
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

4. Shared Memory Parallel Architectures

4.1. Multiprocessor: organizations and issues

Basic characteristics

• Shared memory parallel architecture = Multiprocessor: MIMD
(Multiple Instruction Stream Multiple Data Stream) general-purpose
architecture
– nowadays, large diffusion for high-performance servers, medium/high-end

workstations

– multicore evolution / revolution

• Homogeneous: n identical processors
– In general, n processing nodes (CPU, local memory/caches, local I/O)

• Processing nodes share the Main Memory physical space:
– At the firmware level, any processor can access any location of Main Memory

– In presence of a memory hierarchy, some Cache levels (notably, Secondary,or

Tertiary Cache) can be shared

– Shared information are allocated in shared memory supports, as well as private

information

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

Abstract scheme

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

P0 Pi Pn-1

.

Shared Memory

Interconnection Structure

Several issues have to be pointed out to
study multiprocessor architectures in
detail, notably:

• Processing nodes

• Shared memory organization, and I/O

• Cache management

• Processes-to-processors mapping

• Interconnection structure

Interconnection structure

(communication network) between

processing nodes and shared memory

• If shared memory has a modular

structure, any processor can “reach” any

memory module, either directly (crossbar

network, bus) or indirectly (limited degree

network)

• Communication networks for

multiprocessors are entirely managed at

the firmware level, i.e., no additional

level of protocol exists on top of the

primitive firmware protocol (routing, flow

control).

Processing nodes

• We’ll assume off-the-shelf CPUs and other standard / existing resources

• Processing nodes may include local memories and I/O

• Proper interface units are provided to connect an existing CPU into a more
complex architecture.

• Example:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

Interface to / from

interconnection structure

MMUD

CD

MMUI

CI

MINF

I/O
CPU chip

W

M0

M1

M7

IM

. . .

. . .

Local memory
/ secondary

cache,
with its

interface unit
(IM)

Processing Node

In the example

• Interface unit W is in charge of performing cache block transfers (or other memory accesses), masking to the CPU the
structure of the shared memory and communication network

– Of course, the firmware protocol implemented in the CPU to request a block transfer (memory

access) cannot be modified wrt the uniprocessor architecture

– Unit W adapts this firmware protocol to the features of the shared memory

• e.g., individuates the referred memory module, and the path to reach it

and to the features of the communication network

• e.g., inserts the CPU request into a message with proper format (source, destination node
identifier, information about the routing and flow control strategy, etc) and size (one or more
packets, according to the link width of the interconnection network)

• Though the main mode for nodes cooperation is shared memory, some cooperation actions can be done also through
direct communications by value

– in this case, the I/O subsystem must be used

– an I/O unit is in charge of interfacing the direct communications between nodes, adapting the CPU

request to the rest of the systems

– often, the same interconnection structure for shared memory is used for direct communications

too

– in the figure: this unit exploits also the DMA mode inside the processing node.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

Physical addressing spaces

• Multiprocessor memory as a whole has high capacity

– e.g., expandable to Tera-words or more

– physical address of 40 bits or more.

• CPU must be able to generate such physical addresses

– an impact on the design of CPU

– not the only one impact case (other meaningful cases will be met)

– i.e., though we wish to adopt standard CPUs and other structures, these must be

prone to some multiprocessor requirements and peculiarities

• e.g., support of indivisible sequences of memory accessess

• e.g., cache-coherence

• Note: remind that there is no a-priori relation between the size of physical
addresses and of logical addresses (e.g. a 32-bit logical address machine)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

Classes of multiprocessor architectures

• Two distinctions according to:

1. processes-to-processors mapping

• dynamic or static correspondence between processes and processors

• anonymous vs dedicated processors

2. organization of modular memory as “seen” by the processors

• uniform or non uniform access time to parts (modules) of the shared
memory

• uniform memory access (SMP or UMA) vs non-uniform memory access
(NUMA)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

Architecture according to process-to-processor
mapping

a. Anonymous processors architecture:

• any process can be executed by any processor

• in general, when a waiting process is waked-up, its execution is resumed on a
different processor

• dynamic mapping according to the low-level scheduling functionalities

• a unique Ready List exists for all processors: shared by all processes.

b. Dedicated processors architecture:

• static association of disjoint subsets of active processes to processors

• decided at loading time

• multiprogrammed nodes

• each node has its own Ready List, not shared by processes allocated to other
nodes

• re-allocation of processes to nodes can be done sporadically, e.g. for fault-
tolerance or load-balancing: conceptually, it is considered static mapping.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

Architecture according to memory organization: UMA / SMP

• UMA (Uniform Memory Access), also called SMP (Symmetric
MultiProcessor)

– the base (i.e., measured in absence of conflicts) memory access latency of

processor Pi to access memory module Mj is constant and independent of i, j.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

……M0

…

Mj Mm-1

Interconnection Structure

W0

CPU0

C20

UC0

Wn-1

CPUn-1

C2n-1

UCn-1

In this example:

• secondary caches are
private of the nodes,

• main memory (or
tertiary cache) is
shared.

In general, shared
memory is organized in
macro-modules, each
macro-module being
interleaved or long-
word

local

access

“remote”

accesses

Architecture according to memory organization: NUMA

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

• NUMA (Non Uniform Memory Access)

– the base (i.e., measured in absence of conflicts) memory access latency of

processor Pi to access memory module Mj depends on i, j.

– typically: the shared memory is the union of the all local memories of the

nodes at a certain level of the memory hierarchy.

…

C2n-1C20

Interconnection Structure

W0

CPU0

M0

UC0

Wn-1

CPUn-1

Mn-1

UCn-1

In this example:

• secondary caches are
private of the nodes,

• local memories of the
nodes are all shared

Every local memory can
be interleaved (the
shared memory, as a
whole, is not) or long-
word

Variant: COMA (Cache
Only Memory Access)

local

accesses

“remote”

access

Combined features

• According to the distinctions described till now, all the
possible combinations are feasible architectures:
1. anonymous processors + UMA

2. anonymous processors + NUMA

3. dedicated processors + UMA

4. dedicated processors + NUMA

• Most “natural” (most popular) combinations: 1 and 4.

• For this reason, unless otherwise stated, we’ll use the term
SMP to denote combination 1, and NUMA to denote
combination 4.

• However, combinations 2, 3 are interesting as well.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

Exercize

The goal of this exercize is to reason about, and to acquire
familiarity with, the features of multiprocessor architectures
and memory hierarchies.

Issue to be discussed: memory hierarchies tend to smooth the
difference between architectural combinations 1 and 2
(anonymous processors + UMA, anonymous processors +
NUMA) and between 3 and 4 (dedicated processors +
UMA, dedicated processors + NUMA).

That is, although combinations 1, 4 appear “natural”, the proper
use of memory hierarchies could render the other
combinations acceptable as well.

Use general reasonings and/or examples about the execution of
parallel programs.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

Local memories and memory hierachies in
multiprocessors

• In multiprocessors the proper use of local memories and

memory hierachies is a main issue for performance

optimization:

i. minimizing the access latency

ii. minimizing the shared memory conflicts

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Minimizing the access latency

• Interconnection networks latency is dependent of the number of nodes
– linear (bus)

– logarithmic (butterflies, high dimension cubes, trees)

– square-root (low dimension cubes)

• Shared memory access are “expensive”:
– in UMA all accesses to shared memory are “remote”,

– in NUMA some accesses to shared memory are “remote”, other ones are local

• UMA goal: try to dynamically allocate useful information in local caches
(C1, C2), as usually

• NUMA goal: try to statically allocate useful information in local
memories, and (as usually) to dynamically allocate local memory
information in local caches
– in a dedicated processors architecture, all the private information of processes

mapped to the a node are allocated in the local memory of such node (code, data), as
well as some shared information

– remote accesses: only for (the remaining) shared information.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Minimizing the shared memory conflicts

• The system can be modeled as a queueing system, where
– processing nodes are clients

– shared memory modules are servers, including the interconnection structure

– e.g. M/D/1 queue for each memory module

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

Mj

P0 Pn-1Pi

Response
Time

server utilization factor (r) 1

0

• The memory access latency is the server Response Time.
• Critical dependency on the server utilization factor: a measure of memory modules

congestion, or a measure of processors “conflicts” to access the same memory module
• The interarrival time has to be taken as high as possible: the importance of local accesses, thus

the importance of the best exploitation of local memories (NUMA) and caches (SMP).

.

Some simplified results about multiprocessor
performance

• In this section we introduce some initial results about multiprocessor
performance evaluation.

• To understand the importance of memory hierarchies, we start with an
approximate cost model of an SMP architecture.

• This analysis can be done by evaluating the bandwidth of an interleaved
memory.

• Given an interleaved memory with m modules, it is statistically reasonable
(and it is validated by experiments) that

probability (processor i accesses module j) = 1/m, independently from i, j

• Thus, the distibution of

p(k) = probability (k processors | 1 k n are in conflict trying to access the
same memory module)

is the binomial distribution. With some manipulations we achieve:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

Interleaved memory bandwidth

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

expressed as average number of shared memory accesses per second, where
accesses can be single words or cache blocks. Graphically:

0,00

8,00

16,00

24,00

32,00

40,00

48,00

56,00

64,00

0 8 16 24 32 40 48 56 64

n

banda memoria interallacciata (m moduli, n processori)

m=4

m=8

m=16

m=32

m= 64

Though not usable for a

quantitative analysis of a

parallel program

performance on a specific

real machine,

this result shows

qualitatively how the

performance degradation due

to memory conficts is

critical, even with very

parallel memories,

unless proper caching

techniques are applied to

minimize the conflicts.

Software lockout
• Another preliminary result about what we can expect on multiprocessor performance is

the average number of processors that are blocked (busy waiting) during the execution
of indivisible sequences on mutually exclusive - locked - shared data structures:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

L = average duration of critical

sections,

E = average processing time not in

critical sections.

For a given L/E, a value nc exists such

that, for n > nc, all the added

processors are blocked.

This result shows that also the critical

sections design is an important issue:

for achieving good performances

critical sections must be as short as

possible.

Typical values di L/E for commercial

uniprocessor operating systems (> 0.2)

show that such OS versions cannot be

utilized to build a scalable

multiprocessor (they have to be fully

re-designed).

Local memories and memory hierachies in
multiprocessors

• In multiprocessors the proper use of local memories and

memory hierachies is a main issue for performance

optimization:

i. minimizing the access latency

ii. minimizing the shared memory conflicts

• Solutions to both issues have a counterpart: the

presence of writable shared information in caches

introduces the problem of cache coherence

– how to grant that the contents of distinct caches are consistent.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 19

Cache coherence

Two approaches:

1. cache coherence is mantained automatically by the firmware
architecture

2. cache coherence is solved entirely by program (for each
application or in the run-time support design), without any
firmware dedicated support

(+ intermediate approaches).

“All-cache” architecture? (i.e. all information of a process are accessed
through caching vs some information are not cacheable).

Critical problems for the programmability vs performance trade-off.

Intensive debate about the future multicore products.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 20

Subjects to be studied

1. Interconnection structures, and memory access latency

2. Multiprocessor run-time support of concurrency mechanisms
(interprocess communication), including cache
coherence, and interprocess communication cost model

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 21

