
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

4. Shared Memory Parallel Architectures

4.2. Interconnection Networks

Kinds of interconnection networks

• Main (contrasting) requirements:
1. High connectivity

2. High bandwidth, low latency

3. Low number of links and limited pin

count

• Two extreme cases:
– Bus (shared link)

• Minumum cost and pin count

• No parallel communications

• Latency O(n)

– Crossbar (full interconnection)

• Maximum cost O(n2) and pin count

• Maximum parallelism

• Minumum constant latency

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

M0 M1 M2 M3

P0 P1 P2 P3

M0 M1 M2 M3

P0 P1 P2 P3

For opposite reasons, bus and
crossbar are not valid solutions for
highly parallel architectures

Limited degree networks

• Dedicated links only (no buses)

• Reduced pin count

– network degree = number of links per

node

• Base latency O(log N), or O(N1/k)

– Note: O(log N) is the best result for

structures with N arbitrarily large

– base latency = latency in absence of

conflicts. Goal: mantain O(log N)

latency in presence of conflicts too.

• High bandwidth

– Service time is not significantly

increased wrt crossbar

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

Basic idea:
consider a crossbar-like structure composed of m
trees having the memory modules in the
respective roots (latency: O(log n))

M0 M1 M2 M3

P0 P1 P2 P3

Merge all the trees in a limited degree
structure, i.e. some sub-structures are in common
to some trees.
Possibly, apply topologycal transformations (e.g.
transform trees into cubes).

Kinds of limited degree networks

• Indirect / multistage networks
– Paths between nodes consist of intermediate nodes, called switching nodes (or simply

switches). Any communication requires a routing strategy through a path composed of
switching nodes.

– Typical examples:

• Butterfly (k-ary n-fly): for networks connecting two distinct sets of nodes (processing
nodes and memory modules in SMP)

• Tree, fat tree, generalized fat tree: for networks connecting the same kind of processing
nodes (NUMA)

• Direct networks
– No intermediate switching nodes. Some processing nodes are directly connected to other nodes

(of the same kind, e.g. NUMA), in this case no routing is required. Routing strategies are
applied to nodes that are not directly connected.

– Typical examples:

• Ring

• Multidimensional mesh (k-ary n cube)

• Direct networks and the varieties of trees are applied to distributed
memory architectures as well.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

k-ary n-fly networks

• Butterflies of dimension n and ariety k.

• Example: 2-ary 3-cube for 8 + 8 nodes:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

Processing node

S0

S1

S2

S3

S4

S5

S6

S7

C0

C1

C2

C3

C4

C5

C6

C7

 k = 2

n = 3

Switching node

Number of processing nodes:

N = 2 kn

e.g., kn processors (Ci), k
n memory

modules (Sj) in SMP.

Network degree = 2k.

Network distance (constant):

d = n

proportional to the base latency.

Thus, base latency = O(log N).

There is one and only one unique path
between any Ci and any Sj . It is exploited
in deterministic routing.

Formalization: binary butterfly (2-ary n-fly)

• Connects 2n processing nodes to 2n processing nodes, through n
levels of switching nodes

• Processing nodes are connected to the first and the last level
respectively.

• Each level contains 2n-1 switching nodes

• Total number of switching nodes = n 2n-1 = O(N log N)

• Total number of links = (n – 1) 2n = O(N log N)

– wrt O(N2) of crossbar.

Note: the FFT (Fast Fourier Transform) algorithm has a binary butterfly topology.

It reduces the complexity of the Discrete Fourier Transform from O(N2) to O(N log N) steps.

The data-parallel implementation of FFT has completion time O(log N) with O(N) virtual

processors. The stencil at i-th step is exactly described by the topology of the butterfly i-th

level.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

Formalization: binary butterfly (2-ary n-fly)

Connectivity rule:

• Each switching node is defined by the coordinates (x, y),where
– 0 x 2n-1 is the row identifier,

– 0 y n-1 is the column identifier.

• Generic switching node (i, j), with 0 j n-2, is connected to
two switching nodes defined as follows:
– (i, j + 1) through the so called “straight link”

– (h, j + 1) through the so called “oblique link”, where h is such that

abs (h – i) = 2n-j-2

i.e. the binary representation of h differs from the binay representation of i only

for the j-th bit starting from the most significant bit.

• The connectivity rule defines the deterministic, minimal
routing algorithm.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

Formalization: binary butterfly (2-ary n-fly)

Recursive construction:

• for n = 1: butterly is just one switching node with 2 input links and 2
output links;

• given the n dimension butterfly, the (n+1) dimension butterfly is obtained
applying the following procedure:

– two n dimension butterflys are considered, “one over the other”, so obtaining the n final

levels, each of them composed of 2n switches;

– a level of 2n switches is added at the left;

– the first level switches are connected to the second level switches according the connectivity

rule, in order to grant the full reachability of the structure.

• Formal transformations of binary butterflies into binary hypercubes are
known.

• Formalization can be generalized to any ariety k.

• Many other multistage networks (Omega, Benes, and so on) are defined as
variants of k-ary n-fly.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

Routing algorithm for k-ary n-fly

The deterministic, minimal algorithm derives from the connectivity rule. For k =

2, consider the binary representation of the source and destination processing node

identifiers, e.g. C3 = (011) and S6 = (110). These identifiers are contained in the message

sent through the network.

• Once identified the first switch, the algorithm evolves through n steps. At i-th step the

switch compares the i-th bit of source and destination identifiers, starting from the most

significant bit: if they are equal the message is sent to the straight link, otherwise to the

oblique link.

• The last switch recognizes the destination just according to the least significant bit of

destination identifier.

• For routing in the opposite direction (from S to C), the binary identifiers are analyzed in

reverse order, starting from the second least significant bit.

The algorithm is generalized to any k.

Other non-minimal routing strategies can be defined for k-ary n –fly networks, notably

adaptive routing according to network load and/or link availability.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

k-ary n-cube networks
• Cubes of dimension n and ariety k.

• Generalization of ring (toroidal)
structures.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

k = 4, n = 1

k = 4, n = 2

k = 4, n = 3

No switch nodes. In

principle, the processing nodes

are the nodes of the network

structure. In practice, the

network nodes are interfaces of

the processing nodes.

k-ary n-cubes

• Number of processing nodes: N = kn.

• Network degree = 2n.

• Average distance = O(k n) : proportional to base latency.

• For a given N (e.g. N = 1024), we have two typical choices:

– n as low as possible (e.g. 32-ary 2-cube)

– n as high as possible (e.g. 2-ary 10-cube)

• For low-dimension cubes: distance = O(N1/k)

• For high-dimension cubes: distance = O(log N)

• Despite this difference in the order of magnitude, the detailed evaluation of latency is in
favour of low-dimension cubes:

– High-dimension cubes are critical from the pin count and link cost viewpoint: in

practice, they are forced to use few-bit parallel links (serial links are common). This

greatly increases the latency value (multiplicative constant is high).

– Low-dimension cubes (n = 2, 3) are more feasible structures, and their latency tends to be

lower (low values of the multiplicative constant) for many parallel programs written

according to the known forms of parallelism (farm, data-parallel).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

k-ary n-cubes

• Deterministic routing: dimensional
– Example for k = 2: Sorce = (x1, y1), Destination (x2, y2)

– Routing steps along the first dimension from (x1, y1) to (x2, y1)

– Routing steps along the second dimension from (x2, y1) to (x2, y2)

• Application of k-ary n-cubes: NUMA

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

Trees

Consider a binary tree multistage network connecting N nodes of the same
kind as leafes of the tree:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Switch node
Processing

node

N0 N1 N2 N3 N4 N5 N6 N7

Base latency = O(log N).
However, the number of conflicts is relatively high: as higher as the distance increases.
The problem can be solved by increasing the bandwidth (i.e. parallelism of links) as we
move from the leaves towards the root: we obtain the so called FAT TREE network.

1
12

2)1(

1
1

)1(2
2 1

)1(

1

n

n

i

in
n

i
i

net

in

N

in
N

d

dnet 1,9 n

Ariety k (e.g. k = 2)
Dimension n
Number of nodes: N = kn

Average distance:

Routing algorithm: tree visit

Fat trees

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

N0 N1 N2 N3 N4 N5 N6 N7

4 links in parallel

2 links in parallel

1 link

Links in parallel are used as alternative links for distinct messages flowing between the
same switching nodes, thus reducing the conflicts.

If the bandwidth doubles at each level from the leafs to the root, then the conflict
probability becomes negligible,

provided that the switching node has a parallel internal behaviour.

The solution to the pin count and link cost problem, and to the switching node
bandwidth problem, is the Generalized Fat Tree, based on k-ary n-fly structures.

Generalized Fat Tree

The requirement is that the i-th level behaves as a 2i x 2i crossbar, without pin
count problems for high value of i. These limited degree crossbars are
implemented by a k-ary n-fly structure with a single set of processing nodes:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

N0

N1

N2

N3

N4

N5

N6

N7

3-rd level switch 2-nd level switch 1-st level switch

Routing algorithm: tree routing

algorithm + dynamic adaptivity to link

availability.

Interesting network,

also because it can be exploited, at the

same time, as a Fat Tree and as a

butterfly itself,

provided that the switching node

implements both routing algorithms.

Typical application: in SMP as

processor-to-memory network

(butterfly) and as processor-to-processor

network (Fat Tree).

Basic scheme for the most interesting networks: Myrinet, Infiniband.

Flow control of interconnection networks
for parallel architectures

• Flow control techniques: management of networks resources, i.e.
links, switching nodes, internal buffers, etc.

• Packet-based flow control: at each switching node of the routing
path, the whole packet must be received, and buffered, before it is
sent towards the next switching node.

• Packets are the routing units, and distincts packets can follow
distinct paths in parallel.

• Especially in parallel architectures, the single packet transmission
can be further parallelized: wormhole flow control strategy:

– packets are decomposed into flits,

– flits of the same packet are propagated in pipeline, thus reducing the latency from

O(path length message size) to O(path length + message size), provided that this

fine grain parallelism is efficiently exploited by the switching nodes.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

Wormhole flow control

• The routing unit is the packet as well: all the flits of the same
packet follow exactly the same path.

• The first flit must contain the routing information (packet
heading).

• In general, with w-bit parallel links (e.g. w = 32 bit), the flit
size is w bits (possibly, 2w bits).

• The minimum buffering capacity inside a switching node is
one flit per link (instead of a packet per link): this contributes
to the very efficient firmware implementation of switching
nodes (one clock cycle service time and internal latency).

• Implemented in most powerful networks.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

Implementation of a wormhole switching node

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

SWi

SWi1

IN11

IN12

OUT11

OUT12

Routing

and

flow control

SWi2

OUT21

OUT22

IN21

IN22

Routing

and

flow control

Implementation of a wormhole switching node

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 19

SWi

SWi1

IN11

IN12

OUT11

OUT12

Routing

and

flow control

SWi2

OUT21

OUT22

IN21

IN22

Routing

and

flow control

Dedicated links with level-
transition RDY-ACK interfaces (see
firmware prerequisites)

Distinct units for the two network
directions.

At every clock cycle, control the
presence of incoming messages
and, for heading-flits, determine
the output interface according to
the routing algorithm.
The heading-flit is sent if the
output interface has not been
booked by another packet.

Once the heading-flit of a packet
has been sent to the proper
output interface, then the rest of
the packet follows the heading-
flit. Adaptive routing is implemented according to ACK

availability (and possibly time-outs).

Exercize

Assume that a wormohole Generalized Fat Tree network, with
ariety k = 2 and n = 8, is used in a SMP architecture with a
double role: a) processor-to-memory interconnection, and b)
processor-to-processor interconnection.

The firmware messages contain in the first word: routing
information (source identifier, destination identifier), message
type (a or b), message length in words.

Link and flits size is one word.

Describe the detailed (e.g., at the clock cycle grain) behaviour of
a switching node.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 20

Latency of communication structures with pipelined
flow control
Pipelined communications occur in structures including wormhole networks
and other computing structures (interface units, interleaved memories, etc).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 21

We wish to evaluate the latency of such a pipelined structure with d units for
firmware messages of length m words.
Let’s assume that
• wormhole flit is equal to a word,
• every units has clock cycle t
• every link has transmission latency Ttr.

Latency of communication structures with pipelined
flow control

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 22

(m – 1) 2 (t + Ttr)(d – 1) (t + Ttr)

Example with
d = 4 units
and m = 5
words per
message
(packet)

Tlat-pipe = (m – 1) 2 (t + Ttr) + (d – 1) (t + Ttr) = (2m + d – 3) (t + Ttr)

Let’s denote:

thop = t + Ttr

called “hop latency” (latency of a single “hop”):

Tlat-pipe = (2m + d – 3) thop

“hop”

t
Ttr

Memory access latency evaluation

Assumptions:

• All-cache architecture

• Cache block size s

• Shared main memory, each memory macro-module is s-way interleaved (or s long word)

• Wormhole, n dimension, binary Generalized Fat Tree network

• Link size = flit size = one word

• D-RISC Pipelined CPU

Let’s evaluate:

• Base latency of a cache block transfer (absence of conflicts)

• Under-load latency of a cache block transfer (presence of conflicts)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 23

Scheme of the system to be evaluated

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 24

. . .M0 M1

W

SWdnet

SWdnet-1

SWdnet-2

SW3

SW2

SW1

SW0

W

MINF

CD

Generalized

Fat Tree

k = 2

n = 8

IM

. . .

M7

CPU

msg
type 1

msg
type 0

Request of a remote block
transfer

(firmware msg 0) : latency T0

and
block transfer

(firmware msg 1): latency T1

Base latency for a remote block transfer:

ta.-base = T0 + T1

Let’s denote:
dnet = average network distance

(e.g., with n = 8, dnet = 15 in the worst case, dnet =
8 in the best case)

Firmware messages

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 25

Value, first wordHeading: 1 word Value, second word …

Msg
type

Flow control
information

Routing
information

Message format: sequence of words

Heading is inserted or removed by the interface unit W between CPU and network:

4 bits: message type

8 bits: source node identifier

8 bits: destination node identifier; in this case, it is a memory macro-

module, identified by the least 8 bits of physical address (in SMP), or

the most 8 significant bit (in a NUMA architecture) – example for 256

nodes and memory macro-modules

8 bit: message length (number of words)

4 bits: other functions

Message types for this example:

Msg 0: request of a block transfer to the remote memory

Msg 1: block value from the remote memory

Firmware messages and their latencies

Msg 0:

– Value: Physical address relative to the memory module: e.g. 1 word

– Message length, including heading: m = 2 words

It propagates in pipeline through CPU-MINF, WCPU, network, WMEM, Memory

Interface: distance

d = dnet + 4

Latency of message 0 (applying the pipelined communication formula):

T0 = (2m + d – 3) thop = (5 + dnet) thop

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 26

Firmware messages and their latencies

Msg 1:
– Value: Access outcome control information: 1 word

– Value: Block value: s words

– Message length, including heading: m = 2 + s words

This message implies the reading from the interleaved memory module, which includes the
following sequential paths:

• request from Memory Interface to modules: thop

• access in parallel to the s interleaved modules: tM

• s words in parallel from modules to Memory Interface: thop

At this point, the result (outcome, block value) flows in pipeline through Memory
Interface, WMEM, network, WCPU, CPU-MINF: distance

d = dnet + 4

Latency of message 1 (applying the pipelined communication formula):

T1 = 2 thop + tM + (2m + d – 3) thop = 2 thop + tM + (2s + 5 + dnet) thop

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 27

Base latency

As a result, the base access latency is given by:

ta-base = T0 + T1 = c + 2(s + dnet) thop + tM

where c is a system-dependent constant (= 12 in this example).

For a binary Fat Tree network:

dnet = d n

where n = log2N, and d is an application-dependent parameter in the range

1 d < 2

according to the locality of the internode communications, thus depending on the
allocation of application processes.

For example, with dnet = 15, s = 8, thop = 5t, tM = 50t: ta-base = 290t 50t 340t

With dnet = 8, s = 8, thop = 5t, tM = 50t: ta-base = 240t 50t 290t

Even with a rather slow memory, the impact of the network latency on memory access
latency is the most meaningful.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 28

Under-load latency: queueing modeling

• The system is modeled as a queueing system, where
– processing nodes are clients

– shared memory modules are servers, including the interconnection structure

– e.g. M/D/1 queue for each memory module

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 29

Mj

P0 Pn-1Pi

Response
Time

server utilization factor (r) 1

0

• The memory access latency is the server Response Time.
• Critical dependency on the server utilization factor: a measure of memory modules

congestion, or a measure of processors “conflicts” to access the same memory module
• The interarrival time has to be taken as low as possible: the importance of local accesses, thus

the importance of the best exploitation of local memories (NUMA) and caches (SMP).

.

Under-load latency: queueing modeling

• Each server has an average number p of clients, where p is a
parameter (N) representing the average number of
processing nodes that share the same memory module.

• In a SMP architecture, according to the costant probability
that any processor accesses any memory macro-module:

p = N / m

• In a NUMA architecture, p is application-dependent, though

p < N

especially for structured parallel programs that are
characterized by some communication locality.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 30

Under-load latency: queueing modeling

• With a Fat Tree network, it is acceptable to assume
that, especially for small p, the the effect of conflicts over
networks links is negligible compared to the effect of conflicts
on memory modules.

• Let Tp be the average processing time of the generic processor
between two consecutive accesses to remote memory. Let’s
assume that the corresponding random variable is
exponentially distributed.

• The memory access time, i.e. the server response time RQ, is
the solution of the following system of equations (see the
client-server modeling in the ILP part of the course):

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 31

Under-load latency: queueing modeling

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 32

1

),,(

0

0

r

r

sr

p

T
T

tT

T

T

tTWR

RTT

A

as

A

s

assQQ

Qp

ta-base

ta-base

A good approximation for WQ is
given by the M/D/1 queue:

)1(2)1(2

0

r

r

r

r

 asQ tTW

RQ is the one and only one real
solution of a second degree
equation with real coefficients.

In the following, the evaluation will be expressed graphically according to the
parameters: p, Tp, N, s, d, thop, tM.

Under-load latency: evaluation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 33

p variable; s = 8, d = 1, thop = 5 t, tM = 10 t, N = 64, Tp = 2000 t: n = 6, ta-base = 210 t

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0 8 16 24 32 40 48 56 64

p

Cache block access latency / t

p is one of the most
critical parameters.

Good performances are
achieved for p < 8:

in NUMA architectures
if applications have
high communication –
locality,

in SMP for high ratio
N/m.

Under-load latency: evaluation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 34

0

100

200

300

400

500

600

700

800

900

1.000

0 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000

Tp t

tempo accesso blocco t

Tp is a meaningful
parameter as well.

For coarse grain
applications, RQ tends
to the ta-base value, i.e.
the memory conflicts
are negligible.

For fine grain
applications, memory
conflicts have a
relevant negative
impact.

Tp variable; s = 8, d = 1, thop = 5 t, tM = 10 t, N = 64, p = 4: n = 6, ta-base = 210 t

Cache block access latency / t

Under-load latency: evaluation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 35

p, Tp variables; s = 8, d = 1, thop = 5 t, tM = 10 t, N = 64: n = 6, ta-base = 210 t

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0 8 16 24 32 40 48 56 64

p

tempo accesso blocco t

Tp=100

Tp=2.000

Tp=5.000

Tp=10.000

Cache block access latency / t

Combined effect of p and
Tp.

Under-load latency: evaluation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 36

N variable; s = 8, d = 1, thop = 5 t, tM = 10 t, N = 64, p = 4, Tp = 2000 t: for 8 ≤ N ≤ 256 3 ≤ n ≤ 8, 180t
≤ ta-base ≤ 230t.

0

200

400

600

800

1.000

0 32 64 96 128 160 192 224 256

N

tempo accesso blocco / tCache block access latency / t

In this evaluation, the true
parallelism degree is p, not N.

Under-load latency: evaluation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 37

s variable; d = 1, thop = 5 t, tM = 10 t, N = 64, p = 4, Tp = 2000 t: for 2 ≤ s ≤ 16 150t ≤ ta-base ≤ 290t;

n = 6.

0

200

400

600

800

1.000

0 2 4 6 8 10 12 14 16 18

Block size

tempo accesso blocco tCache block access latency / t

Though large blocks increase
RQ, they can be beneficial:

a double value of RQ is
compensated by a less
number of remote accesses.

The positive impact of
wormhole flow control is
remarkable in this
evaluation.

Under-load latency: evaluation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 38

d variable; s = 8, thop = 5 t, tM = 10 t, N = 64, p = 4, Tp = 2000 t: for 1 ≤ d ≤ 2 210t ≤ ta-base ≤

270t; n = 6.

0

200

400

600

800

1.000

1 1,2 1,4 1,6 1,8 2

d

tempo accesso blocco / tCache block access latency / t

d has not a meaningful impact
for low values of p.

The network path length tends
to have a negligible impact wrt
the impact of the number of
nodes in conflict.

Under-load latency: evaluation

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 39

tM variable; s = 8, d = 1, thop = 5 t, N = 64, p = 4, Tp = 2000 t: n = 6; for 10 t ≤ tM ≤ 1000 t 210t ≤

ta-base ≤ 1200t.

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

0 200 400 600 800 1000

Memory clock cycle / t

tempo accesso blocco tCache block access latency / t

“Slow” memories have a
relevant, negative impact,

while the impact is limited for
memory clock cycle of few s t

