
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

1. Prerequisites Revisited

1.4. Memory Hierarchies and Caching

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

8 March

Women’s Day

with best wishes !

Memory hierarchies

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

Processor

Primary
cache

Secondary
cache

Main memory

File buffer memory

Fast disk storage

Rest of the world

. . .

. . .

. . .

Capacity,

Access

time

Cost

(per bit)

Memory hierarchies and performance issues

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

Processor

Primary
cache

Secondary
cache

Main memory

File buffer memory

Fast disk storage

Rest of the world

. . .

. . .

. . .

Capacity,

Access

time

Cost (per

bit)

Virtual memory
(one per process)

File on permanent storage

For our purposes
Virtual Memory: logical memory of
the process
• Logical address space
• Allocated , and possibly initialized,

at compile time
• Possibly re-allocated at run-time

(data creation / destruction)

DYNAMIC ALLOCATION
• information transfer between

the memory hierarchy levels,
• in order to optimize the access

time to the “currently needed”
information,

• i.e. to find space in the lowest
levels to accomodate the
information needed by the
process execution.

Performance/cost optimization

Memory hierarchies and address translation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

Processor

Primary
cache

Main memory

. . .

Process virtual memory

1.

Processor

generates

virtual

memory

addresses

2. translated into main memory addresses,

or main memory addressing fault

3. translated into primary cache addresses,

or cache addressing fault

Translation sequence must have very low latency (1 – 3 clock cycles) in case of success (no fault):
• MMU (with associative memory)
• Cache Unit

Fault handling (visible or invisible to processor): allocation of the needed information.

Memory hierarchies with Paging

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

Processor

Primary cache (C)

Main memory (MM)

. . .

Process virtual memory (VM)

1. Processor

generates

virtual

memory

addresses

(e.g. 32 bit)

2. translated into main memory addresses (e.g. 30 bit),

or main memory addressing fault

3. translated into primary cache addresses (e.g. 16 bit),

or cache addressing fault

Data transfer unit: fixed size page (block, line, …)

Different page sizes at different memory levels

VM-MM
page size  1K

MM-C
page size  8

Address translation applied to page identifiers (+ offset concatenation)

VM page_id Offset_1

MM page_id Offset_1

C block_id Offset_2

MM block_id Offset_2

Same
address

Fault probability

• For a given sub-hierarchy Mi - Mi-1 (e.g. MV-MM, MM-C):
– Fault (miss) probability, h

– Page (block, line, …) size, s

– Capacity of lower memory level, g

– h = h (s, g, replacement strategy) page replacement: e.g. LRU algorithm

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

sg

hh

Family of
curves
(different s)

Family of
curves
(different g)

Experimental values for large benchmarking program sets in given application areas

Each program has its own fault probability.
Importance of optimization techniques to reduce fault probability.

Paging: motivations

Properties of address sequences in sequential programs:

• LOCALITY (spatial locality): references to program information
belong to groups of addresses which are close together.

• REUSE (temporal locality): some information are referred
several times during the program execution.

WORKING SET of a sub-hierarchy:
Pages that, if and when allocated in the lower memory level of the sub-hierarchy,
minimize the fault probability (how many and which pages)

In some cases, the compiler is able to recognize the working set
and can cause some run-time actions to mantain the working set
in the lower memory level of the sub-hierarchy during the
program execution.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

Cache cost model

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

Completion time of a given program:

Tc = Tc-ideal + Nfault  Tblock

Tc-ideal = Completion time with no faults; memory access time =
cache access time

Nfault = Average number of faults for that program

Tblock = Block transfer time

Relative efficiency:

ecache = Tc-ideal / Tc

Examples (e.g. caching)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

int A[N], B[N];

for (i = 0; i < N; i++)

A[i] = A[i] + B[i];

LOOP: LOAD RA, Ri, Ra

LOAD RB, Ri, Rb

ADD Ra, Rb, Rc

STORE RA, Ri, Rc

INCR Ri

IF < Ri, RN, LOOP

END

Reuse of instructions (loop)
• In general, the cache unit provides reuse

(and prefetching) of instructions
automatically

Data: locality only

Working set =
• Instructions (e.g., one block)
• One block of A
• One block of B
• + other information of the process run-time

support (Process Control Block, Translation
Table, run-time code, etc)

Examples (e.g. caching)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

int A[N], B[N];

for (i = 0; i < N; i++)

A[i] = F (A[i], B);

LOOP: LOAD RA, Ri, Ra

…

…

LOAD RB, Rj, Rb, reuse

…

…

STORE RA, Ri, Rc

INCR Ri

IF < Ri, RN, LOOP

END

Instructions: reuse (loop)

Data:
• A: locality only
• B: potential reuse

Working set:
• blocks of instructions
• one block of A
• all blocks of B, once referred for the first

time
if B size is such that it can
be entirely allocated in
cache;

otherwise, if B is too large, reuse
cannot be exploited, or it can be exploited
only partially:

some blocks of B are allocated
in cache, the other
are allocated one at the time

Compiler

annotation:

if provided by the

assembler machine

if supported by the

firmware machine

(Cache Unit)

Reuse optimizations:

when decidable by a

static analysis (in this

case: yes);

typical non-decidable

cases: when reuse

opportunities depend

on data values.

Write operations

• Write Back
– A block is re-written in the upper memory level when it is de-allocated

• Write Through
– Every write operations is carried out into the cache and into the upper memory

level in parallel

– Effective if the memory bandwidth is greater/equal to the inverse of the

average time interval between two consecutive STORE instructions

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

On-demand vs prefetching strategies

• On-demand: page allocation only when a fault occurs

• Prefetching: try to anticipate the page allocation (to be ahead
of fault occurrence)
– Applied to the next page, or to a page to be determined

– If applied by default to data, prefetching could lead to serious inefficiencies

(examples of some Intel processors)

• Compiler annotation, e.g.

LOAD RC, Rj, Rc, prefetching

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Other caching annotations

• Useful for multiprocessors:
– explicit de-allocation of blocks

– explicit re-writing of blocks

• Cache coherence in multiprocessors
– See Part 2 of the course.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Cache fault handling

• Entirely invisible to the Processor: no exception is generated
• On the contrary: an exception is generated in the MV-MM sub-hierarchy,

and handled at the process level.

– The Cache Unit is responsible of implementing the replacement strategy and

the block transfer at the firmware level.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

Cache Memory

.

.

.

Main
Memory

Memory
Management

Unit

Processor
Interrupt
Arbiter

I/O1 I/Ok. . .

. . .

CPU

Cache
Memory

More levels of caching

• In a program characterized by locality only (or few reuse opportunities),
the block transfer from Main Memory to Cache could be inefficient: too
large latency
– Block transfer latency:

Tblock = s TMMaccess

– The completion time is about the same of the architecture without cache !

– Even in this architecture, reuse can increase efficiency significantly (importance of reuse,
again)

• Interleaved memory:
– m independent MM modules: M0, …, Mk, …, Mm-1

– Address j refers module k: k = j mod m

– Parallel access to m consecutive MM locations (MM bandwidth is increased by a factor m)

– Block transfer latency:

Interleaving could be not sufficient to solve the problem, if MM clock cycle and link latency are too
large.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

block

More levels of caching

SECONDARY CACHE (C2):

• Capacity and block size: one order of magnitude larger than
Primary Cache (C1)

• Information of more than one process in C2

• Block transfer latency:
– If C2 is out of CPU chip: m-interleaved static memory

same formula for Tblock, where now tM of C2 << MM clock cycle.

– If C2 is on-chip: just one memory module is sufficient to achieve a good

efficiency

Tblock  s t

applying overlapping of C2 read operations and C1 write operations.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

Cache cost model: an example

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

int A[N], B[N];

for (i = 0; i < N; i++)

A[i] = F (A[i], B);

LOOP: LOAD RA, Ri, Ra

…

…

LOAD RB, Rj, Rb, reuse

…

…

STORE RA, Ri, Rc

INCR Ri

IF < Ri, RN, LOOP

END

Completion time:

Tc = Tc-ideal + Nfault  Tblock

Tc-ideal = Completion time with no faults

Nfault = Average number of faults for the program

Tblock = Block transfer time

Let: TF = k t

Then: Tc-ideal  N TF = k N t

If B reuse can be applied:

Nfault = Nfault-instructions + Nfault-A + Nfault-B

 Nfault-A + Nfault-B = N/s + N/s = 2 N/s

With C2 on-chip: Tblock  s t

Then: Tc  k N t + 2 N t  Tc-ideal for k >> 2

Efficiency: ecache = Tc-ideal / Tc  1

Effect of faults is not significant, with the applied assumptions and
optimizations.

F

Caching techniques

Mapping function of MM block identifier (MB) into C block identifier
(CB):

CB = mapping_function (MB)

1) DIRECT CACHE: CB = MB mod NC

where NC = number of blocks in C

+ logic for verifying the possible fault

2) FULLY ASSOCIATIVE CACHE: CB = Block_Table (MB)

Random Association - Table Lookup implementation

Associative Memory

Direct Cache: rigid association, leading to increased fault probability in some programs;
cheap realization; lowest latency in case of success

Fully Associative: most general and most flexible, LRU applied for block replacement, at
least one more clock cycle of latency

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 19

Associative Memory (also for MMU)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 20

Fault

. . .

Value (Input_Key)Input_Key

Key 0

Key 1

Key C-1

. . .







. . .

OR

OR

OR

AND

RAM

Access

Logic

Value 0

Value1

Value C-1

Hardware implementation of a Content-Addressable Table

Caching techniques

3) Trade-off: SET ASSOCIATIVE CACHE

Cache blocks are partitioned into SETS, e.g. 4 blocks per set.

Let NS = number of cache sets.

Identifier of Cache Set where the Memory Block may reside:

SET = MB mod NS

Inside this Set, the Memory Block can be allocated anywhere: Associative Technique is
applied to the blocks in each Set.

• Simple implementation (no Associative Memory).

• Performances (fault probability) similar to Fully Associative Cache, LRU applied to Set
blocks, same latency in case of success.

TYPICAL ARCHITECTURE:

• Instruction Cache: Direct

• Data Cache: Set (Fully) Associative

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 21

Test 1:
to be submitted and discussed at Question Time

PRIMARY and SECONDARY CACHE

• Assume that Secondary Cache resides on CPU chip

• Why distinguishing between Primary Cache (L1) and
Secondary Cache (L2) ?

• i.e., why not just one level of cache only, with larger capacity
(sum of capacity of L1 and of L2) ?

As usually: give a convincing answer from a methodological
viewpoint (cost model, opportunities, utilization policies, and
so on), … not because existing processors have both L1 and
L2!

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 22

Test 2:
to be submitted and discussed at Question Time

CACHING and I/O

• Memory Mapped I/O: can CPU-caching be applied efficiently to
information allocated in the I/O Memories?

• Evaluate the efficiency (or other parameters) with an I/O Bus structure

– hint: for the sake of the cost model, assume that the I/O Bus adopts a RDY-ACK

communication protocol with level-transition interfaces as for dedicated links (See: Firmware

Prerequisites) – although this assumption is not formally correct;

– does the evaluation depend on the reuse opportunities of I/O-mapped information ? (give the

answer wrt this specific question, not in general).

• Find possible I/O architectures (suitable interconnection structure and
memory organization) able to exploit CPU-caching at best when Memory
Mapped I/O is adopted.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 23

