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1. Prerequisites Revisited

1.3. Assembler level, CPU architecture, and I/O



Uniprocessor architecture
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Assembly level characteristics

• RISC (Reduced Instriction Set Computer) vs CISC (Complex
Instriction Set Computer)
– “The MIPS/Power PC vs the x86 worlds”

RISC: 

• basic elementary arithmetic operations on integers, 

• simple addressing modes, 

• intensive use of General Registers, LOAD/STORE architecture

• complex functionalities are implemented at the assembler level by
(long) sequences of simple instructions

• rationale: powerful optimizations are (feasible and) made much
easier:
– Firmware architecture

– Code compilation for Caching and Instruction Level Parallelism
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Assembly level characteristics

CISC: 

• includes complex istructions for arithmetic operations (reals, 
and more), 

• complex nested addressing modes, 

• instructions corresponding to (parts of) systems primitives
and services
– process cooperation and management

– memory management

– …

– graphics, 

– …

– networking

– ….
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RISC and CISC approaches
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Test: to be submitted and discussed

Basically, CISC implements at the firmware level what RISC implements at the 
assembler level.
Assume:

o No Instruction Level Parallelism

o Same technology: clock cycle, memory access time, etc

• Why the completion time could be reduced when implementing the same
functionality at the firmware level (“in hardware” … !) compared to the 
implementation at the assembler level (“in software” … !)?

• Under which conditions is the ratio of completion times significant? Which
order of magnitude ?

• Exercise: answer these questions in a non trivial way, i.e. exploting the 
concepts and features of the levels and level structuring.

• Write the answer (1-2 pages), submit the work to me, and discuss it at 
Question Time.

 Goal: to highlight background problems, weaknesses, … to gain aptitude.
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Performance parameters

Average SERVICE TIME per instruction
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Performance parameters

Completion time of a program
– Benchmark approach to performance evalutation (e.g., SPEC benchmarks)

– Comparison of distinct machines, differing at the assembler (and firmware) 
level

– On the contary: the Performance parameters is meaningful only for the 
comparison of different firmware implementations of the same assembler
machine.
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m = average number of executed instructions

This simple formula holds rigorously for uniprocessors
without Instruction Level Parallelism

It holds with good approximation for Instruction Level
Parallelism (m = stream length),
or for parallel architectures.



RISC vs CISC

• RISC decreases T and increases m

• CISC increases T and decreases m

• Where is the best trade-off?

• For Instruction Level Parallelism machines: RISC optimizations may
be able to achieve a T decrease greater than the m increase

– cases in which the execution bandwidth has greater impact than the latency

• Where execution latency dominates, CISC achieves lower
completion time

– e.g. process cooperation and management, services, special functionalities, …
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A possible trade-off

• Basically a RISC machine with the addition of specialized co-
processors or functional units for complex tasks
– Graphic parallel co-processors

– Vectorized functional units

– Network/Communication co-processors

– …

• Concept: modularity can lead to optimizations
– separation of concerns and its effectiveness

• Of course, a CISC machine with “very optimized” compilers
can achieve the same/better results
– A matter of COMPLEXITY and COSTS / INVESTMENTS
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Modularity and optimization of complexity / efficiency ratio
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A “didactic RISC”

• See Patterson – Hennessy: MIPS assembler machine

• In the courses of Computer Architecture in Pisa: D-RISC
– a didactic version (on paper) of MIPS with few, inessential simplifications

– useful for explaining concepts and techniques in computer architecture and 

compiler optimizations

– includes many features for code optimizations
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D-RISC in a nutshell

• 64 General Registers: RG[64]

• Any instruction represented in a single 32-bit word

• All arithmetic-logical and branch/jump instructions operate on RG
– Integer arithmetic only

– Target addresses of branch/jump; relative to Program Counter , or RG contents

• Memory accesses can be done by LOAD and STORE instructions only
– Logical addresses are generated, i.e. CPU “sees” the Virtual Memory of running process

– Logical address computed as the sum of two GR contents (Base + Index mode)

• Input/output: Memory Mapped I/O through LOAD/STORE
– No special instructions

• Special instructions for
– Interrupt control: mask, enable/disable

– Process termination

– Context switching: minimal support for MMU

– Caching optimizations: annotations for prefetching, reuse, de-allocation, memory re-write

– Indivisible sequences of memory accesses and annotations (multiprocessor application)
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Example of compilation

MCSN   - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

int A[N], B[N];

for (i = 0; i < N; i++)

A[i] = A[i] + B[i];

LOOP: LOAD RA, Ri, Ra

LOAD RB, Ri, Rb

ADD Ra, Rb, Rc

STORE RA, Ri, Rc

INCR Ri

IF < Ri, RN, LOOP

END

• R = keyword denoting “register address”
• For clarity of examples, register addresses are indicated by symbols

(e.g. RA = R27, then base address of A is the content RG[27])

REGISTER ALLOCATIONS and INITIALIZATIONS at COMPILE TIME:
• RA, RB: addresses of RG initialized at the base address of A, B
• Ri: address of RG containing variable i, initialized at 0
• RN: address of RG initialized at constant N
• Ra, Rb, Rc: addresses of RG containing temporaries (not initialized)

Virtual Memory denoted by VM
Program Counter denoted by IC

“NORMAL” SEMANTICS of SOME D-RISC INSTRUCTIONS:
LOAD   RA, Ri, Ra ::

RG[Ra] = MV[ RG[RA] + RG[Ri] ], IC = IC + 1
ADD   Ra, Rb, Rc ::

RG[Rc] = RG[Ra] + RG[Rb], IC = IC + 1
IF <   Ri, RN, LOOP ::

if RG[Ri] < RG[RN] then IC = IC + offset(LOOP) else IC = IC + 1



Compilation rules
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compile(if C then B)  IF (not C)   CONTINUE
compile(B)

CONTINUE: …

compile(if C then B1 else B2)  IF (C)  THEN
compile(B2)
GOTO CONTINUE

THEN: compile(B1)
CONTINUE: …

compile(while C do B)  LOOP: IF (not C)   CONTINUE
compile(B)
GOTO LOOP

CONTINUE: …

compile(do B while C)  LOOP: compile(B)
IF (C)   LOOP

CONTINUE: …



I/O transfers
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Interrupt handling

• Signaling asynchronous events (asynchronous wrt the CPU 
process) from the I/O subsystem

• In the microprogram of every instruction:

– Firmware phase: Test of interrupt signal and call of a proper

assembler procedure (HANDLER)

– HANDLER: specific treatment of the event signaled by the I/O unit

• Instead, exceptions are synchronous events (e.g. 
memory fault, protection violation, arithmetic error, and 
so on), i.e. generated by the running process
– Similar technique for Exception Handling (Firmware phase + Handler)
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Firmware phase of interrupt handling
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