
SANDIA REPORT
SAND2008-3205
Unlimited Release
Printed May 2008

Summary of Multi-Core Hardware and
Programming Model Investigations

Kevin Pedretti, Suzanne Kelly, Michael Levenhagen

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2008-3205
Unlimited Release
Printed May 2008

Summary of Multi-Core Hardware and Programming
Model Investigations

Kevin Pedretti, Suzanne Kelly, and Michael Levenhagen
Scalable System Software Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319
{ktpedre,smkelly,mjleven}@sandia.gov

Abstract

This report summarizes our investigations into multi-core processors and programming mod-
els for parallel scientific applications. The motivation for this study was to better understand
the landscape of multi-core hardware, future trends, and the implications on system software
for capability supercomputers. The results of this study are being used as input into the
design of a new open-source light-weight kernel operating system being targeted at future
capability supercomputers made up of multi-core processors. A goal of this effort is to create
an agile system that is able to adapt to and efficiently support whatever multi-core hardware
and programming models gain acceptance by the community.

3

Acknowledgment

This work was funded by Sandia’s Laboratory Directed Research and Development (LDRD)
program. The authors thank Neil Pundit for his review of the manuscript and feedback.
The description of the BEC (Bundle Exchange Compute) programming model was provided
by Zhaofang Wen.

4

Contents

Nomenclature 10

1 Introduction 13

2 Multi-core Hardware 15

2.1 General-purpose Processors . 15

2.1.1 AMD . 16

2.1.1.1 Dual-core Opteron . 16

2.1.1.2 Quad-core Opteron . 16

2.1.1.3 Examples . 17

2.1.2 Intel . 17

2.1.2.1 Dual-core Core2 Xeon . 17

2.1.2.2 Quad-core Core2 Xeon . 17

2.1.2.3 Upcoming Nahalem Architecture . 17

2.1.2.4 Examples . 18

2.1.3 IBM . 18

2.1.3.1 Power5 . 18

2.1.3.2 IBM Power6 . 19

2.1.3.3 STI Cell Broadband Engine . 20

2.1.3.4 Examples . 20

2.1.4 Sun . 20

2.1.4.1 UltraSPARC T1 . 20

2.1.4.2 Sun UltraSPARC T2 . 21

5

2.1.4.3 Examples . 21

2.2 Special-purpose Processors . 21

2.2.1 Cray XMT/Threadstorm . 25

2.2.2 IBM BlueGene/P . 25

2.2.3 IBM Cyclops-64 . 26

2.2.4 SiCortex . 26

2.2.5 ClearSpeed e620 Accelerator . 27

2.2.6 Tilera Tile64 . 27

2.2.7 SPI Storm-1 . 27

2.2.8 Ambric Am2045 . 28

2.3 Future Multi-core Hardware Trends . 29

3 Programming Models for Parallel Scientific Applications on Multi-core 31

3.1 Parallelization Mechanisms . 31

3.1.1 Vector-like Instructions . 31

3.1.2 Vector Instructions . 32

3.1.3 Implicit Threading . 32

3.1.4 Multi-Threading with OpenMP . 32

3.1.5 Explicit Message Passing with MPI . 33

3.1.6 Partitioned Global Address Spaces (PGAS) . 33

3.2 Software Products Gaining Popularity in Parallel Programming 33

3.2.1 PGAS Languages . 34

3.2.2 User Friendly Languages . 35

3.2.3 Libraries . 35

3.2.3.1 SHMEM . 35

3.2.3.2 Global Arrays . 36

3.2.3.3 ARMCI . 36

6

3.2.3.4 GASNet Extended API . 36

3.2.4 Networking Software . 36

3.2.4.1 GASNet . 37

3.2.4.2 Active Messages . 37

3.2.4.3 Portals . 37

3.3 Shared Libraries . 37

3.3.1 Performance Impact of Dynamic Access to a Library 38

3.3.2 Loadtime Linking of Dynamic Libraries . 39

3.3.3 Overview of UNIX Dynamic Load Process . 40

3.3.4 Overview of Catamount Dynamic Load Process 40

3.3.5 Results of Executing a Dynamically Linked Binary 42

4 Conclusion 45

References 46

7

List of Figures

1.1 ASC Capability System Scaling Trends . 14

3.1 Example Software Components Used in Parallel Scientific Applications 34

3.2 Performance Comparison of Independent Reads versus Single Read followed
by Broadcast . 39

8

List of Tables

2.1 Comparison of x86 Multi-core Processors . 22

2.2 Comparison of IBM/STI Multi-core Processors . 23

2.3 Comparison of Sun Niagara Multi-core Processors . 24

9

Nomenclature

ALP Architecture-Level Parallelism. Processors that contain a heterogeneous mixture of
core architectures exhibit ALP. As more cores are added to a single processor, it can
be beneficial from a power and area standpoint to provide some heavy cores oriented
towards single thread performance and other simpler cores oriented towards highly
parallel workloads. Another example of ALP is integration of specialized cores, such
as graphics processing units, and general-purpose cores on the same chip.

CLP Core-Level Parallelism. CLP occurs when a single processor core provides support
for multiple hardware threads. Hardware threads differ from OS-managed software
threads in that they have much lower overhead and can be switched between one other
(usually) on a cycle-by-cycle basis. This allows another thread to execute when the
current thread stalls (e.g., on a memory operation), thus making more efficient use of
the processor’s resources. CLP is a technique for increasing memory-level parallelism
(MLP).

ILP Instruction-Level Parallelism. Superscalar processors are capable of executing more
than one instruction each clock cycle. ILP is a form of implicit parallelism that is
usually identified by the hardware automatically (e.g., via out-of-order execution) or by
the compiler (e.g., scheduling instructions for multiple-issue, VLIW). The programmer
does not usually need to explicitly deal with ILP.

MLP Memory-Level Parallelism. Modern memory subsystems have very high latency with
respect to processor speeds, and the gap is increasing. MLP occurs when multiple
simultaneous requests are made to the memory subsystem. This allows pipelining to
occur, thus hiding the latency. Architectural capabilities such as out-of-order execution,
hardware multi-threading, and STREAM processing are all aimed at increasing MLP.

SIMD Single Instruction Multiple Data. SIMD parallelism occurs when a single instruction
operates on multiple pieces of data. Vector processors provide SIMD parallelism—a sin-
gle instruction operates on entire vectors of data at a time. Many modern commodity
processors support SIMD parallelism through multi-word wide registers and instruc-
tion set extensions. Many compilers attempt to automatically detect SIMD parallelism
and exploit it, however programmers often have to explicitly structure their code to
get the maximum benefit.

SMT Symmetric Multi-Threading. SMT is a form of CLP (core-level parallelism). In an
SMT processor, instructions from multiple hardware threads can be issued in the same
clock cycle to different execution units of a superscalar processor. This is in contrast
to fine-grained multi-threading where only instructions from one thread may execute

10

each clock cycle. SMT is useful on very wide superscalar processors (e.g., the Power6)
where it is unlikely that a single thread will use all of the available execution units.

TLP Task-Level Parallelism. Multi-core processors support running more than one context
of execution (e.g., a process, a thread) at the same time, one per core. Programmers
must explicitly structure their application to break the problem into multiple pieces
in order to utilize TLP. This is in contrast to ILP, which requires no action on the
programmers part. Scientific applications for distributed memory supercomputers have
very high levels of TLP.

11

12

Chapter 1

Introduction

This report summarizes our investigations into multi-core processors and programming mod-
els for parallel scientific applications. The motivation for this study was to better understand
the landscape of multi-core hardware, future trends, and the implications on system soft-
ware for capability supercomputers. The information gathered by this study is being used
as input into the design of a new open-source light-weight kernel operating system targeted
at future capability supercomputers made up of multi-core processors.

Figure 1.1 predicts the number of processor cores in a future exa-scale supercomputer
based on data for past ASC capability systems. In the past, single core performance has
increased with Moore’s Law (green line). Going forward, single processor core performance
is not expected to increase significantly, leading to an exponential increase in the number of
cores needed to achieve the desired performance level (blue line). This poses challenges for
system software in the areas of scalability, resiliency and programmability. The shear scale of
future systems necessitate much improved resiliency, or else the majority of an application’s
runtime will be spent in overhead due to checkpoints and restarts [32]. Programming models
are another area requiring attention. Not only will future exa-scale systems have vastly more
processor cores than today’s systems, they are expected to contain heterogeneous processors
and much more complex memory hierarchies. Each compute node essentially becomes a
massively parallel processor of its own—e.g., an Intel TFLOPS on a chip. This is motivating
renewed interest in two-level or more parallel programming models that seek to exploit
intra-node or even intra-chip locality. Future operating systems for capability systems must
provide the functionality necessary to address these issues.

The remainder of this report is organized as follows: Chapter 2 examines the character-
istics of several current and future multi-core processors. Chapter 3 examines programming
models for capability systems and identifies the system software requirements of each. Fi-
nally, Chapter 4 includes closing remarks.

13

Challenge: Exponentially Increasing Parallelism

900 TF
75K cores
12 GF/core

89% per y
ear

33% per year

2019
1 EF

1.7M cores (green)
588 GF/core

or
28M cores (blue)

35 GF/core

72% per year

S
ee

 K
ey

 fo
r

U
ni

ts

Figure 1.1. ASC Capability System Scaling Trends

14

Chapter 2

Multi-core Hardware

This chapter provides an overview of several current multi-core processors. General-purpose
processors are described first, followed by a description of several special-purpose multi-core
processors aimed at specific markets such as embedded computing.

2.1 General-purpose Processors

General-purpose processors are designed to be used in mainstream servers and desktops.
They are also commonly used in distributed memory high performance computing systems
ranging from small-scale Beowulf clusters to capability supercomputers such as 38,400 core
Red Storm Cray XT4 system at Sandia National Laboratories. Most existing scientific com-
puting applications simply need to be recompiled to utilize any of these processors with
good performance. In some cases tuning or restructuring an application can result in signifi-
cant performance gains (e.g., restructuring to expose SIMD parallelism). The Cell processor
described in Section 2.1.3.3 is an extreme example—significant code restructuring must be
performed in order to take advantage of the on-chip SPE accelerators, which deliver the bulk
of the processor’s performance.

The remainder of this section briefly describes several multi-core processor product fam-
ilies. The types of parallelism supported by each processor is listed at the end of each
processor’s description (see the Nomenclature section for a description of acronyms). This
information can be helpful to application developers seeking to tune their application for a
new processor. It is also interesting to compare the forms of parallelism provided in relation
to the processors intended usage. The Sun processors, for example, do not support ILP
or SIMD because they would not benefit the high-throughput applications that the chip is
intended for. Finally, the parameters of a specific model of each multi-core processor family
are listed in a table at the end of each processor’s description.

15

2.1.1 AMD

2.1.1.1 Dual-core Opteron

The AMD dual-core Opteron [19] processor contains two 64-bit x86 CPUs and an integrated
memory controller. AMD was first to the market with 64-bit x86 CPUs and also dual-core
processors, although Intel now has similar offerings. Each AMD CPU has its own dedicated
L1 and L2 caches and supports one context of execution. Each Opteron CPU is capable
of performing two floating point operations per clock. The processor’s on-chip memory
controller supports two ganged DDR2 PC5300 channels, providing a maximum of 10.6 GB/s
of memory bandwidth.

Forms of parallelism supported: ILP, SIMD, TLP, MLP

2.1.1.2 Quad-core Opteron

AMD has developed a quad-core Opteron [10] follow-on to its dual-core Opteron. This
processor integrates four 64-bit x86 CPUs on one processor die and includes an integrated
memory controller. Each CPU has its own dedicated L1 and L2 caches, in addition to a
common L3 victim cache shared by all CPUs. The victim cache contains cache lines evicted
from the private caches, buffering them before they are moved to main memory. Additionally,
the cache controller attempts to detect lines that are being shared by multiple CPUs and,
when detected, treats them differently than non-shared lines (e.g., by using an optimized
coherency protocol).

Thanks to an improved SSE (Streaming SIMD Extensions) unit, each Opteron CPU can
perform four floating point operations per clock cycle, up from two in the dual-core Opteron.
SSE registers remain 128-bits wide, but both 64-bit fields can be operated on simultaneously,
rather than sequentially in the dual-core Opteron. One multiply-accumulate (two FLOPs)
can be performed on each 64-bit field each clock cycle.

The on-chip memory controller supports two DDR2 PC5300 channels, providing a maxi-
mum of 10.6 GB/s of memory bandwidth (DDR3 is also supported by the memory controller,
but will not be available until a future processor socket). The two channels may either be
operated in ganged or unganged mode, configurable on a per-boot basis. Ganged mode re-
sults in a 128-bit wide path to memory and operates identically to the dual-core Opteron.
In unganged mode, each channel operates independently, effectively behaving as two 64-bit
memory controllers. This allows for greater memory level parallelism (MLP), but has the
disadvantage that chip-kill ECC mode is not supported due to the 128-bit error correcting
code used.

Forms of parallelism supported: ILP, SIMD, TLP, MLP

16

2.1.1.3 Examples

Table 2.1 provides a comparison of specific instances of the processor families described in
this section. The models were chosen to be roughly comparable to one another for a given
generation (e.g., the AMD dual-core and Intel dual-core processors are comparable models
from different vendors).

2.1.2 Intel

2.1.2.1 Dual-core Core2 Xeon

The Intel Core2 Xeon contains two 64-bit x86 CPUs. Each CPU has its own dedicated L1
cache and the two CPUs in the same chip share access to a common L2 cache. This facilitates
fine-grained data sharing between CPUs at the expense of higher cache arbitration overhead.
Each CPU supports one context of execution. Each Core2 CPU can perform four floating
point operations per clock.

Unlike the AMD Opteron platform, the Intel platform utilizes an external chipset to
supply the memory controller and Northbridge functionality. The front-side bus connecting
the processor to the chipset operates at a maximum of 1333 MHz, providing 10.6 GB/s of
bandwidth to the memory controller in the chipset.

Forms of parallelism supported: ILP, SIMD, TLP, MLP

2.1.2.2 Quad-core Core2 Xeon

The Intel Core2 Xeon quad-core processor is essentially two Core2 dual-core processors
packaged together into a multi-chip module. An arbitrator circuit gates access to the front-
side bus by the two dual-core dies, enabling the aggregate processor package to appear as
a single load on the front-side bus. The cache hierarchy and front-side bus bandwidth are
identical to the Core2 dual-core. The bytes/FLOP ratio is therefore decreased by a factor
of two for each socket.

Forms of parallelism supported: ILP, SIMD, TLP, MLP

2.1.2.3 Upcoming Nahalem Architecture

At the time of writing, Intel has announced their next generation processor, code-named
Nahalem [17]. Nahalem will initially contain four 64-bit x86 CPUs integrated on a single
die, although future iterations may contain more CPUs. The Nahalem processor is the first
x86 processor from Intel with more than two cores on the same chip. Each Nahalem CPU will

17

support two hardware threads, which will share and compete for the CPU’s resources. Each
quad-core processor will look like eight CPUs to the operating system, although mechanisms
are provided to determine which virtual CPUs share the same physical CPU. It is likely that
Intel will eventually package two quad-core chips into a single package, resulting in 8 CPUs
(16 threads) per processor socket.

Like AMD’s quad-core processor, Intel has moved to a three-level cache hierarchy, up
from two levels in the Intel Core2. Each physical CPU will have dedicated L1 and L2 caches
and share access to a common L3 cache.

This will be the first mainstream Intel x86 processor to integrate a memory controller on
the processor chip, bringing it in line with the AMD Opteron processors. Initial indications
are that each processor will contain three DDR3 memory controllers, each 8-bytes wide and
operating at 1.33 GT/s. This results in a peak memory bandwidth of 31.92 GB/s. The
integrated memory controller is expected to provide a significantly lower latency to memory
than the previous Core2-based quad-core processors—initial estimates are around 60 ns for
accesses to local memory, compared to 100 ns previously. This is in-line with the performance
provided by AMD quad-core processors.

Nahalem will support glueless multi-processing via a new processor-to-processor commu-
nication channel called QuickPath Interconnect (QPI). QPI serves a similar purpose as the
HyperTransport links on the AMD Opteron. Each Nahalem processor will include up to
four point-to-point QPI channels, each channel providing 12.8 GB/s of bandwidth in each
direction.

Forms of parallelism supported: ILP, SIMD, TLP, MLP, CLP

2.1.2.4 Examples

Table 2.1 provides a comparison of specific instances of the processor families described in
this section. The models were chosen to be roughly comparable to one another for a given
generation (e.g., the AMD dual-core and Intel dual-core processors are comparable models
from different vendors).

2.1.3 IBM

2.1.3.1 Power5

The IBM Power5 [16] processor contains two cores, each supporting two hardware threads.
SMT (Simultaneous Multi-threading) is employed to allow a mixture of non-conflicting in-
structions from a core’s two threads to be executed each clock cycle. Each core has a
dedicated L1 cache and both cores share a common L2 cache. An optional shared L3 cache
is provided on some platforms–the L3 cache controller and tag directory are on the Power5

18

chip while the L3 memory is off-chip. The Power5 includes an on-chip memory controller
that is connected to memory by two uni-directional buses operating at twice the DRAM fre-
quency. The read bus is 16 bytes wide and the write bus is 8 bytes wide. Using DDR2-533
memory, this results in 17.1 GB/s of read bandwidth and 8.5 GB/s of write bandwidth.

Each core has eight execution units, allowing up to eight instructions to be executed each
clock cycle. Instructions are issued out-of-order. Up to five instructions can be completed
and retired in-order each clock cycle. Since a single thread is unlikely to use all of the
Power5’s execution units each clock cycle due to limits in ILP, SMT is beneficial for many
workloads. LLNL has observed SMT performance benefit of -20% to +60% on a mix of
scientific applications on the Power5-based ASC Purple system–the sPPM and UMT2K
codes showed a benefit of 20-22%.1

SMT threads are exposed to the OS as virtual processors, meaning a single Power5 chip
appears to the OS as four CPUs. A unique capability of Power5 is SMT thread priorities.
Each SMT thread can be assigned one of eight priorities with higher priorities granting
greater access to the shared execution resources. It is unclear whether applications can set
their own priorities at user-level or if the OS must be involved. Additionally, the Power5
supports a single-threaded mode where all hardware resources are dedicated to a single
thread (e.g., rename registers, reorder buffers, issue queues). The OS can enter and exit
single-threaded mode dynamically at run-time by setting one thread’s priority to 0. This is
beneficial for applications that do not benefit from SMT.

Forms of parallelism supported: ILP, TLP, MLP, CLP

2.1.3.2 IBM Power6

The IBM Power6 [24] processor is the successor to the Power5. Like the Power5, it contains
two cores, each supporting two hardware threads with configurable priorities. Each core has
its own dedicated L1 cache and L2 caches. Like the Power5, there is an optional shared
L3 cache with on-chip controller and off-chip memory. Two on-chip memory controllers
together provide 16-byte read and 8-byte wide write paths to memory each cycle. When
operated at 3.2 GHz (800 MHz DDR2 DRAM), this provides 51.2 GB/s for reads and
25.6 GB/s for writes. Other changes include the addition of AltiVec support (i.e., short-
vector SIMD instructions) and a mostly in-order processor design, although floating point
instructions may execute out-of-order. Instruction completion bandwidth has been improved
to seven instructions per cycle, up from five in the Power5. Finally, error recovery has been
significantly improved by the addition of checkpoint and restart circuitry. When an error
occurs, checkpoint data is used to transparently retry an operation. If the error persists, the
checkpoint data can be moved to a spare-core in the system and restarted. It is not clear if
the OS needs to be involved in the process.

Forms of parallelism supported: ILP, SIMD, TLP, MLP, CLP

1https://computing.llnl.gov/tutorials/purple/

19

2.1.3.3 STI Cell Broadband Engine

The STI (Sony, Toshiba, IBM) Cell Broadband Engine [35] processor is a radical departure
from the other processors discussed in this section. Unlike the other processors, which use
relatively straight-forward replication of general-purpose cores, Cell is a heterogeneous chip
containing one general-purpose PowerPC core (PPU, PowerPC Processing Unit) and eight
DSP-like Synergistic Processor Units (SPU). An on-chip memory controller provides 25.6
GB/s of bandwidth to main memory. A normal operating system such as Linux runs on
the PPU while the SPUs are too simplistic to run an OS. Applications running on the PPU
off-load work onto the SPUs.

The SPUs deliver the bulk of the chip’s performance, but must be programed with a new
programming model that is much more constraining than what general-purpose processor
developers are accustomed to. Each SPU executes entirely out of a small (256 KB) on-chip
SRAM memory. While this results in very deterministic behavior, the disadvantage is that
data in main memory must be explicitly moved to and from the SPU’s memory using DMA
commands that are part of the SPU’s instruction set. Several efforts are underway to hide
or reduce this burden on application developers, but often at a cost of lower performance
and reduced flexibility.

Researchers have found the Cell to provide excellent performance and power efficiency
on several scientific computing kernels [39]. This is tempered by the need to essentially
create new implementations of the algorithms for the Cell, often using primitive tools and
assembly code. The researchers observed that once they passed the initially steep learning
curve, programming for the Cell was not that much more difficult than programming for a
modern cache-based superscalar processor. The Cell has the advantage that SPU programs
execute nearly deterministically, making performance tuning more straight-forward.

Forms of parallelism supported: SIMD, TLP, MLP, CLP, ALP

2.1.3.4 Examples

Table 2.2 provides a comparison of specific instances of the IBM and STI processor families
described in this section.

2.1.4 Sun

2.1.4.1 UltraSPARC T1

The Sun UltraSPARC T1 [20] is the first generation of Sun’s Niagara platform, which is tar-
geted at high throughput work-loads such as web servers and transaction processing rather
than single thread performance. Each UltraSPARC T1 processor contains eight cores, each
supporting four in-order hardware threads. Fine-grained multi-threading is used to switch

20

between threads on a per cycle basis with one thread per core capable of issuing one instruc-
tion each cycle. All cores on a chip share a single floating-point unit, making the processor
unattractive for high performance computing applications. The follow-on UltraSPARC T2
processor provides significantly improved floating-point support.

Forms of parallelism supported: TLP, MLP, CLP

2.1.4.2 Sun UltraSPARC T2

The UltraSPARC T2 [29] is the second generation of Sun’s Niagara platform. Each Ultra-
SPARC T2 processor contains eight simple in-order cores, each capable of supporting eight
hardware threads divided into two static groups of four threads each. Each core may issue
up to two integer instructions each clock cycle, one instruction from each of the core’s two
thread group. In contrast to the UltraSPARC T1, which contained one floating-point unit
that was shared by all cores, each core in the UltraSPARC T2 has its own dedicated floating-
point unit. Only one of a core’s threads may utilize the core’s floating-point unit each clock
cycle. Each core has a dedicated L1 cache and all cores share a common L2 cache. The
UltraSPARC T2 processor includes four on-chip FB-DIMM memory controllers, providing
an aggregate of 42.6 GB/s of read bandwidth and 21.3 GB/s of write bandwidth. Memory-
level parallelism and latency tolerance are provided by having many simultaneous in-order
threads accessing memory, rather than the out-of-order instruction scheduling and prefetch-
ing mechanisms that traditional server processors employ. Hardware threads are exposed to
the OS as virtual CPUs, resulting in 64-way parallelism. The architecture provides topology
information to the OS so that intelligent scheduling can be performed (e.g., distribute tasks
across cores first, then across thread groups).

Forms of parallelism supported: TLP, MLP, CLP

2.1.4.3 Examples

Table 2.3 provides a comparison of specific instances of the SUN processor families described
in this section.

2.2 Special-purpose Processors

The special-purpose processors described in this section are multi-core processors targeted at
specific application domains, such as embedded systems and high performance computing.
In contrast to the general-purpose processors described in Section 2.1, these processors have
a more narrow focus, are more customized for the intended usage, and in some cases require
a non-traditional programming model. Many are system-on-a-chip designs that integrate
more functionality than is typical for general-purpose processors, such as integrated network

21

Table 2.1. Comparison of x86 Multi-core Processors
AMD AMD Intel Intel

Opteron Opteron Xeon Xeon
1218HE 2347HE 5160 E5472

Cores 2 4 2 4
Threads/Core 1 1 1 1
Total OS Threads 2 4 2 4
ILP Y Y Y Y
SIMD Y Y Y Y
TLP Y Y Y Y
MLP Y Y Y Y
Heterogeneous Cores N N N N
Heterogeneous ISAs N N N N
Advanced Sync. Methods N N N N
Local Stores N N N N
Thread Priorities N N N N
On-chip Memory Ctrl(s). Y Y N N
MP NUMA Y Y N N
Shared Caches N Y Y Y
L1 Instruction 64KB x2 64KB x4 32KB x2 32KB x2
L1 Data 64KB x2 64KB x4 32KB x2 32KB x2
L2 (Unified) 1MB x2 512KB x4 4MB 6MB x2
L3 (Unified) N/A 2MB N/A N/A
Total On-chip Cache 2.25MB 4.5MB 4.125MB 6.125MB x2
Addr. Bits (virt/phys) 48/40 48/48 48/36 48/40
Page Sizes 4KB, 2MB 4KB, 2MB, 1GB 4KB, 2MB 4KB, 2MB
Frequency (GHz) 2.6 1.9 3 3
GFLOPS/Core 5.2 7.6 12 12
GFLOPS Total 10.4 30.4 24 48
Mem BW (GB/s) 12.8 10.6 10.6 12.8
Bytes/FLOP 1.23 .35 .44 .27
CMOS Process (nm) 90 65 65 45
Die Area (mm2) 199 283 144 2 x 107
Transistors (millions) 233 463 291 2 x 410
Package Pins 940 1207 771 771
Power (W TDP) 65 68 80 80
Released 2007 Q1 2007 Q4 2006 Q2 2007 Q4

22

Table 2.2. Comparison of IBM/STI Multi-core Processors
IBM IBM IBM STI

Power5+ Power6 Blue Gene/P Cell
Cores 2 2 4 1(PPC) + 8(SPE)
Threads/Core 2 2 1 2(PPC) + 2(SPE)
Total OS Threads 4 4 4 2
ILP Y Y Y (dual-issue) Y (PPC dual-issue)
SIMD N Y Y Y
TLP Y Y Y Y
MLP Y Y Y Y
Heterogeneous Cores N N N Y
Heterogeneous ISAs N N N Y
Advanced Sync. Methods Y Y N Y
Local Stores N N N Y
Thread Priorities Y Y N N
On-chip Memory Ctrl(s). Y Y Y Y
MP NUMA Y Y N/A Y
Shared Caches Y Y Y Y (PPC-only)
L1 Instruction 64K x2 64K x2 32K x4 32K (PPC-only)
L1 Data 32K x2 64K x2 32K x4 32K (PPC-only)
L2 (Unified) 1.875M 4M x2 2K x4 512K (PPC-only)
L3 (Unified) 36M (off-chip) 32M (off-chip) 8M N/A
Total On-chip Cache 2.06M 8.25M 8.26M .56M
Local Store N/A N/A N/A 256K x8 (SPE-only)
Total On-chip Memory 2.06M 8.25M 8.26M 2.56M
Addr. Bits (virt/phys) 64/40 64/40 32/32 64/42
Page Sizes 4K,64K, 4K,64K, 1K,4K,16K, 4K + Two of

16M,16G 16M,16G 64K,256K,1M (64K, 4M, 256M)
16M,256M

Frequency (GHz) 2.3 4.7 .85 3.2
GFLOPS/Core 9.2 18.8 3.4 6.4/PPC + 1.8/SPE
GFLOPS Total 18.4 37.6 13.6 20.8
Mem BW (GB/s) 17.05 50 13.6 25.6
Bytes/FLOP .93 1.33 1 1.23
CMOS Process (nm) 90 65 (+some 90) 90 90
Die Area (mm2) 243 341 173 235
Transistors (millions) 276 790 208 241
Package Pins 5370 7352 ? 3349
Power (W TDP) 170 100+ 16 40
Released 2005 Q4 2007 Q2 2007 Q4 2006 Q4

23

Table 2.3. Comparison of Sun Niagara Multi-core Proces-
sors

Sun Sun
UltraSPARC T1 UltraSPARC T2

Cores 8 8
Threads/Core 4 8
Total OS Threads 32 64
ILP N N
SIMD N N
TLP Y Y
MLP Y Y
Heterogeneous Cores N N
Heterogeneous ISAs N N
Advanced Sync. Methods N N
Local Stores N N
Thread Priorities N N
On-chip Memory Ctrl(s). Y Y
MP NUMA N/A N/A
Shared Caches Y Y
L1 Instruction 16K x8 16K x8
L1 Data 8K x8 8K x8
L2 (Unified) 3M 4M
L3 (Unified) N/A N/A
Total On-chip Cache 3.2M 4.2M
Addr. Bits (virt/phys) 48/40 48/48
Page Sizes 8K,64K, 8K,64K,

4M,256M 4M,256M
Frequency (GHz) 1.2 1.4
GFLOPS/Core 1 FPU per chip 1.4
GFLOPS Total 1.2 11.2
Mem BW (GB/s) 25.6 42.6
Bytes/FLOP 21.33 3.8
CMOS Process (nm) 90 65
Die Area (mm2) 379 342
Transistors (millions) 279 503
Package Pins 1933 1831
Power (W TDP) 79 123
Released 2005 Q4 2007 Q4

24

interfaces and PCI controllers. This typically results in much lower power utilization than
state-of-the-art general purpose processors.

The remainder of this section briefly describes several special-purpose multi-core proces-
sors that are available from a number of vendors. In general these processors exhibit more
architectural diversity than the general-purpose processors due to the higher level of design
freedom afforded by targeting specific applications. Successful architectural ideas from these
processors are likely to eventually migrate to general-purpose processors.

2.2.1 Cray XMT/Threadstorm

The Cray XMT [12] system is a massively multi-threaded architecture designed to perform
well on applications with little locality and abundant fine-grained parallelism, i.e., those that
perform extremely poorly on distributed memory systems made up of commodity proces-
sors [37]. Each XMT Threadstorm processor supports 128 hardware threads (streams) each
consisting of 32 general purpose registers, a program counter, and other state necessary to
manage a thread. The processor is able to switch between threads on a cycle by cycle basis.
When a thread blocks due to a high latency operation (e.g., a memory load or network
operation), the processor switches to another thread rather than wait for the operation to
complete. As long as there is at least one of the 128 threads ready to execute, the proces-
sor will not stall. This scheme affords a very high degree of latency tolerance compared to
commodity processors, in effect mitigating the memory wall [40].

The XMT system scales to 8192 Threadstorm processors, each providing 1.5 GFLOPS
peak at 500 MHz. The XMT system leverages the architecture and packaging developed
by Cray and Sandia for the Red Storm system, which was productized by Cray as the XT
series (XT3, XT4, XT5). The Threadstorm processor is socket compatible with the AMD
Opteron, the processor used in Red Storm, and directly connects to the SeaStar2 network
interface and router ASIC that was developed for Red Storm. An XMT processor board is
virtually identical to a Red Storm board except that the AMD Opterons are replaced with
Threadstorm processors.

2.2.2 IBM BlueGene/P

IBM has developed a custom system-on-a-chip processor for the BlueGene/P [23] supercom-
puter product. The processor integrates four PowerPC 450 cores, a memory controller, and
a network interface and mesh router on a single chip. Each core is capable of executing four
FLOPs per clock. At 850 MHz, each core provides 3.4 GFLOPS. This is low in comparison
to state-of-the-art x86 processors such as the Intel Core2, which provides 12 GFLOPS per
core at 3 GHz; however, the BlueGene/P uses significantly less power due to its low clock
frequency. Each quad-core processor consumes approximately 16 W, compared to 65+ W
for typical x86 general-purpose processors. A (peak) peta-flop BG/P system would contain
73,530 quad-core processors and 294,120 cores total.

25

The BlueGene/P processor uses 32-bit PowerPC 450 cores, which are cores targeted at
and designed for the embedded processor market. All four cores on the processor are cache
coherent with one another, so shared memory programming models such as POSIX Threads
and OpenMP are possible. This is an improvement from the BlueGene/L processor, which
did not support standard shared-memory programming model due to its non-cache-coherent
cores.

2.2.3 IBM Cyclops-64

IBM and partners are currently developing a supercomputer based on a custom processor
called Cyclops-64 [9] that contains 80 cores, each supporting two threads of execution and
one shared floating-point unit. At a clock frequency of 500 MHz, each processor will provide
an aggregate of 80 GFLOPs (2 flops per FPU per clock). The processor chip also contains an
integrated memory controller, network interface, and mesh router. All on-chip components,
including cores, on-chip memory, and network interface ports, are arranged in a “dance-hall”
configuration connected by an on-chip 96-port 7-stage non-blocking crossbar switch. Each
core contains a small amount of SRAM that can be configured to either be local to the core
(a scratchpad memory), global to the processor (accessible to all cores on the chip), or some
combination of the two. The processor architecture is unique in that the physical memory
hierarchy is exposed directly to the application programmer. On-chip scratchpad memory,
on-chip global memory, and off-chip memory are explicitly exposed. There is no support for
virtual memory, although a simple segment-based protection scheme is provided to protect
privileged system software such as the OS kernel.

2.2.4 SiCortex

SiCortex is a startup company that is focused on creating power efficient and high perfor-
mance small to mid-range Linux clusters. The company has custom engineered a system-on-
a-chip processor for this system that integrates six 64-bit MIPS cores, a memory controller,
a high-performance network interface, a Gigabit Ethernet network interface, and a PCI Ex-
press controller on a single chip. Each chip (socket) contains everything necessary for a
compute node except for the memory, which are commodity DDR2 DIMM parts. Each node
consisting of a processor and 4 GB of memory consumes approximately 12 W. While each
core has relatively low performance (1 GFLOP), the bytes to FLOP ratio is quite good
at approximately 1.8 (six cores share two DDR2 channels, 10.6 GB/s total with PC5300
DIMMs). Currently the largest SiCortex system contains 972 nodes (5832 cores) in a single
cabinet. It may be possible to construct larger multi-cabinet systems in the future, although
hardware modifications would likely be required.

26

2.2.5 ClearSpeed e620 Accelerator

ClearSpeed is a startup company that is creating 64-bit floating point accelerators for high
performance computing applications. The ClearSpeed CSX600 processor incorporates 96
processing elements (cores) with 6 KB of local scratchpad memory per core. Additionally,
there is an on-chip 128 KB scratchpad memory that is accessible by all processing elements.
The processor provides 33 GFLOPS of sustained double precision floating point and con-
sumes approximately 10 W of power. The processor is designed to operate as an add-on
accelerator to a general-purpose processor and is not capable of running stand-alone. Clear-
Speed’s e620 product incorporates two CSX600 processors on an add-in PCIe card designed
to plug into a standard server. The board provides 66 GFLOPS sustained on DGEMM and
has an average power dissipation of 33 W.

The CSX600 processing elements operate in SIMD data-parallel [14] fashion and are user
programmable. A suite of libraries is provided that implement many common HPC oper-
ations (e.g., BLAS), which often allows developers to accelerate their applications without
having to resort to low-level custom programming of the CSX600’s SIMD units.

2.2.6 Tilera Tile64

Tilera is a startup company that is commercializing the technology developed by the MIT
RAW [36] [38] research project. Its first product, TILE64, is a “tiled” multi-core processor
consisting of 64 cores (tiles) arranged in a mesh network topology. Each chip integrates
the processor cores with four DDR2 memory controllers, two 10-gigabit Ethernet interfaces,
a PCIe interface, and a software-configurable “Flexible I/O” interface. The cores in the
TILE64 can be partitioned into cache-coherent groups where each group can run a full
operating system such as SMP Linux. Multiple simultaneously running operating system
images are supported and hardware protection mechanisms isolate the partitions from one
another.

The Tilera64 cores do not include hardware support for floating point operations, making
them unattractive for scientific computing. The processor is targeted at embedded appli-
cations such as video encoding and network packet processing. According to the TILE64
product brief, each 64-core processor provides up to 192 billion operations per second. When
operating at 700 MHz, power consumption is 15-22 W with all cores running an application.

2.2.7 SPI Storm-1

SPI (Stream Processors Inc.) is a startup company that is commercializing the STREAM
processor technology developed at Stanford University as part of the Imagine [8], Merri-
mac [7], and other related projects. Like Tilera, the company is initially targeting the
embedded market with its first product, the STORM-1 STREAM processor. STORM-1

27

consists of a general-purpose MIPS core coupled with a multi-lane STREAM execution unit.
The MIPS core runs an embedded version of Linux and manages the STREAM execution
unit, which does not run an operating system.

In STREAM programming, the task of the programmer is to break the problem into
streams of data and define a graph of small self-contained kernels that operate on the streams.
The model is similar to vector programming except that instead of applying one simple
operation to the vector operands at a time (e.g., add, multiply) more complex operations
can be constructed in the kernels under full programmer control. The STREAM compiler
generates a dependency graph and then creates an efficient schedule of kernel executions on
the available STREAM execution lanes. Fundamentally the STREAM approach is aimed at
making efficient use of the available bandwidth by operating on large streams of data, rather
than scalar operands. This can lead to much greater power efficiency and latency tolerance
for applications that are well-suited to this model.

The STORM-1 SP16HP-G220 is currently the highest performing model, operating at 700
MHz with 16 lanes providing 224 GMACS (billion multiply-accumulates per second). The
STORM-1 processor family does not appear to support floating-point operations, making it
unattractive for scientific computing. However, nothing about the STREAM model precludes
floating-point support so it may be added in future processor generations. The Merrimac
project at Stanford proposed to construct a supercomputer aimed at scientific computing
using STREAM processors with floating point support.

2.2.8 Ambric Am2045

Ambric is a startup company that is developing single-chip MPPA (massively parallel pro-
cessor arrays) processors and a message passing style programming model to go along with
it. MPPAs are essentially an MPP on a chip, where many processors with distributed mem-
ories communicate via peer-to-peer message passing rather than through a single shared
memory. The company is focused on the embedded market and is positioning itself as a
general-purpose replacement for DSPs, FPGAs, and other application-specific devices.

Ambric’s initial product, the Am2045 processor, incorporates 336 32-bit RISC cores and
336 2 KB memories. Each core may execute its own program and communicates with
other cores over a configurable on-chip multi-level interconnection network. Cores may be
programmed in Java or assembly language. The Am2045 operates at 350 MHz and provides
a peak of 60 GMACS (billion multiply-accumulates per second). The processor does not
appear to support floating-point operations, making it unattractive for scientific computing.

28

2.3 Future Multi-core Hardware Trends

It is widely expected that Moore’s Law [28] will continue for at least another decade. This
means that the number of transistors available to chip designers will continue to double at a
rate of approximately once every two years. Novel technologies such as 3-D stacking and chip-
to-chip interconnects may actually increase the rate of transistor growth. However, single
processor core performance is not expected to grow significantly due to power constraints and
a lack of viable architectural improvements to pursue. Most of the single core performance
gains have already been realized.

The extra transistors will likely be used to integrate more processor cores along with
more functionality in each processor. Graphics, network interfaces, routers, system memory,
and special-purpose accelerators are all candidates to be integrated into general-purpose
processors. The remaining transistors will be used to increase the number of cores per
processor. If the number of cores increases with Moore’s Law, thousand core processors
are roughly sixteen years away. It is likely that the core population will be comprised of
heterogeneous cores, with some large cores aimed at single thread performance and an army
of small and simple cores aimed at highly parallelizable workloads. Research has shown that
a heterogeneous mix of cores can have significant power and performance advantages [3].
Determining the right mix of cores for a given application is a challenging optimization
problem [33].

As more cores are integrated into each processor, connecting them becomes a problem.
Shared bus-based schemes begin to break down after a few cores. As more cores are added,
point-to-point on-chip interconnection networks become necessary. Efficiently mapping ap-
plications to the intra-chip topology is an important research area going forward. It is unclear
what the right mix of system software and application developer involvement is for creating
the mapping. Not only will the cores themselves be arranged in a topology, but on-chip
memory will also be distributed and have non-uniform access (NUMA) behavior.

Finally, novel architectural capabilities such as hardware support for transactional mem-
ory [13] and advanced synchronization mechanisms [21] [34] [42] [22] are being pursued to
make multi-threaded programming easier and more efficient. A significant problem with
threaded programming is its inherent non-determinism and the need to be very careful when
accessing shared resources [25]. Many decades of research in parallel computing have failed
to make parallel programming easy. With massive levels of parallelism being introduced into
mainstream computing, there is now more motivation than ever for exploring simpler and
less error-prone parallel hardware and programming models.

29

30

Chapter 3

Programming Models for Parallel
Scientific Applications on Multi-core

As part of the study on required Light Weight Kernel functionality, it is important to under-
stand how scientific applications achieve parallelism on massively parallel processor (MPP)
supercomputers. Current and evolving programming models are identified. We begin with
a short discussion of the parallelization mechanisms that are applicable to scientific applica-
tions on MPPs. Then we discuss specific software products that are important to support.

3.1 Parallelization Mechanisms

This section is not a tutorial on programming models. It simply identifies the ones appro-
priate for this study. The Wikipedia web site provides an adequate starting point should
the reader desire more information on parallel programming models in general.1

3.1.1 Vector-like Instructions

In the simplest form, a sequential application can be parallelized by the compiler without any
explicit instructions from the application. The compiler can take advantage of the specific
processor characteristics. For example, when targeting an AMD Opteron, the compiler
can make use of the SSE (Streaming SIMD [Single Instruction, Multiple Data] Extensions)
instructions when implementing application loops.

Processor support required: ILP, MLP, SIMD

OS requirement: none

1http://en.wikipedia.org/wiki/Parallel programming model

31

3.1.2 Vector Instructions

Some MPPs may contain vector processors, which can concurrently operate on multiple data
elements. The compiler will employ the vector instructions without explicit directives from
the application. Optimum use of the vectors capabilities is dependent on the structure of
the application code, however.

Processor support required: MLP, SIMD

OS requirement: none

3.1.3 Implicit Threading

From an application perspective, the next level of “free” parallelism is done by the system
libraries. It can launch threads to parallelize a section of code that the library developer has
identified as a key kernel of computational logic. While threading can be implemented on
a processor that has only one computational unit, to achieve true parallelism, the hardware
must provide multiple concurrent threads of computation. The hardware support might be in
the form of 1) multiple hardware threads within a core (called Hyper-Threading Technology
(HTT) on Intel Xeon and Pentium 4 chips and Simultaneous Multithreading (SMT) for
upcoming chips), 2) multiple cores within a single socket, 3) multiple tightly-coupled sockets,
or 4) or combination of the first three.

Processor support required: CLP, MLP, SMT, TLP

OS requirement: light weight thread support or active threads; thread-safe libraries;
libraries that use threading capabilities to achieve parallelism; support for HTT functionality

3.1.4 Multi-Threading with OpenMP

The OpenMP API can be used by an application (or libraries) to explicitly identify threading
opportunities in the code. OpenMP “consists of a set of compiler directives, library routines,
and environment variables that influence run-time behavior.”[1] When run in serial mode, the
compiler directives are ignored. The threads make use of shared memory features. OpenMP
addresses single-process parallelism only.

Processor support required: CLP, SMT, TLP, MLP

OS requirement: shared memory capabilities within a process; POSIX thread support
and/or compliance with compiler generated or OpenMP-generated function calls

32

3.1.5 Explicit Message Passing with MPI

This programming model has proven highly scalable and highly successful for scientific cal-
culations for over a decade. It is used on clusters of computers, MPP supercomputers, and
even on desktops with multiple CPUs. Independent images of an application run as separate
processes on each CPU. The CPUs need some form of communication, which is typically
implemented over a network protocol, but can use on-node inter-process communication
mechanisms. Each process performs its portion of a calculation independently until it must
share data with some or all of its cooperating processes. At that point, explicit messages are
passed. Both the sender and receiver plan on this communication and the recipient must
provide instructions on where to put the message. This is called two-sided message pass-
ing. The MPI-2 standard also includes APIs for a relatively heavy-weight one-sided message
communication mechanism.

Processor support required: CLP and/or TLP, MLP

OS requirement: efficient network stack; matching capabilities for incoming messages;
inter-process, intra-node communication mechanism

3.1.6 Partitioned Global Address Spaces (PGAS)

Like MPI, applications using the PGAS programming model assume multiple independent
CPUs with a communication mechanism between them. However, PGAS makes heavy use
of one-sided communication mechanisms that usually have significantly lower overhead than
two-sided MPI communication. One-sided communication mechanisms allow an initiator to
access a remote CPU’s memory without the explicit involvement of the application running
on the remote CPU. Upon receipt of an incoming message, the protocol processing engine
(e.g., the OS kernel or an intelligent NIC) is provided sufficient information so that the
receiving application need not be involved in completing the communication. The imple-
mentation can be done in a number of ways depending on using available OS and hardware
features.

OS requirement: native get/put/increment support; shared memory between processes;
threads

3.2 Software Products Gaining Popularity in Parallel

Programming

In this section, we look at some specific software products that have achieved a level of
community adoption. Figure 3.1 presents a representative set of them in a block diagram
organized by their “closeness” to the application. It also shows the OS features upon which

33

Figure 3.1. Example Software Components Used in Par-
allel Scientific Applications

they rely.

3.2.1 PGAS Languages

While Figure 3.1 does not depict them all, the PGAS languages gaining the most attention
are: UPC [5], CAF, Chapel, Titanium, X10, Fortress, and BEC. They are expressive lan-
guages that lend themselves well to capturing a computational algorithm [27] [41]. While this
is often beneficial from a programmer productivity standpoint, the trade-off is that perfor-
mance and scalability are often lower than expected. An important performance-enhancing
feature common to most PGAS languages is the ability for the programmer to identify local
(private) data and global (shared, possibly remote) data [11]. Careful management of local
and global data access is typically required to obtain good performance.

34

Sandia National Laboratories has recently released a virtual shared memory (a.k.a.
PGAS) programming model (or support tool) called BEC2, which is implemented as a
lightweight runtime library plus a simple extension to the C language to allow shared vari-
ables. Compared with other PGAS languages/models, BEC has built-in support for un-
structured applications that require high-volume, random, and fine-grained communication.
For these types of applications, BEC-based implementations are very straight-forward. By
contrast, other PGAS models/languages are roughly comparable to MPI in terms of code
complexity. Data from initial application testing has demonstrated the effectiveness of the
BEC approach. Compared to MPI implementations of the applications tested, the BEC
codes had comparable (or slightly better) performance and scalability, and many times (5-
10x) fewer source lines of code.

3.2.2 User Friendly Languages

The current PGAS languages tend to be a superset of a traditional language (e.g., C, C++,
Fortran, and Java.). There is another set of languages that grew out of the tools area:
Python, Perl, and Matlab. Originally these languages were used primarily for scripting and
one-time use (quick and dirty) jobs. With time, they have shown themselves to be useful
for calculations. As CPUs increased in speed, their efficiency was also sufficient. It is not
clear that they will parallelize sufficiently for MPPs, but that concern is based on thought
experiments, rather than actual tests.

3.2.3 Libraries

In addition to careful language selection to facilitate physical model implementation, the
application developer can take advantage of third party libraries (TPLs). This section ex-
plores TPLs that enable distributed memory and/or distributed communication. It does
not address the entire spectrum of scientific libraries that can provide useful functionality
such as numeric algorithms, mesh manipulation, or load balancing. The broader spectrum
of libraries do not have any specific OS requirements and are not addressed.

3.2.3.1 SHMEM

SHMEM refers to a collection of APIs that provide one-sided put/get style access to remote
memory in a distributed memory system. The API provides point-to-point, atomic, and
collective operations. There is no official standard for the API. The first SHMEM library
appeared on the Cray T3D computer in the 1990’s and continues to help solve important
classes of problems requiring high performance computation. SHMEM libraries have been
available on a few platforms [26]. The HPVM (High Performance Virtual Machine) project3

2http://www.cs.sandia.gov/BEC
3http://www-csag.ucsd.edu/projects/hpvm.html

35

provided solutions for clusters running Windows NT or Linux. The most widely used imple-
mentations of the SHMEM API are those provided by Cray, Inc. [15]

3.2.3.2 Global Arrays

The Global Arrays library allows every process to independently access a distributed array
structure. Explicit library calls are used to access portions of the array. However, these
library calls are only available for the explicitly created global array. The calls cannot be
used on arbitrary memory locations [31]. Global Arrays offers a compromise between explicit
message passing programming models and shared memory models.

3.2.3.3 ARMCI

ARMCI (Aggregate Remote Memory Copy Interface) [30] is a PGAS style library intended
to be used by higher-level system libraries, such as the Global Arrays library. While ARMCI
may be used directly by application developers, that was not the intent of its designers.
ARMCI provides platform independent remote memory access functionality. Each imple-
mentation takes advantage of the system hardware and software features available on the
platform. Operations to the same remote location are guaranteed to complete in order.

3.2.3.4 GASNet Extended API

The “upper” level of the GASNet library builds upon the lower level, which is described
in Section 3.2.4.1. GASNet stands for Global Address Space Networking. The upper level
provides more functionality and is solely dependent upon the lower layer. Therefore, the
upper level is highly portable once the lower level is ported. The extended API provides
remote memory access operations and collective operations.4

3.2.4 Networking Software

Networking software for parallel applications must balance the need for scalable high per-
formance, low overhead, and yet provide reliable and deterministic results. The need exists
for a thin, reasonably portable API that is independent of the underlying operating system
and hardware. Three such specifications are described in this section.

4http://gasnet.cs.berkeley.edu/

36

3.2.4.1 GASNet

GASNet is based heavily upon the Active Messages 1.1 specification [6] and is implemented
directly on top of each individual network architecture. Like the extended API, its API is
visible to higher level software. This allows for more sophisticated uses than what may be
feasible with the machine-independent extended API.

3.2.4.2 Active Messages

“Active Messages represent a RISC approach to communication, providing simple primitives,
rather than solutions, which expose the full hardware performance to higher layers. Active
Messages are intended to serve as a substrate for building libraries that provide higher-level
communication abstractions and for generating communication code from a parallel-language
compiler, rather than for direct use by programmers.” [2]

3.2.4.3 Portals

The Portals message passing interface can be implemented on top of a native networking
layer (e.g. sockets, Infiniband verbs, RDMA) or implemented directly in the network. For
the Cray XT3/XT4/XT5h line, Portals is the native networking layer [4] and is implemented
via a combination of hardware and firmware. Version 3.3 of the specification is best suited for
higher-level explicit message passing protocols such as MPI. It is lightweight, connectionless,
and highly scalable.

3.3 Shared Libraries

A discussion on an optional-use OS feature such as shared libraries may seem inappropriate
for a section dedicated to programming models. However, their role in high performance
computing remains an outgoing debate. Because of the polarization on the issue, we have
explored the feature in some depth. While not a programming model, some developers used
this feature as a foundation for achieving flexibility and run-time decision making.

On a standard desktop system, a dynamically linked application offers several advantages.
The latest copy of a shared library can be accessed when the application is run. By contrast,
statically linked applications use the version of the library that was available when the
application was built. Explicit action, in the form of a relink, is required to update the
libraries used by the application. Secondly, a shared library image can be shared across all
applications running on the system. This can relieve memory pressure, since the same text is
accessed by all. Lastly, although more of an implementation detail than a pro or con, shared
libraries are often memory mapped from disk to minimize the memory usage and swap space.
Only the portions of the library that are being accessed need to reside in memory.

37

For the MPP community, shared libraries are a blessing and a curse. The first advantage
mentioned above can be very important. Software library developers are often distinct from
the application developers. Their release cycles may not be synchronized. Library developers
may not be able to notify application developers or users of critical updates to the library.
Additionally, application developers may rely on the dynamic invocation of a library only if
the input test specification requires it. If an application is statically linked, the sum of all
possible libraries may make for a very large application binary. However, there is negative
aspect to this real-time update feature of shared libraries. An application may have passed
regression and acceptance testing with one version of shared libraries. Problems may appear
without warning due to an update in a shared library that uses a different release schedule.
An application that ran fine one day, may not the next.

The second advantage of shared libraries is rarely helpful in the MPP and cluster envi-
ronments with distributed memory. Each node has its own memory from which a program
executes. In this case, shared libraries cannot be shared by different applications or even
the same application running on a different node in the cluster. Not only is it no longer
an advantage, but it can also become a disadvantage. Either each node must have a copy
of the library on its local disk or the memory mapping will inefficiently swap to a remote
disk. Typically, cluster systems will maintain copies of system libraries on each node’s local
disk. Application-specific libraries must somehow be copied over to each node on which the
application is running. If they are not copied locally, remote accesses will severely degrade
the performance of the application. Swapping of library text sections will occur over the
cluster’s or MPP’s network. Currently, the degradation due to remote swapping typically
becomes visible when using 500 or more nodes.

The remainder of this section explores the research to provide a scalable shared library
access mechanism when the library image is not available on a local disk.

3.3.1 Performance Impact of Dynamic Access to a Library

We begin with metrics. In order to understand why dynamic linking is an issue, we studied
the performance of each node in an application accessing a shared file (e.g., a library).
Scientific parallel programs typically follow the same code paths and then synchronize at
specific points during the computation. Given this assumption, we further assume that each
node will request a portion of the shared file at nearly the same time. If these accesses are
independent of one another (i.e., not collective), significant serialization will occur as each
node attempts to read the file and bring all or some of its contents into the node’s memory.
The serialization of requests will lead to poor performance that worsens with increasing node
count.

Continuing with the premise that a significant number of the nodes need to access the
shared library, we studied the viability of using a collective operation for the access. In this
scheme, one node reads the file and then distributes its contents to the other nodes using
a broadcast over the high-speed network. The experimental results shown in Figure 3.2

38

Figure 3.2. Performance Comparison of Independent
Reads versus Single Read followed by Broadcast

indicate that this improves performance and scalability significantly.

The independent reads take much longer than the single read followed by a broadcast.
This data was collected on Red Storm using a Lustre file system. Even Lustre cannot
parallelize the independent accesses since the file resides on exactly one disk. Every node
must wait its turn for the data. A disadvantage of the broadcast approach is the constraint
that all (or a pre-determined subset of) nodes must cooperate in a collective operation. This
is not the default behavior for current dlopen() implementations. Most applications prefer
portability and do not wish to include special code for a particular system, unless absolutely
necessary.

3.3.2 Loadtime Linking of Dynamic Libraries

Light weight kernels, such as the Catamount operating system make design choices that
can make dynamic libraries difficult to implement, even if a scalable solution is found. For
example, the Catamount OS has no knowledge of file systems, so it cannot store shared
libraries for possible future use by applications. Given this constraint, we looked at a solution
that addresses only the first advantage described above. (Dynamic linking accesses the latest
version of the shared library.) At job launch time, all shared libraries are collected and loaded
onto each compute node in a scalable fashion.

39

3.3.3 Overview of UNIX Dynamic Load Process

We begin by briefly describing what happens when a dynamically linked application is exe-
cuted on full-featured UNIX or Linux system. When an application binary is invoked, the
application’s ELF image is memory mapped (via mmap()). The shared object called ld.so
is launched as the application. The “real” application information (e.g., the load address)
is passed in as arguments to ld.so. The file ld.so checks the load address of the application
and relocates itself if necessary. The ld.so parses the application and loads all libraries. It
then processes the relocation entries and calls the init function of each library. At this point,
ld.so starts the application.

The ld.so image is primarily self-contained code and does not call other libraries. It
uses open(), close(), write(), mmap(), and munmap() system calls to communicate with the
operating system kernel.

3.3.4 Overview of Catamount Dynamic Load Process

Armed with this understanding of the functional flow of a dynamic load process, we proto-
typed a scalable implementation using the Catamount LWK. This section assumes a general
understanding of the Catamount architecture. See [18] for more details.5

There are no changes to the command line options for the application launcher, yod.
Yod automatically detects that the application specified on the command line is dynamic
by checking for the ELF program segment of type PT INTERP. This segment points to the
dynamic library loader ld.so to use. Yod loads ld.so and the application program into memory
before ld.so is launched. This was done by extending the load protocol to the compute nodes.
With Catamount, a static application is loaded in two phases: text followed by the data.
A dynamic application is loaded in three phases: application ELF image, followed by ld.so
text, followed by ld.so data. The application ELF image uses the same “I have section”
followed by “Send me section” protocol that is used for the text and data sections of ld.so.
The application ELF image is loaded into low heap space and heap base is incremented.

For statically linked application launches, yod sends a “start program” message to the
first PCT. This message is fanned out to the rest of the PCTs. When the leaf nodes’ PCTs
receive the message, they start the application. The application then sends an “app started”
message to its parent node PCT, which then starts the application on that node. This results
in a fan-in synchronization back to yod.

This approach does not work when a dynamically linked application is launched because
ld.so will need to take part in collective operations (for gathering the shared libraries) before
cstart() is called. To facilitate this, the PCT starts the application (i.e. ld.so) when
it receives the “start program” message during the fan-out. This allows ld.so to join in
collective loading of libraries.

5available at http://www.cs.sandia.gov/ smkelly/papers.html

40

ld.so parses the application ELF image and loads the necessary shared libraries by per-
forming the following actions on each shared library:

1. dl open()

2. dl read(), read the first page in the ELF image so it can validate the ELF file and read
the program section headers

3. dl mmap(), a region of the memory large enough to contain the library’s text, data,
and bss

4. dl mmap(), the text portion of the file into the memory region

5. dl mmap(), the data portion of the file into the memory region

6. dl mmap(), the bss into the memory region

7. dl close()

Note that any given time, there is only one file open.

The Catamount version of dl open() loads the ELF image into a temporary buffer posi-
tioned at the end of the application heap. The Catamount version of dl mmap() allocates
memory from the beginning of application heap and increments the application’s heap base
as needed. If dl mmap() is called to map a file into memory, it copies the requested portion
from the temporary file buffer.

A critical aspect of the scenario described above is how a library image gets into the
temporary buffer. The library load protocol is basically the same as the one used to load the
text/data sections. It is an “I have data”, “Send me data” protocol which two exceptions:
1. During the application load phase, the node is running completely in the context of the
PCT. During the library load phase, the node is running in the context of the ld.so which
does not yet have portals support. Instead, it traps to the PCT which then communicates
with yod. 2. During the application load phase, the PCT knows the size of the text and
data segments. During the library load phase, the size of each library is only known by the
service node. This means that the base (node 0) PCT needs to send a file stat request to
yod. Yod replies with “I have N bytes of data”. This message kicks off the “I have data”,
“Send me data” fan-out.

When the application traps to the PCT for a library read, it blocks waiting for the read
to complete. Once the PCT has received the library and has fanned it out to all children, it
unblocks ld.so.

Once the library loads are complete, the application still needs to participate in the “app
started” fan-in protocol. This is done by blocking the application until the non-leaf node
PCTs get the “app started” message. The application blocks in crt0.o by making a trap to
the PCT signaling that it is ready to call cstart().

41

The role of crt0.o in Catamount is to call cstart() with pointers to the PCB and NIDPID
map. For a static application, these pointers are on the stack which is set up by the PCT.
For dynamic applications, these pointers are obtained by traps to the PCT. This change was
needed because the PCT does not directly launch the dynamic application as it does a static
application.

The Catamount version of ld.so was obtained from the uClibc distribution. ld.so inter-
faces with the system via a limited set of system calls: dl open(), dl mmap, etc. Other
than this set of system calls, the ld.so source code was unmodified. ld.so was compiled in the
uClibc distribution tree with minimal changes to the Makefiles. The Catamount versions
of dl open(), dl read() and dl mmap() are custom and limited to just the functionality
needed for ld.so.

One final implementation detail is to describe the application image. A dynamic appli-
cation differs from a static application in two ways: first, it is linked differently, and second,
the pre-main() initialization code in crt0.o is different. Conspicuously absent is a difference
in cstart(). It is the same for static and dynamic binaries. Given the complexity of Cata-
mount’s cstart(), this is an important feature. The only real difference in application linking
is that the dynamic library loader (ld.so) must be specified as a link option.

3.3.5 Results of Executing a Dynamically Linked Binary

We ran HPL with a shared ACML library and with a static link. There were no performance
differences when using a 28-node test system. We ran both in single-core (default used by
yod) and dual-core (specified VN argument to yod) modes. Any performance difference
would have come from the extra level of indirection in resolving entry points.

mjleven@boot_cage2:~> yod -sz all xhpl-dyn

==

T/V N NB P Q Time Gflops

--

WR05C2C8 40000 64 7 4 349.73 1.220e+02

--

||Ax-b||_oo / (eps * ||A||_1 * N) = 0.0180851 PASSED

||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) = 0.0165362 PASSED

||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) = 0.0032472 PASSED

==

mjleven@boot_cage2:~> yod -sz all xhpl

==

T/V N NB P Q Time Gflops

--

WR05C2C8 40000 64 7 4 350.34 1.218e+02

42

--

||Ax-b||_oo / (eps * ||A||_1 * N) = 0.0180851 PASSED

||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) = 0.0165362 PASSED

||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) = 0.0032472 PASSED

==

mjleven@boot_cage2:~> yod -VN -sz all xhpl-dyn

==

T/V N NB P Q Time Gflops

--

WR05C2C8 50000 64 8 7 350.26 2.379e+02

--

||Ax-b||_oo / (eps * ||A||_1 * N) = 0.0059334 PASSED

||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) = 0.0139478 PASSED

||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) = 0.0027270 PASSED

==

mjleven@boot_cage2:~> yod -VN -sz all xhpl

==

T/V N NB P Q Time Gflops

--

WR05C2C8 50000 64 8 7 349.79 2.382e+02

--

||Ax-b||_oo / (eps * ||A||_1 * N) = 0.0059334 PASSED

||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) = 0.0139478 PASSED

||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) = 0.0027270 PASSED

==

43

44

Chapter 4

Conclusion

The diverse set of multi-core hardware and diverse set of programming models presented in
this report are indicative of the general uncertainty in both mainstream and scientific com-
puting. In the area of processors, it is unclear how to best mix heavy-weight, light-weight,
and special-purpose cores for particular application domains. System software must support
this heterogeneity and provide mechanisms for efficiently managing it. Similarly, system
software must be agile and able to adapt to special-purpose processors. Power constraints
make it likely that future capability systems will increasingly rely on embedded processor
technology that is often not well-suited for use with mainstream commodity operating sys-
tems.

In the area of programming models, the “MPI-everywhere” approach that has been em-
ployed for more than a decade is expected to be strained on future platforms. It is unclear
what the best approach is for managing many million-way parallelism and complex, hier-
archical compute nodes. Multi-level programming models (e.g., MPI+OpenMP) have not
been very successful in the past on multi-chip SMP systems due to productivity and perfor-
mance issues. They are being re-examined in the context of single-chip multi-core processors
with the hope of better exploiting intra-chip locality. System software must provide the
functionality, such as support for threading and shared memory, needed to perform this
experimentation. The complex memory management policies provided by general-purpose
operating systems often hinder this experimentation, lead to sub-optimal performance, or
both.

We are using the knowledge gained from the investigations summarized in this report to
design an open-source lightweight kernel operating system targeting future capability plat-
forms made up of multi-core processors. A goal of this effort is to create an agile system that
is able to adapt to and efficiently support whatever multi-core hardware and programming
models gain acceptance by the community.

45

46

References

[1] http://en.wikipedia.org/wiki/openmp.

[2] http://now.cs.berkeley.edu/am/activemessages.html.

[3] Michela Becchi and Patrick Crowley. Dynamic thread assignment on heterogeneous
multiprocessor architectures. In CF ’06: Proceedings of the 3rd conference on Computing
frontiers, pages 29–40, 2006.

[4] Ron Brightwell, Trammell Hudson, Kevin T. Pedretti, Rolf Riesen, and Keith Under-
wood. Implementation and performance of Portals 3.3 on the Cray XT3. In Proceedings
of the 2005 IEEE International Conference on Cluster Computing, September 2005.

[5] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction
to upc and language specification. Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences, May 1999.

[6] D. Culler, K. Keeton, L. T. Liu, A. Mainwaring, R. Martin, S. Rodrigues, K. Wright,
and C. Yoshikawa. Generic active message interface specification v1.1. Technical report,
U.C. Berkeley Computer Science Technical Report, November 1994.

[7] William J. Dally, Patrick Hanrahan, Mattan Erez, Timothy J. Knight, Franois Labont,
Jung-Ho Ahn, Nuwan Jayasena, Ujval J. Kapasi, Abhishek Das, Jayanth Gummaraju,
and Ian Buck. Merrimac: Supercomputing with Streams. In Supercomputing Conference
(SC2003), November 2003.

[8] William J. Dally, Ujval J. Kapasi, Brucek Khailany, Jung Ho Ahn, and Abhishek Das.
Stream processors: Programmability with efficiency. ACM Queue, 2:52–62, 2004.

[9] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Toward a software
infrastructure for the cyclops-64 cellular architecture. In Proceedings of the 20th In-
ternational Symposium on High-Performance Computing in an Advanced Collaborative
Environment (HPCS’06), volume 0, page 9, Los Alamitos, CA, USA, 2006. IEEE Com-
puter Society.

[10] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza, S. Mey-
ers, E. Fang, and R. Kumar. An Integrated Quad-Core Opteron Processor. In Solid-State
Circuits Conference (ISSCC), 2007.

[11] T. El-Ghazawi, F. Cantonnet, Y. Yao, and R. Rajamony. Developing an optimized upc
compiler for future architectures. Technical report, IDA Center for Computing Sciences,
2005.

47

[12] John Feo, David Harper, Simon Kahan, and Petr Konecny. ELDORADO. In CF ’05:
Proceedings of the 2nd Conference on Computing Frontiers, pages 28–34, 2005.

[13] M.P. Herlihy and J.E.B. Moss. Transactional Memory: Architectural Support for Lock-
free Data Structures. In Proceedings of the 1993 International Symposium on Computer
Architecture (ISCA), 1993.

[14] W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Communications of
the ACM, 29:1170–1183, 1986.

[15] Cray Inc. Cray XT(TM) Series Programming Environment User’s Guide, October 2007.

[16] Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 Chip: a Dual-Core
Multithreaded Processor. IEEE Micro, 24(2):40–47, Mar-Apr 2004.

[17] David Kanter. Inside Nahalem: Intel’s Future Processor and System
(http://www.realworldtech.com/page.cfm?ArticleID=RWT040208182719).

[18] Suzanne M. Kelly and Ron B. Brightwell. Software architecture of the light weight
kernel catamount. In Cray User Group Annual Technical Conference, May 2005.

[19] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmet, and Pat Conway. The AMD
Opteron Processor for Multiprocessor Servers. IEEE Micro, 23:66–76, March-April 2003.

[20] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-way
multithreaded sparc processor. IEEE Micro, 25(2):21–29, 2005.

[21] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient Synchronization of Multi-
processors with Shared Memory. ACM Transactions on Programming Languages and
Systems (TOPLAS), 10(4):579–601, 1988.

[22] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: Architectural
Support for Fine-Grained Parallelism on Chip Multiprocessors. In ISCA ’07: Proceed-
ings of the 34th Annual International Symposium on Computer Architecture, 2007.

[23] Gary Lakner and Carlos Sosa. Evolution of the IBM System Blue Gene Solution. IBM,
2007.

[24] H.G. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti,
W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM POWER6 Microarchitecture.
IBM Journal of Research and Development, 2007.

[25] Edward A. Lee. The problem with threads. Technical Report UCB/EECS-2006-1,
Electrical Engineering and Computer Sciences, University of California at Berkeley,
January 2006.

[26] Quadrics Ltd. Shmem programming manual. Technical report, Quadrics Supercomput-
ers World Ltd., June 2001.

48

[27] Rusty Lusk. The hpcs languages issues and challenges. In PMUA 2005 Workshop in
programming models for HPCS ultra-scale applications, June 2005.

[28] Gordon E. Moore. Cramming More Components onto Integrated Circuits. Electronics,
38:114–117, 1965.

[29] U.G. Nawathe, M. Hassan, K.C. Yen, A. Kumar, A. Ramachandran, and D. Greenhill.
Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip.
IEEE Journal of Solid-State Circuits, 43:6–20, 2008.

[30] J. Nieplocha and J. Ju. Armci: A portable aggregate remote memory copy interface.
Technical report, Pacific Northwest National Laboratory, 2000.

[31] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global arrays: a
portable ”shared-memory” programming model for distributed memory computers. In
Proceedings of the 1994 ACM/IEEE conference on Supercomputing, Novmeber 1994.

[32] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Maria Ruiz
Varela, Rolf Riesen, and Philip C. Roth. Modeling the impact of checkpoints on next-
generation systems. In MSST ’07: Proceedings of the 24th IEEE Conference on Mass
Storage Systems and Technologies, pages 30–46, Washington, DC, USA, 2007. IEEE
Computer Society.

[33] JoAnn M. Paul and Brett H. Meyer. Amdahl’s Law Revisited for Single Chip Systems.
International Journal of Parallel Programming, 35(2):101–123, 2007.

[34] Jack Sampson, Rubén González, Jean-Francois Collard, Norman P. Jouppi, and Mike
Schlansker. Fast Synchronization for Chip Multiprocessors. ASM SIGARCH Computer
Architecture News, 33(4):64–69, 2005.

[35] STI. Cell Broadband Engine Programming Handbook, Version 1.0. STI, April 2006.

[36] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben
Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf,
Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant
Agarwal. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architec-
ture for ILP and Streams. In Proceedings of International Symposium on Computer
Architecture, June 2004.

[37] Keith D. Underwood, Megan Vance, Jonathan Berry, and Bruce Hendrickson. Analyzing
the scalability of graph algorithms on eldorado. In IPDPS ’07: Parallel and Distributed
Processing Symposium, pages 1–8, March 2007.

[38] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee,
Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb,
Saman Amarasinghe, and Anant Agarwal. Baring it all to Software: Raw Machines.
IEEE Computer, pages 86–93, September 1997.

49

[39] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine A. Yelick. The potential of the cell processor for scientific computing. In
Proceedings of the Third Conference on Computing Frontiers, pages 9–20, Ischia, Italy,
May 2006.

[40] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the
obvious. Computer Architecture News, 23:20–24, 1995.

[41] K. Yelick, D. Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta, Jason Duell,
Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands, Costin Iancu, Amir
Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, and Ton Wen. Productivity
and performance using partitioned global address space languages. In Parallel Symbolic
Computation (PASCO 07) London Canada, July 2007.

[42] Weirong Zhu, Vugranam C Sreedhar, Ziang Hu, and Guang R. Gao. Synchronization
State Buffer: Supporting Efficient Fine-Grain Synchronization on Many-Core Archi-
tectures. In ISCA ’07: Proceedings of the 34th Annual International Symposium on
Computer Architecture, pages 35–45, 2007.

50

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (1 electronic)

51

52

v1.28

