
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

2. Instruction Level Parallelism

2.1. Pipelined CPU

2.2. More parallelism, data-flow model

Improving performance through parallelism

Sequential Computer

• The sequential programming assumption
– User’s applications exploit the sequential paradigm: technology pull or technology

push?

• Sequential cooperation P – MMU – Cache – Main Memory – …
– Request-response cooperation: low efficiency, limited performance

– Caching: performance improvement through latency reduction (memory access
time), even with sequential cooperation

• Further, big improvement: increasing CPU bandwidth, through CPU-
internal parallelism
– Instruction Level Parallelism (ILP): several instructions executed in parallel

– Parallelism is hidden to the programmer

• The sequential programming assumption still holds

– Parallelism is exploited at the firmware level (parallelization of the firmware
interpreter of assembler machine)

– Compiler optimizations of the sequential program, exploiting the firmware
parallelism at best

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

ILP: which parallelism paradigm?

All forms are feasible:

Pipelined implementation of the
firmware interpreter

Replication of some parts of the
firmware interpreter

Data-flow ordering of instructions

Vectorized instructions

Vectorized implementation of some
parts of the firmware interpreter

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

Parallelism paradigms / parallelism
forms

• Stream parallelism
– Pipeline

– Farm

– Data-flow

– …

• Data parallelism
– Map

– Stencil

– …

• Stream + data parallelism
– Map / stencil operating on streams

– …

Pipeline paradigm in general

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

x : y = F (x) = F2 (F1 (F0 (x)))

Tseq = TF = TF0 + TF1 + TF2

M

Stream of x Stream of y

T0 = TF0 + Tcom
T1 = TF1 + Tcom T2 = TF2 + Tcom

Service Time: Tpipe = max (T0, T1, …, Tn-1) parallelism degree n Tpipe-id = Tseq / n

Efficiency: e = Tpipe-id/Tpipe = Tseq / (n max (T0, T1, …, Tn-1))

if TF0 = TF1 = … = TFn-1 = t : Tpipe = t + Tcom balanced pipeline

if Tcom = 0 : Tpipe = Tpipe-id = Tseq / n fully overlapped communications

For balanced, fully overlapped pipeline structures:

processing bandwidth: Bpipe = Bpipe-id = n Bseq

efficiency: e = 1

M0 M1 M2

Stream of x Stream of y

F0 F1 F2

Parallelism degree: n = 3

Module operating on stream

Pipeline latency

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

x : y = F (x) = F2 (F1 (F0 (x)))

latency Lseq = Tseq = TF = TF0 + TF1 + TF2

M

Stream of x Stream of y

L0 = TF0 +

Lcom

L1 = TF1 +

Lcom

L2 = TF2 +

Lcom

M0 M1 M2

Stream of x Stream of y

F0 F1 F2

Module operating on stream

Latency:
≥ Lseq

Bandwidth improvement
at the expense of increased latency wrt the sequential implementation.

Pipeline completion time

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

m = stream length (= 2)

n = parallelism degree (= 2)

T (n) = service time with parallelism

degree n

If m >> n :

The fundamental relation between completion time and service time,

valid for “long streams” (e.g. instruction sequence of a program …)

Filling transient period Emptying transient period

Steady state period

• Computation with internal state: for each stream element, the output value
depends also on an internal state variable, and the internal state is updated.

• Partitioned internal state:

if disjoint partitions of the state variable can be recognized

and they are encapsulated into distinct stages

and each stage operates on its own state partition only,

then the presence of internal state has no impact on service time.

• However, if state partitions are related each other, i.e. if there is a STATE
CONSISTENCY PROBLEM, then some degradation of the service time exists.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

Pipeline with internal state

Si Si+1

Mi-1
Mi Mi+1 ……

Si-1

Pipelining and loop unfolding

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

M :: int A[m]; int s, s0;

{ < receive s0 from input_stream >;

s = s0 ;

for (i = 0; i < m; i++)

s = F (s, A[i]);

< send s onto output_stream >

}

k times

M :: int A[m]; int s;

{ < receive s0 from input_stream >;

s = s0;

for (i = 0; i < m/k; i++)

s = F (s, A[i]);

for (i = m/k; i < 2m/k; i++)

s = F (s, A[i]);

…

for (i = (k-1)m/k ; i < m; i++)

s = F (s, A[i]);

< send s onto output_stream >

}

k-unfolding

k-stage
balanced pipeline
with A partitioned

(k partitions)

Formally, this transformation implements a

form of stream data-parallelism with stencil:

• simple stencil (linear chain),

• optimal service time,

• but increased latency compared to non-

pipelined data-parallel structures.

From sequential CPU …

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

. . .

MMU

P

C

CPU

chip
Interrupt

arbiter

Memory Interface (MINF)

M

I/O

… to pipelined CPU

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

Parallelization of the firmware
interpreter

while (true) do

 instruction fetch (IC);

instruction decoding;

(possible) operand fetch;

execution;

(possible) result writing;

IC update;

< interrupt handling: firmware phase >



Generate stream

• instruction stream

Recognize pipeline stages

• corresponding to

interpreter phases

Load balance of stages

Pipeline with internal state

• problems of state

consistency

• “impure” pipeline

• impact on performance

Basic principle of Pipelined CPU: simplified view

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

Instruction
Memory (IM)

Instruction
Unit (IU)

Data Memory
(DM)

Execution
Unit (EU)

IM

IU

DM

EU

1

1

1

1

2

2

2

3

t

2

3

3

3

Instruction stream generation: consecutive

instruction addresses

Instruction decode, data addresses generation

Data accesses

Execution phase

In principle, a continuous stream of instructions feeds the pipelined execution of the
firmware interpreter;
each pipeline stage corresponds to an interpreter phase.

M

P

becomes

. . .

Bus I/OM

MINF

MMUI

TAB-CI

CI

IU

IM

MMUD

TAB-CD

CD

EU

DM

Int. Arb.
CPU chip

(primary cache only is shown for simplicity)

RG1 RG
IC

IC1

Pipelined CPU: an example

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

• IM: Instruction Memory

• MMUI: Instruction Memory

MMU

• CI: Instruction Cache

• TAB-CI: Instruction Cache

Relocation

• DM: DataMemory

• MMUD: Data Memory MMU

• CD: Data Cache

• TAB-CD: Data Cache

Relocation

• IU: Instruction prepation

Unit; possibly parallel

• EU: instruction Execution

Unit ; possibly

parallel/pipelined

• RG: General Registers,

primary copy

• RG1: General Registers,

secondary copy

• IC: program counter, primary

copy

• IC1: program counter,

secondary copy

Main tasks of the CPU units (simplified)

• IM : generates the instruction stream at consecutive addresses
(IC1); if a new value IC1 is received by IU, re-starts the stream
generation starting from this value
– IM service time =  + Tcom =  (Ttr = 0)

• IU : receives instruction from IM; if valid then, according to
instruction class:
– if arithmetic instruction: sends instruction to EU

– if LOAD: sends instruction to EU, computes operand address on updated registers,
sends reading request to DM

– if STORE: sends instruction to EU, computes operand address on updated registers,
sends writing request to DM (address and data)

– if IF: verifies branch condition on general registers; if true then updates IC with the
target address and sends IC value to IM, otherwise increments IC

– if GOTO: updates IC with the target address and sends IC value to IM

• IU service time =  + Tcom =  (Ttr = 0)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Main tasks of the CPU units (simplified)

• DM : receives request from IU and executes it; if a reading
operation then sends the read value to EU

• DM service time =  + Tcom =  (Ttr = 0)

• EU : receives request from IU and executes it:
– if arithmetic instruction: executes the corresponding operation, stores the

results into the destination register, and sends it to IU

– if LOAD: wait for operand from DM, stores it into the destination register, and

sends it to IU.

• EU service time =  + Tcom =  (Ttr = 0); latency may be  or greater

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

AMD Opteron X4 (Barcelona)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

Pipeline abstract architecture

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

IM DM

IU EU

RG1 RG

IC

IC1

The CPU architecture “as seen”
by the compiler

It captures the essential features

for defining an effective cost

model of the CPU

First assumption: Pure Risc
(e.g.D-RISC)

• all stages have the same
service time: well balanced:

t = Tid

• Ttr= 0: if t ≥   Tcom = 0

for very fine grain operations, all
communications are fully
overlapped to internal calculations

The compiler can easily simulate the program
execution on this abstract architecture, or an
analytical cost model can be derived.

Example 1

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

1. LOAD R1, R0, R4
2. ADD R4, R5, R6
3. …

Execution simulation:
to determine service time T and efficiency e

1
T

TideidTt
t

T 
2

2

IM

IU

DM

EU

1

1

1

1

2

2

2

3

3

t 2 t

asynchronous com.

Instruction sequences of this

kind are able to fully exploit

the pipelined CPU.

In fact, in this case CPU

behaves as a “pure” pipeline.

No performance degradation.

“Skipping” DM stage has no

impact on service time, in

this example.

Peak performance

• For t ≥ 2  Tcom = 0

• Assume: t = 2 for all processing units
– including EU: arithmetic operations have service time  2

– floating point arithmetic: pipeline implementation (e.g., 4 or 8 stages …)

– for integer arithmetic: latency  2 (e.g., hardware multiply/divide)

– however, this latency does not hold for floating point arithmetic, e.g. 4 or 8 times greater

• CPU Service time: T = Tid = t

• Performance:

P id= 1/Tid = 1/2 = fclock/2 instructions/sec

– e.g. fclock = 4 GH2, P id= 2 GIPS

• Meaning: an instruction is fetched every 2

– i.e., a new instruction is processed every 2

– from the evaluation viewpoint, the burden between assembler and firmware is vanishing!

– marginal advantage of firmware implementation: microinstruction parallelism

• Further improvements (e.g., superscalar) will lead to

P id= w/ = w fclock , w ≥ 1

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

Performance degradations

• For some programs, the CPU is not able to operate as a “pure”
pipeline

• Consistency problems on replicated copies:

– RG in EU, RG1 in IU associated synchronization mechanism

– IC in IU, IC1 in IM associated synchronization mechanism

• In order to guarantee consistency through synchronization, some
“bubbles” are introduced in the pipeline flow

– increased service time

• Consistency of RG, RG1: LOGICAL DEPENDENCIES ON GENERAL
REGISTERS (“data hazards”)

• Consistency of IC, IC1: BRANCH DEGRADATIONS (“control hazards
or branch hazards”)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 19

Example 2: branch degradation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 20

1. LOAD R1, R0, R4
2. ADD R4, R5, R6
3. GOTO L
4. …

IM

IU

DM

EU

1

1

1

1

2

2

2

3

3 L

L

4

4

t 4 t

tT 
3

4

4

3


T

Tide

“bubble”:

IM performs a wasted fetch (instruction 4),

instruction 4 must be discarded by IU,

about one time interval t is wasted and it

propagates through the pipeline.

Abstract architecture: exactly one time
interval t is wasted (approximate
evaluation of the concrete architecture)

Example 3: logical dependency

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 21

1. LOAD R1, R0, R4
2. ADD R4, R5, R6
3. STORE R2, R0, R6

IM

IU

DM

EU

1

1

1

1

2

2

2

3

3

t 5 t

3

Instruction 3: when processed by

IU, it needs the updated value of

RG[6] contents.

Thus, IU must wait for the

completion of execution of

instruction 2 in EU.

In this case, two time intervals t

are wasted (approximate view of

the abstract architecture).

The impact of execution latency

is significant (in this case, DM is

involved because of the LOAD

instruction) .

If an arithmetic instruction were

in place of LOAD: the bubble

skinks to one time interval t.5

3

3

5
 etT

Logical dependency,

induced by

instruction 2

on

instruction 3;

distance k =1

. . .

Bus I/OM

MINF

MMUI

TAB-CI

CI

IU

IM

MMUD

TAB-CD

CD

EU

DM

Int. Arb.
CPU chip

RG1 RG
IC

IC1

Pipelined D-RISC CPU: implementation issues

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 22

Assume a D-RISC machine

Verify the feasibility of the

abstract architecture

characteristic:

all stages have the same

service time = .

RG-RG1 consistency:

integer semaphore

mechanism associated to

RG1.

IC-IC1 consistency:

unique identifier

associated to instructions

from IM,

in order to accept or to

discard them in IU.

RG1 consistency

• Each General Register RG1[i] has associated a non-negative
integer semaphore S[i]

• For each arithmetic/LOAD instruction having RG[i] as
destination, IU increments S[i]

• Each time RG1[i] is updated with a value sent from EU, IU
decrements S[i]

• For each instruction that needs RG[i] to be read by IU (address
components for LOAD, address components and source value
for STORE, condition applied to registers for IF, address in
register for GOTO), IU waits until condition (S[i] = 0) holds

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 23

IC1 consistency

• Each time IU executes a branch or jump, IC is updated with
the new target address, and this value is sent to IM

• As soon as it is received by IU, IM writes the new value into
IC1

• Every instruction sent to IU is accompanied by the IC1 value

• For each received instruction, IU compares the value of IC
with the received value of IC1: the instruction is valid if they
are equal, otherwise the instruction is discarded.

• Notice that IC (IC1) acts as a unique identifier. Alternatively, a
shorter identifier can be generated by IU and sent to IM.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 24

Detailed tasks of the CPU units

• IM
– MMUI : translates IC1 into physical address IA of instruction, sends (IA, IC1)

to TAB-CI, and increments IC1

• when a new message is received from IU, MMUI updates IC1

– TAB-CI : translates IA into cache address CIA of instruction, or generates a

cache fault condition MISS), and sends (CIA, IC1, MISS) to CI

– CI : if MISS is false, reads instruction INSTR at address CIA and sends

(INSTR, IC1) to IU; otherwise performs the block transfer, then reads

instruction INSTR at address CIA and sends (INSTR, IC1) to IU

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 25

Detailed tasks of the CPU units

• IU
– when receiving (regaddr, val) from EU writes val into RG[regaddr] and decrements

S[regaddr]

or

– when receiving (INSTR, IC1), if IC = IC1 the instruction is valid and IU goes on, otherwise
discards the instruction

– if type = arithmetic (COP, Ra, Rb, Rc), sends instruction to EU, increments S[c]

– if type = LOAD (COP, Ra, Rb, Rc), waits for updated values of RG[a] and RG[b], sends
request (read, RG[a] + RG[b]) to DM, increments S[c]

– if type = STORE (COP, Ra, Rb, Rc), waits for updated values of RG[a], RG[b] and RG[c],
sends request (read, RG[a] + RG[b], RG[c]) to DM

– if type = IF (COP, Ra, Rb, OFFSET), waits for updated values of RG[a] and RG[b], if
branch condition is true then IC = IC + OFFSET and sends the new IC to IM, otherwise IC =
IC +1

– if type = GOTO (COP, OFFSET), IC = IC + OFFSET and sends the new IC to IM

– if type = GOTO (COP, Ra), waits for updated value of RG[a], IC = RG[a] and sends the new
IC to IM

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 26

Detailed tasks of the CPU units

• DM

– MMUD : receives (op, log_addr, data) from IU, translates log_addr into phys_addr,

sends (op, phys_addr, data) to TAB_CD

– TAB-CD : translates phys_addr into cache address CDA, or generates a cache fault

condition MISS), and sends (op, CDA, data, MISS) to CD

– CD : if MISS is false, then according to op:

• reads VAL at address CDA and sends VAL to EU;

• otherwise writes data at address CDA;

if MISS is true: performs block transfer; completes the requested operation as before

• EU

– receives instruction (COP, Ra, Rb, Rc) from IU

– if type = arithmetic (COP, Ra, Rb, Rc), executes RG[c] = COP(RG[a], RG[b]), sends

the new RG[c] to IU

– if type = LOAD (COP, Ra, Rb, Rc), waits VAL from DM, RG[c] = VAL, sends VAL to

IU

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 27

Cost model

• To be evaluated on the abstract architecture: good
approximation

• Branch degradation:

l = branch probability

T = l 2t + (1 – l) t = (1 + l) t

• Logical dependencies degradation:

T = (1 + l) t + D

D = average delay time in IU processing

• Efficiency:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 28

 
t

t

t

T

Tid

D



D



l
l

e

1

1

1

Example

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 29

1. LOAD R1, R0, R4
2. ADD R4, R5, R6
3. GOTO L
4. …

D  

l  

 
4

3

3

4
1  el ttT

Logical dependencies degradation

• Formally, D is the response time RQ in a client-server system

• Server: DM-EU subsystem

• A logical queue of instructions is formed at the input of DM-
EU server

• Clients: logical instances of the IM-IU subsystem,

corresponding to queued instructions sent to DM-EU

• Let d = average probability of logical dependencies

D = d RQ

• How to evaluate RQ?

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 30

Client – server systems in general (at any level)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 31

C1

Cn

Q
S

. . .

S::

while (true) do

{ < receive x from C C1, …, Cn >;

y = F (x, …) ;

< send y to C >

}

Ci::

initialize x …

while (true) do

{ < send x to S >;

< receive y from S >;

x = G (y, …)

}

Assume a request-response behaviour:

a client sends a request to the server,

then waits for the response from the server.

The service time of each client is delayed by the

RESPONSE TIME of the server.

Modeling and evaluation as a Queueing

System.

Client-server queueing modeling

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 32

 























n

T
T

T

T

LsTRR

RTT

cl
A

A

S

SSQQ

QGcl



 ,,,

Tcl: average service time of generic client

TG: ideal average service time of generic client

RQ: average response time of server

: server queue utilization factor

TS: average service time of server

LS: average latency time of server

S: other service time distribution parameters (e.g.,

variance of the service time of the server)

TA: average interarrival time to server

n: number of clients (assumed identical)

One and only one real solution exists satisfying the constraint:  < 1.

System of equations to be solved through analytical or numerical methods.

This methodology will be applied several times during the course.

Typical results: server utilization degree (= )

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 33

0,00

0,20

0,40

0,60

0,80

1,00

0 1 10 100 1000



TG

Fattore di utilizzazione della coda di richieste

in funzione del tempo di calcolo e del numero dei clienti, con TS = 10

n=1

n=4

n=16

Typical results: client efficiency (= TG/Tcl)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 34

Parallel server: the impact of service time and of
latency

• A more significant way to express the Response Time, especially for a parallel
server:

RQ = WQ (, …) + LS

• WQ: average Waiting Time in queue (queue of clients requests): WQ depends on
the utilization factor , thus on the service time only (not on latency)

• LS is the latency of server

• Separation of the impact of service time and of latency

• All the parallelism paradigms aim to reduce the service time

• Some parallelism paradigms are able to reduce the latency too

– Data-parallel, data-flow, …

while other paradigms increase the latency

– Pipeline, farm, …

• Overall effect: in which cases does the service time (latency) impact dominates on
the latency (service time) impact ?

• For each server-parallelization problem, the relative impact of service time and
latency must be carefully studied in order to find a satisfactory trade-off.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 35

Pipeline CPU: approximate evaluation of D

• For a D-RISC machine
• Evaluation on the abstract architecture
• Let:

– k = distance of a logical dependency

– dk = probability of a logical dependency with distance k

– NQ = average number of instructions waiting in DM-EU subsystem

• It can be shown that:

where summation is extended to non-negative terms only.

NQ = 2 if the instruction inducing the logical dependency is the last instruction of a
sequence containing all EU-executable instructions and at least one LOAD,

otherwise NQ = 1 .

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 36

 kNdt
kQ

k

k

k D 


1
1

D formula for D-RISC: proof

• D = d1D1 + d2D2 + … extended to non-negative terms only

• dk = probability of logical dependency with distance k

• Dk = RQk = WQk + LS

• WQk = average number of queued instructions that (with probability dk)
precede the instruction inducing the logical dependency

• LS = Latency of EU in D-RISC; with hardware-implemented arithmetic
operations on integers LS = t

• Dk = WQk + t

• Problem: find a general expression for WQk

• The number of distinct situations that can occur in a D-RISC abstract
architecture is very limited

• Thus, the proof can be done by enumeration.

• Let us individuate the distinct situations.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 37

D formula for D-RISC: proof

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 38

Case A:
1. ADD …, …, R1
2. STORE …, …, R1

distance k = 1
probability d1

WQ = 0:
when 2 is in IU, 1 is in
EU (current service)

D = d1 (WQ + Ls) = d1 t

Case B:
1. ADD …, …, R1
2. SUB …, …, R2
3. STORE …, …, R1

distance k = 2
probability d2

WQ = 1t:
when 3 is in IU, 1 has
been already
executed

D = d2 (WQ + Ls) = 0

Case C:
1. LOAD …, …, …
2. ADD …, …, R1
3. STORE …, …, R1

distance k = 1
probability d1

WQ = 1t:
when 3 is in IU, 1 is in
EU (current service), 2
is waiting in queue

D = d1 (WQ + Ls) = 2 d1 t

Case D:
1. LOAD …, …, …
2. ADD …, …, R1
3. SUB …, …, R2
4. STORE …, …, R1

distance k = 2
probability d2

WQ = 0:
when 4 is in IU, 2 is in
EU (current service)

D = d2 (WQ + Ls) = d2 t

In all other cases D = 0, in particular for k > 2.

D formula for D-RISC: proof

• WQk = number of queued instructions preceding the instruction that
induces the logical dependency

• Maximum value of WQk = 1t:
– the instruction currently executed in EU has been delayed by a previous LOAD, and

the instruction inducing the logical dependency is still in queue

• Otherwise: WQk = 0 or WQk = - 1t
– WQk = 0: the instruction currently executed in EU induces the logical dependency,

– WQk = 0: the instruction currently executed in EU has been delayed by a previous
LOAD, and it is the instruction inducing the logical dependency

– WQk = -1t: the instruction inducing the logical dependency has been already
executed

• To be proven that: WQk = (NQk – k)t
– NQk = 2 if the instruction inducing the logical dependency is the last instruction of a

sequence containing all EU-executable instructions and at least one LOAD,

– otherwise NQk = 1 .

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 39

D formula for D-RISC: proof

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 40

Case A:
1. ADD …, …, R1
2. STORE …, …, R1

distance k = 1
probability d1

WQ = 0:
when 2 is in IU, 1 is in
EU (current service)

D = d1 (WQ + Ls) = d1 t

Case B:
1. ADD …, …, R1
2. SUB …, …, R2
3. STORE …, …, R1

distance k = 2
probability d2

WQ = 1t:
when 3 is in IU, 1 has
been already
executed

D = d2 (WQ + Ls) = 0

Case C:
1. LOAD …, …, …
2. ADD …, …, R1
3. STORE …, …, R1

distance k = 1
probability d1

WQ = 1t:
when 3 is in IU, 1 is in
EU (current service), 2
is waiting in queue

D = d1 (WQ + Ls) = 2 d1 t

Case D:
1. LOAD …, …, …
2. ADD …, …, R1
3. SUB …, …, R2
4. STORE …, …, R1

distance k = 2
probability d2

WQ = 0:
when 4 is in IU, 2 is in
EU (current service)

D = d2 (WQ + Ls) = d2 t

NQ = 1, WQ = (NQ–k)t = 0

NQ = 1, WQ = (NQ–k)t = 1t

NQ = 2, WQ = (NQ–k)t = 1t

NQ = 2, WQ = (NQ–k)t = 0

In all other cases D = 0 : k > 2, or k = 2 and NQ = 1

Example

1. LOAD R1, R0, R4

2. ADD R4, R5, R6

3. STORE R2, R0, R6

l = 0

One logical dependency induced by instruction 2 on instruction 3:

distance k = 1, probability d1 = 1/3, NQ = 2

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 41

 
5

3

3

5
1 D el ttT

D ttNd Q
3

2
1

Example

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 42

1. L : LOAD R1, R0, R4
2. LOAD R2, R0, R5
3. ADD R4, R5, R4
4. STORE R3, R0, R4
5. INCR R0
6. IF < R0, R6, L
7. END

D
2

1
1 tNd Q

 
5

3

3

5
1 D el ttT

2

3
,

6

2
,

6

1
1  QNdl

Two logical dependencies with the
same distance (= 1): the one with
NQ = 2, the other with NQ = 1

Note: intermixed/nested logical dependencies

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 43

5. 4.
6. 5.
7. 6.

7.

Logical
dependency
induced by 5 on 7
has no effect.

Logical
dependency
induced by 4 on 7
has no effect.

Cache faults

• All the performance evaluations must be corrected taking into
account also the effects of cache faults (Instruction Cache,
Data Cache) on completion time.

• The added penalty for block transfer (data)
– Worst-case: exactly the same penalty studied for sequential CPUs (See Cache

Prerequisites),

– Best-case: no penalty - fully overlapped to instruction pipelining

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 44

Compiler optimizations

• Minimize the impact of branch degradations:
• DELAYED BRANCH

= try to fill the branch bubbles with useful instructions

 Annotated instructions

• Minimize the impact of logical dependencies degradations:
• CODE MOTION

= try to increase the distance of logical dependencies

• Preserve program semantics, i.e. transformations that satisfy
the Bernstein conditions for correct parallelization.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 45

Bernstein conditions

Given the sequential computation:

R1 = f1(D1) ; R2 = f2(D2)

it can be transformed into the equivalent parallel computation:

R1 = f1(D1)  R2 = f2(D2)

if all the following conditions hold:

R1  D2 =  (true dependency)

R1  R2 =  (antidependency)

D1  R2 =  (output dependency)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 46

Notice: for the parallelism inside a microinstruction (see Firmware Prerequisites), only
the first and second conditions are sufficient (synchronous model of computation). E.g.

A + B  C ; D + E  A is equivalent to: A + B  C , D + E  A

Delayed branch: example

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 47

1. L : LOAD R1, R0, R4
2. LOAD R2, R0, R5
3. ADD R4, R5, R4
4. STORE R3, R0, R4
5. INCR R0
6. IF < R0, R6, L
7. END

1. LOAD R1, R0, R4
2. L : LOAD R2, R0, R5
3. ADD R4, R5, R4
4. STORE R3, R0, R4
5. INCR R0
6. IF < R0, R6, L, delayed_branch
7. LOAD R1, R0, R4
8. END

l = 0

 
3

2

2

3
1 D el ttT

(previous version: e = 3/5)

Increase logical dependency distance: example

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 48

1. LOAD R1, R0, R4
2. L : LOAD R2, R0, R5
3. ADD R4, R5, R4
4. STORE R3, R0, R4
5. INCR R0
6. IF < R0, R6, L, delayed_branch
7. LOAD R1, R0, R4
8. END

1. LOAD R1, R0, R4
2. L : LOAD R2, R0, R5
3. ADD R4, R5, R4
4. INCR R0
5. STORE R3, R0, R4
6. IF < R0, R6, L, delayed_branch
7. LOAD R1, R0, R4
8. END

d1= 1/6

(previous version: e = 2/3)

Tc = 6 N T = 8 N t

For this transformation,
the compiler initializes
register R3 at the value

Base_C - 1
where Base_C is the base
address of the result
array.

Exploit both optimizations jointly

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 49

1. LOAD R1, R0, R4
2. L : LOAD R2, R0, R5
3. ADD R4, R5, R4
4. STORE R3, R0, R4
5. INCR R0
6. IF < R0, R6, L, delayed_branch
8. END

1. L : LOAD R1, R0, R4
2. LOAD R2, R0, R5
3. INCR R0
4. ADD R4, R5, R4
6. IF < R0, R6, L, delayed_branch
6. STORE R3, R0, R4
7. END

(previous version: e = 3/4)

Tc = 6 N T = 7 N t

Exercizes

1. Compile, with optimizations, and evaluate the completion time of a program that computes

the matrix-vector product (operands: int A[M][M], int B[M]; result: int C[M], where M = 104)

on a D-RISC Pipeline machine.

The evaluation must include the cache fault effects, assuming the Data Cache of 64K words

capacity, 8 words blocks, operating on-demand.

2. Consider the curves at pages 33, 34. Explain their shapes in a qualitative way (e.g. why e

tends asymtotically to an upper bound value as TG tends to infinity, …).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 50

Exercize
3. Systems S1 and S2 have a Pipelined CPU architecture. S1 is a D-RISC machine. The

assembler level of S2 is D-RISC enriched with the following instruction:

REDUCE_SUM RA, RN, Rx

with RG[RA] = base address of an integer array A[N], and RG[RN] = N.

The semantics of this instruction is

RG[Rx] = reduce (A[N], +)

Remember that

reduce (H[N], )

where  is any associative operator, is a second-order function whose result is equal to the

scalar value

H[0]  H[1]  …  H[N-1]

a) Explain how a reduce (A[N], +) is compiled on S1 and how it is implemented on S2,

and evaluate the difference d in the completion times of reduce on S1 and on S2.

b) A certain program includes reduce (A[N], +) executed one and only one time. Explain

why the difference of the completion times of this program on S1 and on S2 could be

different compared to d as evaluated in point a).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 51

Execution Unit and “long” instructions

• The EU implementation of “long” arithmetic operations, e.g.
– integer multiplication, division

– floating point addition

– floating point multiplication, division

– other floating point operations (square root, sin, cosin, …)

has to respect some basic guidelines:
A. to mantain the EU service time equal to the CPU ideal service time Tid,

B. to minimize the EU latency in order to minimize the logical dependencies

degradation.

• To deal with issues A, B we can apply:
A. Parallel paradigms at the firmware level

B. Data-parallel paradigms and special hardware implementations of arithmetic

operations.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 52

Integer multiplication, division

• A simple firmware implementation is a loop algorithm (similar to
the familiar operation “by hand”), exploting additions/subtractions
and shifts

– Latency = O(word lenght)   50  (32 bit integers)

• Hardware implementations in 1-2  exist, though expensive in
terms of silicon area if applied to the entire word

• Intermediate solution: firmware loop algorithm, in which few
iterations are applied to parts of the word (e.g. byte), each iteration
implemented in hardware.

• Intermediate solutions exploiting parallel paradigms:

– farm of firmware multiply-&-divide units: reduced service time, but not latency

– loop-unfolding pipeline, with stages corresponding to parts (byte) implemented in

hardware: reduced service time, latency as in the sequential version (intermediate).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 53

Multiplication through loop-unfolding pipeline

Multiply a, b, result c

Let byte (v, j) denote the j-th byte of integer word v

Sequential multiplication algorithm (32 bit) exploiting the hardware implementation
applied to bytes:

init c;

for (i = 0; i < 4; i++)

c = combine (c, hardware_multiplication (byte (a, i), byte (b, i)))

Loop-unfolding pipeline (“systolic”) implementation:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 54

c
hw_mul

& combine
hw_mul

& combine
hw_mul

& combine
hw_mul

& combine
c

byte (a, 0) byte (b, 0) byte (a, 1) byte (b, 1) byte (a, 2) byte (b, 2) byte (a, 3) byte (b, 3)

service time = , latency = 8

Exercize

4. The cost model formula for D (given previously) is valid for a D-RISC-like CPU

in which the integer multiplication/division operations are implemented entirely in

hardware (1- 2 clock cycles).

Modify this formula for a Pipelined CPU architecture in which the integer

multiplication/division operations are implemened as a 4-stage pipeline.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 55

Pipelined floating point unit

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 56

Example: FP addition
FP number = (m, e), where: m = mantissa, e = exponent

N1 = (m1, e1) N2 = (m2, e2)

D = e2 – e1

m 1 = m1  2-D, m2 = m2

or

m 1 = m1, m2 = m2  2-D

m = m1 + m2

e = max (e1, e2)

normalization

Parallel EU schemes

• Farm, where each worker is general-purpose, implementing
addition/subtraction & multiply/divide on integer or floating point numbers.

• Functional partitioning, where each worker implements a specific operation
on integer or floating point numbers:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 57

INT Add / Sub

FP Pipelined
Add / Sub

INT Pipelined
Mul / Div

FP Pipelined
Mul / Div

INT Add / Sub

dispatcher collector

Floating
Point

Registers

Parallel EU: additional logical dependencies

• More arithmetic instructions can be executed simultaneoulsy in a parallel EU.

• This introduces additional logical dependencies “EU-EU” (till now: “IU-EU” only). For
example, in the sequence:

MUL Ra, Rb, Rc

ADD Rd, Re, Rf

the second instruction starts in EU as soon the first enters the pipelined multiplier,
while in the sequence:

MUL Ra, Rb, Rc

ADD Rc, Re, Rf

the second instruction is blocked in EU until the first is completed.

The dispatcher units (see previous slide) is in charge of implementing the
synchronization mechanism, according to a semaphoric technique similar to the one
for synchronizing IU and EU.

• Because of EU latency and EU-EU dependencies, it is more convenient to increase
the asynchrony degree of the IU-EU channel, i.e. a Queueing Unit is inserted. In
practice, this increases the number of pipeline stages of the machine.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 58

Data parallelism for arithmetic operations

• Data parallelism is meaningful on large data structures, i.e.
arrays, only

• Vectorized assembler instructions operate on arrays, e.g.

SUM_VECT base_address A, base_address B, base_address C, size N

• Data parallel implementation: map at the firmware level
– scatter arrays A, B

– map execution

– gather to obtain array C

• Also: reduce, parallel prefix operations

• Also: operations requiring stencil-based data parallel
implementation, e.g. matrix-vector or matrix-matrix product,
convolution, filters, Fast Fourier Transform.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 59

Pure Risc enriched by
floating point pipelined and vectorized co-processors

• Mathematical co-processors, connected as I/O units

– instead of assembler instructions

• FP / vector operations called as libraries containing I/O transfer operations
(LOAD, STORE - Memory Mapped I/O - DMA)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 60

Cache Memory

.

.

.

Main Memory

Memory
Management

Unit

Processor
Interrupt
Arbiter

I/O1 I/Ok. . .

. . .

CPU

Cache
Memory

I/O Bus

DMA Bus

co-processors

Solutions of Exercizes

• Exercize 1

• Exercize 3

• Exercize 4

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 61

Exercize 1

Compile, with optimizations, and evaluate the completion time of a program

that computes the matrix-vector product (operands: int A[M][M], int

B[M]; result: int C[M], where M = 104) on a D-RISC Pipeline machine.

The evaluation must include the cache fault effects, assuming the Data Cache

of 64K words capacity, 8 words blocks, operating on-demand.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 62

Solution of Exercize 1

Sequential algorithm, O(M2):

int A[M][M]; int B[M]; int C[M];

for (i = 0; i < M; i++)

C[i] = 0;

for (j = 0; j < M; j++)

C[i] = C[i] + A[i][j]  B[j]



Process virtual memory:

– matrix A stored by row, M2 consecutive words;

– compilation rule for 2-dimension matrices used in loops: for each
iteration,

base address = base address + M

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 63

Solution of Exercize 1

Basic compilation (without optimizations):
initialize RA, RB, RC, RM, Ri (=0); allocate Rj, Ra, Rb, Rc

LOOP_i: CLEAR Rc

CLEAR Rj

LOOP_j: LOAD RA, Rj, Ra

LOAD RB, Rj, Rb

MUL Ra, Rb, Ra

ADD Rc, Ra, Rc

INCR Rj

IF < Rj, RM, LOOP_j

STORE RC, Ri, Rc

ADD RA, RM, RA

INCR Ri

IF < Ri, RM, LOOP_i

END

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 64

Completion time:

Tc  M2  completion time of innermost loop

Tc  6 M2 T

where T = service time per instruction

Performance degradations in the outermost
loop are not relevant (however, the compiler
applies optimizations to this part too).

Solution of Exercize 1

Analysis of innermost loop (initially: perfect cache):

l = 1/6; k = 1, dk = 1/6, NQk = 2

T = (1 + l) t + dk t (NQk + 1 – k) = 9t/6 e = 6/9

Tc  6 M2 T = 9 M2 t = 18 M2 

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 65

LOOP_j: LOAD RA, Rj, Ra

LOAD RB, Rj, Rb

MUL Ra, Rb, Ra

ADD Rc, Ra, Rc

INCR Rj

IF < Rj, RM, LOOP_j

Solution of Exercize 1

Optimization and evaluation of innermost loop (perfect cache):

l = 0; k = 3  D = 0

T = t = Tid e = 1

Tc  6 M2 T = 6 M2 t = 12 M2 

Completion time difference = 6 M2 , ratio = 1.5

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 66

LOAD RA, Rj, Ra

LOOP_j: LOAD RB, Rj, Rb

INCR Rj

MUL Ra, Rb, Ra

ADD Rc, Ra, Rc

IF < Rj, RM, LOOP_j, delayed_branch

LOAD RA, Rj, Ra

Solution of Exercize 1

Impact of caching:

Instruction faults: not relevant; reuse ; 2 fixed blocks in working set

Matrix A, array C: locality only ; 1 block at the time for A and for C in working set

Nfault-A = M2/ Nfault-C = M/

Array B: reuse (+ locality) ; all B blocks in working set; due to its size, B can be allocated
entirely in cache

Nfault-B = M/

LOAD RB, Rj, Rb, no_dellocation

Assuming a secondary cache on chip: Tblock =  

Tfault = Nfault Tblock  Nfault-A Tblock = M2 

Worst–case assumption – pipeline is blocked when a block transfer occurs :

Tc = Tc-perfect-cache + Tfault = 12 M2   M2   13 M2  ecache  

In this case, if prefetching were applicable, Nfault-A = 0 and TC = Tc-perfect-cache , ecache  

LOAD RA, Rj, Ra, prefetching

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 67

Solution of Exercize 1

Best-case assumption about block transfer corresponds a more realistic behaviuor : pipeline is working
normally during a block transfer; only if a data dependency on the block value occurs, then a bubble in
naturally introduced.

In our case:

With secondary cache on chip, and  = 8, with these assumptions the block transfer is overlapped to pipeline
behaviour:

• when EU is ready the execute MUL, the A-block transfer has been completed in DM,

• no (relevant) cache degradation, even without relaying on prefetching of A blocks.

For out-of-order behaviour: see the slides after Branch Prediction.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 68

LOAD RA, Rj, Ra

LOOP_j: LOAD RB, Rj, Rb

INCR Rj

MUL Ra, Rb, Ra

ADD Rc, Ra, Rc

IF < Rj, RM, LOOP_j, delayed_branch

LOAD RA, Rj, Ra

During an A-block transfer,

• DM serves other requests in
parallel (B is in cache),

• LOAD RB, … can be correctly
executed out-of-order

• INCR Rj can be executed,

• MUL can start; EU waits for
the element of A

Exercize 3

Systems S1 and S2 have a Pipelined CPU architecture. S1 is a D-RISC machine. The assembler
level of S2 is D-RISC enriched with the following instruction:

REDUCE_SUM RA, RN, Rx

with RG[RA] = base address of an integer array A[N], and RG[RN] = N.

The semantics of this instruction is

RG[Rx] = reduce (A[N], +)

Remember that

reduce (H[N], )

where  is any associative operator, is a second-order function whose result is equal to the scalar
value

H[0]  H[1]  …  H[N-1]

a) Explain how a reduce (A[N], +) is compiled on S1 and how it is implemented on S2, and
evaluate the difference d in the completion times of reduce on S1 and on S2.

b) A certain program includes reduce (A[N], +) executed one and only one time. Explain why
the difference of the completion times of this program on S1 and on S2 could be different
compared to d as evaluated in point a).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 69

Solution of Exercize 3

a) System S1. The sequential algorithm for

x = reduce (A[N], +)

having complexity O(N), can be compiled into the following optimized code for :

LOAD RA, Ri, Ra

LOOP: INCR Ri

ADD Rx, Ra, Rx

IF < Ri, RN, LOOP, delayed_branch

LOAD RA, Ri, Ra

Performance analysis, without considering possible cache degradations:

l = 0; k = 2, dk = 1/4, NQk = 2

T = (1 + l) t + dk t (NQk + 1 – k) = 5t/4 e = 4/5

Tc1  4 N T = 5 N t = 10 N 

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 70

Solution of Exercize 3

System S2. The firmware interpreter of instruction REDUCE_SUM RA, RN, Rx on a pipeline

CPU can be the following:

IM microprogram: the same of S1.

IU microprogram for REDUCE: send instruction encoding to EU, produce a stream of N read-

requests to DM with consecutive addresses beginning at RG[RA].

DM microprogram: the same of S1.

EU microprogram for REDUCE: initialize RG[Rx] at zero; loop for N times: wait data d from DM,

RG[Rx] + d  RG[Rx]; on completion, send RG[Rx] content to IU.

Alternatively: IU send to DM just one request (multiple_read, N, base address RG[RA]), and DM

produces a stream of consecutive-address data to EU (there is no advantage).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 71

Solution of Exercize 3

Considering the graphic simulation of this S2 interpreter, we obtain the latency of REDUCE
instruction on S2, which is the completion time of a S2 program consisting of REDUCE only
(see the general formula for the completion time of the pipeline paradigm):

Tc2  N t = 2 N 

Notice that there are no logical dependency nor branch degradations.

The completion time ratio of the two implementations on S1 and S2 is equal to 5, and the
difference

d = 8 N 

This example confirms the analysis of the comparison of assembler vs firmware implementation
of the same functionality (see Exercize in prerequisites): the difference in latency is mainly
due to the parallelism in microinstructions wrt sequential execution at the assembler level.

In the example, this parallelism is relevant in the IU and EU behaviour.

Moreover, the degradations are often reduced, because some computations occurs locally in
some units (EU in our case) instead of requiring the interactions of distinct units with
consistency synchronization problems (in our case, only the final result is communicated from
EU to IU).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 72

Solution of Exercize 3

b) Consider a S1 program containing the REDUCE routine and executing it just one
time. The equivalent S2 program contains the REDUCE instruction in place of the
REDUCE routine.

The differenze of completion times is less or equal than the d value of part a):

• In S1, the compiler has more degrees of freedom to introduce optimizations
concerning the code sections before and after the REDUCE routine:

– the REDUCE loop can be, at least partially, unfolded,

– the compiler can try to introduce some code motions, in order to mix some instructions of

the code sections before and after the REDUCE routine with the instructions of the

REDUCE routine itself.

This example shows the potentials for compiler optimizations of RISC systems
compared to CISC: in some cases, such optimizations are able to compensate the
RISC latency disadvantage, at least partially.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 73

Exercize 4

The cost model formula for D (given previously) is valid for a D-RISC-like

CPU in which the integer multiplication/division operations are

implemented entirely in hardware (1- 2 clock cycles).

Modify this formula for a Pipelined CPU architecture in which the integer

multiplication/division operations are implemened as a 4-stage pipeline.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 74

Solution of Exercize 4

Cost model for pipelined D-RISC CPU:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 75

 kNdt
kQ

k

k

k D 


1
1where

• NQ = 2 if the instruction inducing the logical dependency is the last instruction of a
sequence containing all EU-executable instructions and at least one LOAD,

otherwise NQ = 1

• summation is extended to non-negative terms only. In D-RISC, for k ≥ 3, D = 0.

The meaning is that each Dk can be expressed as

Dk = dk RQk RQk = WQk + LS

WQk = NQk – k = average number of queued instructions that (with probability dk)
precede the instruction inducing the logical dependency

LS = Latency of EU. With hardware-implemented arithmetic operations on integers:

LS = t

Solution of Exercize 4

A 4-stage pipelined MUL/DIV operator has a latency:

Ls-MUL/DIV = 4 t

If p = prob(istruction is MUL or DIV), and all the other arithmetic
operations are “short”, the average EU latency is:

Ls = (1 + 3p) t

Then (the proof can be verified using the graphical simulation):

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 76

This result can be generalized to any value of EU latency, for D-RISC like
machines. Moreover, it is valid also for EU-EU dependencies.

Branch prediction

• For high-latency pipelined EU implementations, the effect on
logical dependencies degradation is significant

• When logical dependencies are applied to predicate
evaluation in branch instructions, e.g.

the so-called Branch Prediction technique can be applied.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 77

MUL Ra, Rb, Rc
IF = Rc, Rd, CONT
…..
….. false predicate path
…..

CONT: …..
….. true predicate path
…..

Branch prediction

• Try to continue along the path corresponding to false predicate

(no branch)

– Compile the program in such a way that the false predicate
corresponds to the most probable event, if known or
predictable

• On- condition execution of this instruction stream

– Save the RG state during this on-condition phase

– Additional unit for RG copy; unique identifiers (IC) associated

• When the values for predicate evaluation are updated, then

verify the correctness of the on-condition execution, and, if the

prediction was incorrect, apply a recovery action using the

saved RG state.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 78

Branch prediction

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 79

IU EU
General
Register

Unit

Reordering
Buffer

• Example of out-of-order execution.

• From a conceptual viewpoint, the problem is similar to the implementation of an
“ordering collector” in a farm structure.

• Complexity, chip area and power consumption are increased by similar
techniques.

• Not necessarily it is a cost-effective technique.

several versions of General Register

values, with associated unique identifiers

(e.g. 512 – 1024 registers)

Out-of-order behaviour

• Branch prediction is a typical case of out-of-oder
behaviour.

• Other out-of-order situations can be recognized: for
example see Solution of Exercize 1 about the best-case
assumption for cache block transfer evaluation:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 80

LOAD RA, Rj, Ra

LOOP_j: LOAD RB, Rj, Rb

INCR Rj

MUL Ra, Rb, Ra

ADD Rc, Ra, Rc

IF < Rj, RM, LOOP_j,

delayed_branch

LOAD RA, Rj, Ra

The base-case behaviour is implementable provided that LOAD RB, … can be executed during the
cache fault handling caused by LOAD RA, …. That is, EU must be able to “skip” instruction LOAD RA, …
and to execute LOAD RB, …, postponing the execution of LOAD RA, … until the source operand is sent
by DM (LOAD RA, … instruction has been received by EU, but it has been saved in a EU internal
buffer).
This can be done
• by a proper instruction ordering in the program code (e.g. the two LOADs can be exchanged), or
• by compiler-provided annotations in instructions (if this facility exists in the definition of the

assembler machine), or
• by some rules in the firmware interpreter of EU: e.g., the execution order of a sequence of LOAD

instructions, received by EU, can be altered (no logical dependencies can exist between them if
they have been sent to EU).

Superscalar architectures:
a first broad outline

Basic case: 2-issue superscalar

• In our Pipelined CPU architecture, each element of the instruction stream
generated by IM consists of 2 consecutive instructions

– Instruction cache is 2-way interleaved or each cell contains 2 words (“Long Word”)

• IU prepares both instructions in parallel (during at most 2 clock cycles) and delivers
them to DM/EU, or executes branches, provided that they are executable (valid
instructions and no logical dependency)

– It is also possibile that the first instruction induces a logical dependency on the second

one, or it is a branch

• DM and EU can be realized with sufficient bandwidth to execute 2 instructions in 2
clock cycles

• Performance achievement: the communication latency (2) is fully masked:

P id= 2/Tid = 1/ = fclock instructions/sec

– e.g. fclock = 4 GH2, P id= 4 GIPS

though performance degradations are greater than in the basic Pipelined CPU (e is
lower), unless more powerful optimizations are introduced

– branch prediction, out-of-order

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 81

Superscalar CPUs

• In general, n-issue superscalar architectures can be realized
 n = 2 – 4 – 8 – 16

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 82

Reordering
Buffer,

Dynamic
Register

Allocation

instruction 0 instruction 1 instruction 2 instruction 3 Long Word

IU

Modular Data Cache

Parallel – Pipelined EU

Fixed Fixed Float Float Float

Float

Registers

Superscalar and VLIW

• All the performance degradation problems are increased

• The Long Word processing and the out-of-order control introduces
serious problems of power consumption
– unless some features are sacrificed,

– e.g. less cache capacity (or no cache at all !) in order to find space to Reordering
Buffer and to large intra-chip links

• This is one of the main reasons for the “Moore Law” crisis

• Trend: multicore chips, where each core is a basic, in-order
Pipelined CPU, or a 2-issue in-order superscalar CPU.

• VLIW (Very Long Instruction Word) architectures: the compiler
ensures that all the instructions belonging to a (Very) Long Word
are independent (and static branch prediction techniques are
applied)
– achievement: reduced complexity of the firmware machine.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 83

A general architectural model for Instruction Level
Parallelism

• The subject of Superscalar architectures will not be studied in
more depth
– further elements will be introduced when needed

– in a succesive part of the Course, the Multithreading architectues will be
studied

• However, it is important to understand the general conceptual
framework of Instruction Level Parallelism:

– Data-flow computational model and Data-flow machines

(all the superscalar/multithreading architectures apply this model, at least
in part)

(the commercial flop of some interesting architectures –including VLIW
and pure data-flow – remains an ICT mystery …)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 84

data
token

operator

Data-flow computational model

• The executable version (assembler level) of a program is
represented as a graph (called data-flow graph), and not as a
linear sequence of instructions
– Nodes correspond to instructions

– Arcs correspond to channels of values

flowing between instructions

• Example:
(x + y) * sqrt(x + y) + y – z

– application of Bernstein conditions

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 85

An instruction is enabled, and can be executed, if and
only if its input values (“tokens”) are ready.
Once executed, the input tokens are removed, and the
result token is generated and sent to other instructions.

Data-flow computational model

• Purely functional model of computation at the assembler level
– a non Von Neumann machine.

• No variables (conceptually: no memory)

• No instruction counter

• Logical dependencies are not viewed as performance degradation
sources, on the contrary they are the only mechanism for
instruction ordering
– only the strictly necessary logical dependencies are present in a data-flow program,

– consistency problems and out-of-order execution issues don’t exist or are solved
implicitly and automatically, without additional mechanisms except communication.

• Moreover, the process / thread concept disappears: instructions
belonging to distinct programs can be executed simultaneously
– a data-flow instruction is the unit of parallelism (i.e., it is a process)

– this concept is the basic mechanism of multithreading / hyperthreading machines.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 86

Data-flow graphs

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 87

Conditional expression:
if p(x) then f(x) else g(x)

Iterative expression:
while p(x) do new X = f(X)

Switch
operator

Merge
operator

Control
token

Any data-flow program (data-flow graph) is compiled as the composition of arithmetic,
conditional and iterative expressions (data-flow subgraphs), as well as of recursive
functions (not shown).

Basic data-flow architecture

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 88

Data-flow instructions are encoded as information packets corresponding to segments
of the data-flow graph:

Input channel
representation

Reference to
destination
channel

Gating
code

Gating
flag

Data
ready

Data value

True /
False
gate

Control
token

Result destination
channels

Input channel

Analogy: a (fine-grain) process in the message-passing model.

Basic data-flow architecture

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 89

. . .

Instruction
Memory

Emitter
Structure

Pool of
Functional

Units
(pipelined)

Collection
structure

Firmware
FARM

. . .

Stores a result value into an input channel of the

destination instruction, verifies the instruction

enabling (do all input channels of this

instruction contain data?), and, if enabled, sends

the instruction to the execution farm.

Notes:

1. in this model, a memory is
just an implementation of
queueing and
communication
mechanisms;

2. instructions of more than
one program can be in
execution simultaneously.

