
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

3. Run-time Support
of

Interprocess Communications

From the Course Objectives

• Provide a solid knowledge framework of concepts and
techniques in high-performance computer architecture
– Organization and structure of enabling platforms based on parallel architectures

– Support to parallel programming models and software development tools

– Performance evaluation (cost models)

• Methodology for studying existing and future systems

• Technology: state-of-the-art and trends
– Parallel processors

– Multiprocessors

– Multicore / manycore / … / GPU

– Shared vs distributed memory architectures

– Programming models and their support

– General-purpose vs dedicated platforms

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

CPU

Main
Memory and
Cache Levels

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

HPC enabling platforms

Main Memory

and/or Cache levels

CPUCPU CPU CPU

. . .

Shared memory multiprocessors
o Various types (SMP, NUMA, …)

• From simple to very sophisticated memory organizations
• Impact on the programming model and/or process/threads run-time support

HPC enabling platforms: shared and distributed
memory architectures

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

M

CPUCPU CPU CPU. . .

Shared memory multiprocessor

2100 2100 2100

2100

2100
2100 2100 2100

Distributed memory multicomputer: PC cluster,
Farm, Data Centre, …

“Limited degree” Interconnection Network
(“one-to-few”)

Instruction Level
Parallelism CPU (pipeline,

superscalar,
multithreading, …)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

Firmware

Hardware

Applications

Processes

Assembler

Application developed through
user-friendly tools

Parallel program as a collection
of cooperating processes
(message passing and/or

shared variables)

compiled /
interpreted into

compiled / interpreted
into a program executable

by

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

Architecture 1

Architecture 2

Architecture 3

Architecture m

Independent from the process concept

Architecture independent

Run-time support to
process cooperation:
distinct and different
for each architecture

Course Big Picture

Interprocess communication model

• The parallel architecture will be studied in terms of:

– Firmware architecture and operating system impact

– Cost model / performance evaluation

– Run-time support to process cooperation / concurrency

mechanisms

• Without losing generality, we will assume that the
intermediate version of a parallel program is according to the:

message-passing model

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

Message passing model

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

Variables of type T

Source process

Destination process

Channel of type T

send (channel_identifier, message_value)

receive (channel_identifier, target_variable)

• send, receive primitives: commands of a concurrent language

• Final effect of a communication: target variable = message value

• Communications channels of a parallel program are identified by unique names.

• Typed communication channels

• T = Type (message) = Type (target variable)

• For each channel, the message size (length) L is known statically

• Known asynchrony degree: constant ≥ 0 (= 0: synchronous channel)

• Communication forms:

• Symmetric (one-to-one), asymmetric (many-to-one)

• Constant or variable names of channels

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

A B C

D

Symmetric channel

Asymmetric channel

Symmetric and asymmetric channels
can be
synchronous or aynchronous

Example: farm parallel program

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

parallel EMITTER, WORKER[n], COLLECTOR; channel new_task[n];

EMITTER :: channel in input_stream (asynchrony_degree), worker_free (1); channel out var scheduled; item1 x;

while true do

 receive (input_stream, x);

receive (worker_free, scheduled);

send (scheduled, x)



WORKER[i] :: channel in new_task[i] (1); channel out worker_free, result; item1 x, y;

 send (worker_free, new_task[i]);

while true do

 receive (new_task[i], x);

send (worker_free, new_task[i]);

y = F(x);

send (result, y 



COLLECTOR :: channel in result (1); channel out output_stream; item1 y;

while true do

 receive (result, y);

send (output_stream, y)



This program makes use of

• symmetric channels (e.g.
input_stream, output_stream))

• asymmetric channels (e.g.
worker_free, result)

• constant-name channels (e.g.
input_stream)

• variable-name channels (e.g.
scheduled)

• array of processes
(WORKER[n])

• array of channels
(new_task[n])

In the study of run-time support,
the focus will be on the basic case:

symmetric, constant-name, scalar
channels

Cost models and abstract architectures

• Performance parameters and cost models

– for each level, a cost model to evaluate the system performance properties

• Service time, bandwidth, efficiency, scalability, latency, response time, …,
mean time between failures, …, power consumption, …

• Static vs dynamic techniques for performance optimization

– the importance of compiler technology

– abstract architecture vs physical/concrete architecture

• abstract architecture: a semplified view of the concrete one, able to
describe the essential performance properties

– relationship between the abstract architecture and the cost model

– in order to perform optimizations, the compiler “sees” the abstract

architecture

• often, the compiler simulates the execution on the abstract architecture
MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

Example of abstract architecture

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

Proc.
Node

. . .

Interconnection Structure: fully interconnected (all-to-all)

• Processing Node= (CPU, memory hierarchy, I/O)

• Same characteristics of the concrete architecture node

• Parallel program allocation onto the Abstract Architecture: one process per node

• Interprocess communication channels: one-to-one correspondence with the Abstarct

Architecture interconnection network channels

Process Graph for the parallel program =

Abstract Architecture Graph (same

topology)

Cost model for interprocess communication

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

Tsend = Tsetup + L  Ttransm

• Tsend = Average latency of interprocess communication

– delay needed for copying a message_value into the target_variable

• L = Message length

• Tsetup, Ttransm: known parameters, evaluated for the concrete architecture

• Moreover, the cost model must include the characteristics of possible overlapping
of communication and internal calculation

Variables of type T

Source process

Destination process

Channel of type T

send (channel_identifier, message_value)

receive (channel_identifier, target_variable)

Parameters Tsetup, Ttransm evaluated as functions of several
characteristics of the concrete architecture

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

M

CPUCPU CPU CPU. . .

Shared memory multiprocessor

2100 2100 2100

2100

2100
2100 2100 2100

Distributed memory multicomputer: PC cluster,
Farm, Data Centre, …

“Limited degree” Interconnection Network
(“one-to-few”)

Instruction Level
Parallelism CPU (pipeline,

superscalar,
multithreading, …)

Memory access time, interconnection network routing

and flow-control strategies, CPU cost model, and so on

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Firmware

Hardware

Applications

Processes

Assembler

Application developed through
user-friendly tools

Parallel program as a collection
of cooperating processes
(message passing and/or

shared variables)

compiled /
interpreted into

compiled / interpreted
into a program executable

by

Firmware

 Uniprocessor : Instruction Level Parallelism

 Shared Memory Multiprocessor: SMP, NUMA,…

Distributed Memory : Cluster, MPP, …

Architecture 1

Architecture 2

Architecture 3

Architecture m

Independent from the process concept

Architecture independent

Run-time support to
process cooperation:
distinct and different
for each architecture

Abstract architectures
and cost models

Abstract architecture

and associated cost models
for the different concrete architectures:

… Ti = fi (a, b, c, d, …)

Tj = fj (a, b, c, d, …) …

. . .

Run-time support: shared variables, uniprocessor
version

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

Variables of type T

Source process

Destination process

Channel of type T

send (channel_identifier, message_value)

receive (channel_identifier, target_variable)

Run-time support implemented through shared variables.

Initial case: uniprocessor.

The run-time support for shared memory multiprocessors and distributed
memory multicomputers will be derived through modifications of the
uniprocessor version.

Run-time support: shared variables, uniprocessor
version

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

Variables of type T

Source process

Destination process

Channel of type T

send (channel_identifier, message_value)

receive (channel_identifier, target_variable)

Basic data structure of run-time support for send-receive:
CHANNEL DESCRIPTOR

sender_wait: bool (if true: sender process is in WAIT state)

receiver_wait: bool (if true: receiver process is in WAIT state)

buffer: FIFO queue of N = k + 1 positions of type T (k = asynchrony degree)

message_length: integer

sender_PCB_ref: reference to Process Control Block of sender process

receiver_PCB_ref: reference to Process Control Block of receiver process

Channel descriptor is shared by Sender process and Receiver process:
it belongs to the virtual memories (addressing spaces) of both processes

Run-time support variables

• Channel Descriptor: shared

• Sender PCB: shared

• Receiver PCB: shared

• Ready List: shared, list of PCBs of processes in READY state

• Channel Table: private, maps channel identifiers onto channel
descriptor addresses

• Note: Sender process and Receiver process have distinct
logical addresses of Channel Descriptor in the respective
logical addressing spaces.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

Shared objects for run-time support

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

PCBA PCBB PCBC

Ready
List

PCB… PCB… PCB…

Channel
Descriptor 1

(CH1)

. . .

Channel
Descriptor 2

(CH2)

Channel
Descriptor 3

(CH3)
. . .

SHARED
OBJECTS

TAB_CHA

Local variables of A Process A

TAB_CHB

Local variables of B Process B

First version of send-receive support

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 19

send (ch_id, msg_address) ::

CH address =TAB_CH (ch_id);

put message value into CH_buffer (msg_address);

if receiver_wait then  receiver_wait = false;

wake_up partner process (receiver_PCB_ref) ;

if buffer_full then  sender_wait = true;

process transition into WAIT state: context switching 

receive (ch_id, vtg_address) ::

CH address =TAB_CH (ch_id);

if buffer_empty then  receiver_wait = true;

process transition into WAIT state: context switching 

else get message value from CH buffer and assign it to target variable (vtg_address);

if sender_wait then  sender_wait = false;

wake_up partner process (sender_PCB_ref) 

Notes

• send, receive are indivisible procedures

– in uniprocessor machines: executed with disabled interrupts

• send, receive procedures provide to:

– pure communication between Sender and Receiver processes, and

– low level scheduling of Sender and Receiver processes (process state transitions, processor
management)

• wake_up procedure: put PCB into Ready List

• Process transition into WAIT state (context_switching):

– send procedure: Sender process continuation = the procedure return address

– receive procedure: Receiver process continuation = procedure address itself (i.e., receive
procedure is re-executed when the Receiver process is resumed)

• In this implementation, a communication implies two message copies (from
message variable into CH buffer, from CH buffer into target variable)

– assuming the most efficient implementation model: entirely in user space;

– if implemented in kernel space: (several) additional copies are necessary for user-to-kernel and
kernel-to-user parameter passing.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 20

Cost model : communication latency

Communication latency: latency needed to copy a message into the
corresponding target variable.

Send latency:

Tsend = Tsetup1 + L  Ttransm1

Receive latency:

Treceive = Tsetup2 + L  Ttransm2

With good approximation:

Tsetup1 = Tsetup2 = Tsetup

Ttrasm1 = Ttransm2 = Ttransm

Communication latency:

Lcom = Tsend + Treceive = 2 (Tsetup + L  Ttransm)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 21

L  Ttransm:

actions for

message copies

into / from

CH_Buffer;

all the other

actions are

independent of

the message

length, and are

evaluated in Tsetup

“Zero-copy” communication support

• In user space, we can reduce to the minimum the number of message copies for
a communication: just one copy (“zero-copy” stands for “zero additional
copies”)

• Direct copy of message value into target variable, “skipping” the channel buffer

• Target variable becomes a shared variable (statically or dinamically shared)

• Channel descriptor doesn’t contain a buffer queue of message values: it
contains all the synchronization and scheduling information, and references to
target variables

• Easy implementation of zero-copy communication for
– synchronous channel,

– asynchronous channel when the destination process is WAITing;

– in any case, Receiver process continuation = return address of the receive procedure (as in
the send procedure).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 22

Zero-copy asynchronous communication

• FIFO queue of target variables implemented in the destination process
addressing space

– i.e., the Receiver process refers to a different copy of the target variable after every

receive execution: Receiver is compiled in this way;

– in a k-asynchronous communication, there is a queue of (k + 1) target variables

which are statically allocated in the Receiver addressing space;

– these target variables are shared with the Sender process (thus, they are allocated –

statically or dynamically – in the Sender process addressing space too).

• Channel descriptor:

– WAIT: bool (if true, Sender or Receiver process is WAITing)

– message length: integer

– Buffer: FIFO queue of (reference to target variable, validity bit)

– PCB_ref: reference to PCB of WAITing process (if any)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 23

Zero-copy implementation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 24

Buffer Q_VTG

Destination process
addressing space

Array of k+1

positions

Current Size of queue

Insertion Pointer

Extraction Pointer

FIFO queue of
(reference to target
variable, validity bit)

Channel Descriptor

VTG [0]

VTG [1]

VTG [k]

. . .

WAIT, L, PCB_ref

Principle:

Sender copies

the message

into an

instance of

the target

variable (in

FIFO order),

on condition

that it is not

currently used

by Receiver

(validity bit

used for

mutual

exclusion)

Zero-copy implementation

• Send: copies the message into the target variable referred by the CH_Buffer Insertion
Pointer, on condition that the validity bit is set, and modifies the CH_Buffer state
accordingly.

• Receive: if CH_Buffer is not empty, reset the validity bit of the CH_Buffer position
referred by the CH_Buffer Extraction Pointer, and modifies the CH_Buffer state
accordingly

– at this point, the Receiver process can utilize the copy of the target variable referred by the

CH_Buffer Extraction Pointer directly (i.e., without copying it); when the target variable

utilization is completed, the validity bit is set again in the CH_Buffer position.

During the target variable utilization by the Receiver, its value can not be modified by the

Sender (validity bit mechanism).

Alternative solution for Receiver process compilation: loop unfolding of Receiver loop
(receive – utilize) and explicit synchronization.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 25

Zero-copy implementation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 26

send (ch_id, msg_address) ::

CH address =TAB_CH (ch_id);

if (CH_Buffer [Insertion_Pointer].validity_bit = 0) then

 wait = true;

copy reference to Sender_PCB into CH.PCB_ref

process transition into WAIT state: context switching ;

copy message value into the target variable referred by

CH_Buffer [Insertion_Pointer].reference_to_target_variable ;

modify CH_Buffer. Insertion_Pointer and CH_Buffer_Current_Size;

if wait then

 wait = false;

wake_up partner process (CH.PCB_ref) ;

if buffer_full then

 wait = true;

copy reference to Sender_PCB into CH.PCB_ref

process transition into WAIT state: context switching 

Exercize

Write an equivalent representation of the following benchmark, using
zero-copy communication on a k-asynchronous channel:

Receiver ::

int A[N]; int v; channel in ch (k);

for (i = 0; i < N; i++)

 receive (ch, v);

A[i] = A[i] + v 

The answer includes the definition of the receive procedure, and the
Receiver code before and after the receive procedure for a correct
utilization of zero-copy communication (send procedure: see previuos
page).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 27

Cost model for zero-copy communication

• Zero-copy implementation:

– the receive latency is negligible compared to the send latency: the Receiver doesn’t copy

the message into the target variable;

– the message copy into the target variable is almost entirely paid by the Sender;

– the receive primitive overhead is limited to relatively few operations for synchronization.

• With good approximation, the latency of an interprocess communication is
the send latency:

Lcom = Tsend = Tsetup + L  Ttransm

• Typical values for uniprocessor systems:

– Tsetup = (102 – 103) t

– Ttransm = (101 – 102) t

• One or more order of magnitude increase for parallel architectures,
according to the characteristics of memory hierarchy, interconnection
network, etc.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 28

Zero-copy trade-off

• Trade-off of the zero-copy mechanism:

– receive latency is not paid,

– but some additional waiting phases can be introduced in the Sender behaviour

(validity bit).

• Strategy:

– increase the asynchrony degree in order to reduce the probability of finding the

validity bit at “set” during a send

• parallel programs with good load balance are able to exploit this

feature.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 29

Statically vs dinamically shared objects

• In order to reduce the addressing space size

– e.g., the Sender addressing space as far as target variables are concerned

(and also to improve generality of use and protection),

we can provide mechanisms for the DYNAMIC allocation of VIRTUAL memories
of processes

– e.g., the Sender acquires the target variable dynamically (with “copy” rights only) in

its own addressing space, and releases the target variable as soon as the message copy

has been done.

• A general mechanism, called CAPABILITY-based ADDRESSING, exists for this
purpose:

– e.g., the Receiver passes to the Sender the Capability on the target variable, i.e. a “ticket”

to acquire the target variable dynamically in a protected manner. The Sender loses the

ticket after the strictly needed utilization.

• Capabilities are a mechanism to implement the References to indirectly shared
objects (reference to target variables, PCB, … in the Channel Descriptor).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 30

Indirectly-referred shared data structures

• The so called “shared pointers” problem

• Example:
– Channel descriptor is a shared object

• it is referred directly by Sender and Receiver process, each process with its
own logical address.

– Target variable (VTG), or PCBs (sender PCB, receiver PCB) are shared objects

• They are referred indirectly: Channel Descriptor contains references (pointers)
to VTGs and PBCs. Thus, these references (pointers) are shared objects
themselves.

• PROBLEM: How to represent them?

• An apparently simple solution is: shared references (pointers) are physical
addresses. Despite its popularity, many problems arise in this solution.

• If we wish to use logical addresses, the PROBLEM exists.

• Other example: pointed PCBs in Ready List. Other notable examples will be
met in parallel architectures.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 31

Indirectly-referred shared data structures

Static solutions:

• Coinciding logical addresses: all the processes sharing an
indirectly-referred shared data structure have the same
logical address of such structure
– the shared pointer is equal to the coinciding logical addresss

– feasible, however there are problem of addressing space fragmentation

• Distinct logical addresses: each process has its own logical
address for an indirectly-referred shared data structure
– more general solution, no fragmentation problems

– the shared pointer is a unique indentifiers of the indirectly referred shared

object

– each process transforms the identifier into its own logical address (private

table)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 32

Indirectly-referred shared data structures

Example of static solutions for PCBs in send-receive support:

• Coinciding logical addresses: all the PCBs have the same
logical address in all the addressing spaces
– CH fields Sender_PCB_ref and Receiver_PCB_ref contain the coinciding

logical addresses of sender PCB and receiver PCB

• Distinct logical addresses:
– sender PCB and receiver PCB have unique identifiers (determined at compile

time): Sender_PCB_id and Receiver_PCB_id

– these identifiers are contained in the CH fields Sender_PCB_ref and
Receiver_PCB_ref

– when the sender wishes to wake-up the receiver, get the Receiver_PCB_id from
CH field Receiver_PCB_ref, tranforms it into a private logical address using a
private table, thus can refer the receiver PCB

– analogous: for the manipulation of sender PCB by the receiver process.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 33

Capabilities

Dynamic solution to the shared pointers problem:

• The indirectly-referred shared objects are not statically
allocated in all the addressing spaces

• They are allocated / deallocated dynamically in the addressing
spaces of the processes that need to use them

• Example:
– the Receiver PCB is statically allocated in the receiver addressing space only;

– when the Sender process wishes to wake-up the receiver:

• it acquires dynamically the Receiver PCB into its addressing space, and

• manipulates such PCB properly,

• finally releases the Receiver PCB again, deallocating it from its addressing
space.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 34

Capabilities

Capability implementation

• The shared pointer is an information (capability) that enables
the acquiring process to allocate space and to refer the
indirectly referred shared object by means of logical
addresses

• Formally, a capability is a couple (object identifier, access
rights) and a mechanism to generate the object reference
– it is related to the concept of Protected Addressing Space

• In practice, the implementation of a shared pointer is the
entry of the Address Relocation Table relative to the shared
object
– this entry is added to the Relocation Table of the acquiring process, thus

allowing this process to determine the logical address of the shared object.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 35

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 36

ipl-BX

MVA MVB

TABRILA TABRILB

new_free

ipl-BX = old_free

free

ipl-AX . . .

X

. . .

MVA

. .

*

MVB

**

Free pages

ipl-AX . . .

CAP-X

. . .

TABRILA

. . .

*

TABRILB

**

S

CAP-X

ipl-AX . . .

CAP-X

. . .

. . .

. . .

S

CAP-X
ipl-AX . . .

. . .

. . .

*

**

Free pages

Fig. 1

Fig. 2

Fig. 3

Fig. 4

X

X

CAP-X

X: A’s page to be allocated dynamically in B’s space
(e.g. PCBA)

S: shared structure through which X-capability is passed from
A to B (e.g. Channel Descriptor, field Sender_PCB_ref)

B copies X-capability into a free position of its Relocation
Table. The logical page identifier of X, in B’s space, is equal to
the Relocation Table position: thus the logical address of X in
B’s space is now determined.

A copies the X’s Relocation Table entry into
a shared structure S.

Capabilities

• Several advantages
– minimized addressing spaces,

– increased protection,

– solution of object allocation problems thar are very difficult / impossible to be
solved statically (notable cases will be met in parallel architecture run-time
support)

• at low overhead
– few copies of capabilites, few operations to determine the logical address

– comparable (or less) with respect to Distinct Logical Address technique and
Physical Address technique.

• An efficient technique for implementation of new/malloc
mechanisms in a concurrent context.

• Efficient alternative to kernel space solutions.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 37

