable/disable

– Process termination

– Context switching: minimal support for MMU

– Caching optimizations: annotations for prefetching, reuse, de-allocation, memory re-write

– Indivisible sequences of memory accesses and annotations (multiprocessor application)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Example of compilation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

int A[N], B[N];

for (i = 0; i < N; i++)

A[i] = A[i] + B[i];

LOOP: LOAD RA, Ri, Ra

LOAD RB, Ri, Rb

ADD Ra, Rb, Rc

STORE RA, Ri, Rc

INCR Ri

IF < Ri, RN, LOOP

END

• R = keyword denoting “register address”
• For clarity of examples, register addresses are indicated by symbols

(e.g. RA = R27, then base address of A is the content RG[27])

REGISTER ALLOCATIONS and INITIALIZATIONS at COMPILE TIME:
• RA, RB: addresses of RG initialized at the base address of A, B
• Ri: address of RG containing variable i, initialized at 0
• RN: address of RG initialized at constant N
• Ra, Rb, Rc: addresses of RG containing temporaries (not initialized)

Virtual Memory denoted by VM
Program Counter denoted by IC

“NORMAL” SEMANTICS of SOME D-RISC INSTRUCTIONS:
LOAD RA, Ri, Ra ::

RG[Ra] = MV[RG[RA] + RG[Ri]], IC = IC + 1
ADD Ra, Rb, Rc ::

RG[Rc] = RG[Ra] + RG[Rb], IC = IC + 1
IF < Ri, RN, LOOP ::

if RG[Ri] < RG[RN] then IC = IC + offset(LOOP) else IC = IC + 1

Compilation rules

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

compile(if C then B)  IF (not C) CONTINUE
compile(B)

CONTINUE: …

compile(if C then B1 else B2)  IF (C) THEN
compile(B2)
GOTO CONTINUE

THEN: compile(B1)
CONTINUE: …

compile(while C do B)  LOOP: IF (not C) CONTINUE
compile(B)
GOTO LOOP

CONTINUE: …

compile(do B while C)  LOOP: compile(B)
IF (C) LOOP

CONTINUE: …

I/O transfers

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

Cache Memory

.

.

.

Main
Memory

Memory
Management

Unit

Processor
Interrupt
Arbiter

I/O1 I/Ok. . .

. . .

CPU

Cache
Memory

I/O Bus

DMA Bus

MEMORY MAPPED I/O:

• Internal Memories of I/O units are

extensions of the Main Memory

• Fully transpartent to the process:

LOAD and STORE contain logical addresses

• Compiler annotations drive the physical

memory allocation

DIRECT MEMORY ACCESS:

• I/O units can access the Main

Memory

SHARED MEMORY:

• Both techniques support sharing

of memory between CPU-

processes and I/O-processes (I/O

Memory and/or Main Memory)

MI/O1 MI/Ok

Interrupt handling

• Signaling asynchronous events (asynchronous wrt the CPU
process) from the I/O subsystem

• In the microprogram of every instruction:

– Firmware phase: Test of interrupt signal and call of a proper

assembler procedure (HANDLER)

– HANDLER: specific treatment of the event signaled by the I/O unit

• Instead, exceptions are synchronous events (e.g.
memory fault, protection violation, arithmetic error, and
so on), i.e. generated by the running process
– Similar technique for Exception Handling (Firmware phase + Handler)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

Firmware phase of interrupt handling

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18



Ttr

MMU

I/O

P

Arbiter

• I/O unit identifier is not associated to the interrupt signal
• Once the interrupt has been acknowledged by P, the I/O unit sends a message

to CPU consisting of 2 words (via I/O Bus):
• An event identifier
• A parameter

Interrupt

acknowledgement to

the selected I/O unit

Communication of 2

words from I/O unit,

and procedure call

