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Summary

In this talk, we will. ..
» Briefly review the capabilities of the Xeon Phi coprocessor.

» Present a not-so-common case study: Thread-Level
Speculation (TLS).

» Describe our software-based TLS solution (ATLaS).

» Show what happens when running ATLaS in the Xeon Phi.

» Enumerate conclusions and discuss future work.

Evaluating the Xeon Phi platform in the context of Software TLS

27



Intel Xeon Phi in a nutshell

» Coprocessor launched in 2012.

» Can run an OS by itself, but still needs a host computer.
» Composed of up to 61 four-way SMT cores.

> Interconnected by a high-speed bidirectional ring.

Core Core Core Core
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Intel Xeon Phi: Pros and cons

» Pros:

» It acts as a shared-memory multiprocessor.

» Standard parallel programming models (OpenMP, MPI,
OpenCL) can be used.

» Uses Intel 64-bits architecture with 512-bits-wide FP SIMD
instructions.

» Excellent memory bandwidth (240 GB/s vs. 51.2 GB/s of our
AMD Opteron SM system).

» Cons:

> In-order execution.

» Modest clock speed.

» If SIMD instructions are not heavily used, no so many
computational units to overcome these limitations.
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How to use the Intel Xeon Phi

Two ways:
» Native execution Once an OS is installed, log into the
system, compile and run the parallel application natively.
» Offloading from the host Compile the code in the host

system, using software extensions in the source code to
offload tasks from the host to the Xeon Phi.

» OpenMP example: #pragma offload target{mic}
» Variables exchange should be declared explicitly, with in(),
out () or inout () clauses.
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How to use the Intel Xeon Phi

Two ways:

» Native execution Once an OS is installed, log into the
system, compile and run the parallel application natively.
» Offloading from the host Compile the code in the host

system, using software extensions in the source code to
offload tasks from the host to the Xeon Phi.

» OpenMP example: #pragma offload target{mic}
» Variables exchange should be declared explicitly, with in(),
out () or inout () clauses.
Our goal: to evaluate the Xeon Phi capabilities when running
a software-based Thread-Level Speculation (TLS) system.
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Thread-Level Speculation (TLS)

Parallelization with OpenMP

for (i=0; i<MAX; i++) {
b = func(i);
v[i]l = b * a[i];

}

(a) Original loop

#pragma omp parallel for \
private (i,b) shared (a,v)
for (i=0; i<MAX; i++) {

b = func(i);

v[i] = b * a[il;

}

(b) Loop parallelized with OpenMP directives
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Thread-Level Speculation (TLS)

What happens if the loop may present dependence

violations?

for (i=0; i<MAX; i++) {
b = func(i);
if (b==k)
v[i] = v[i-b];
else
v[i]l = b * a[il;
}

Loop not safely parallelizable
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Thread-Level Speculation (TLS)

Aims to execute in parallel fragments of code without
requiring compile-time analysis.

Iterations are divided in blocks and optimistically executed in
parallel, hoping that no dependence violations will appear.

In software-based TLS, original code is augmented with

function calls that monitors the parallel execution at runtime.

Offending threads (that have consumed a value before being
produced by a predecessor thread) are dynamically stopped
and re-started with correct values.

Consistency with sequential semantics is ensured by the
runtime system.

Suitable for shared-memory systems.
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The ATLaS framework

» ATLaS! is a software-based, TLS framework that extends
OpenMP functionalities to allow the parallelization of loops
that may present dependences between iterations.

» ATLaS allow the speculative management of scalar variables
and data structures, and can handle accesses through pointer
arithmetic.

» Documentation and software download:

atlas.infor.uva.es

1!An OpenMP Extension that Supports Thread-Level Speculation,
Aldea, Estebanez, Llanos, Gonzalez-Escribano, IEEE TPDS, 2015.
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Speculative parallelization using ATLaS

for (i=0; i<MAX; i++) {
b = func(i);
if (b==k)
v[i] = v[i-b]l;
else
v[i] = b * a[il;

}

(a) Loop not parallelizable safely

#pragma omp parallel for \
private (i,b) shared (a,k) \
speculative(v)

for (i=0; i<MAX; i++) {

b = func(i);
if (b==k)

v[i] = v[i-b]l;
else

v[i]

b * alil;

}

(b) Loop parallelizable using ATLaS
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The ATLaS compile phase

» At compile time, the ATLaS GCC compiler plug-in replaces
accesses to speculative variables with calls to speculative
functions.

» Example: Let a, b and c be three variables labeled as

speculative:
Original code Augmented code
#pragma omp. . #pragma omp. ..
speculatlve (a b,c)

for (...) { for (...) {
a = 9; specstore (&a,sizeof (a),9);
b = 11.7%2; specstore (&b, sizeof (b),23.4);
lhs = c; specload(&c,sizeof (c) ,&lhs);

} }
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TLS: An example

» Suppose that the SV vector was labeled as speculative.
» Index x is not known at compile time.

Thread 1 (non spec) Thread 2
(iter. 1, x = 1) (iter. 2, x = 1)

Thread 3 Thread 4 (most-spec)
(iter. 3, x = 2) (iter. 4, x = 2)

t1 LocalVarl t2
3 :‘S\;ixL = LocalVar2 JU
Tt t4 Localvarl = SV[x]
s
6 (\SV[xl}: LocalvVar2 6

... 17 + Localvarl = SV[x]
8 LocalVarl = SV[x} el T

el "7 19 1-sV[x])= LocalVar2
110 4=SV[x])= Localvar2

Time
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TLS: Speculative loads

» Suppose that the SV vector was labeled as speculative.
> Index x is not known at compile time.

Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)
(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

t0
t1 - LocalvVari, sV 2
B sVixD = tocalvar2
% - Localvarl = SV[x]
6 "Sfl:[:xil= LocalVar2 ® 6

17 LocalVarl \=/‘Srv[x\]
18 LocalVarl = SV[x) e

9 SV[x] = LocalVar2

10 4 8V[x)= Localyarz

-
Time
Y S5 Speculative load: Most recent value retrieval

3
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TLS: Speculative stores (no violations)

» Suppose that the SV vector was labeled as speculative.
» Index x is not known at compile time.
Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)
t0 Speculative store + dependence detection .
t L+:alVar1‘:: sV t2 -
3 :é\;ixly = LocalVar2 R

4 LofalVarl = SV[x]

, QI T
16 —-{SV[x])= LocalVar2 t6

17 LocalVarl =/S\;ix]
8 Localvarl %‘sv[g]\, bt

9 SV[x]1= Localjar2
t10 i‘sv[;q}: Localyar2

-
Time

v 53 Speculative load: Most recent value retrieval
<
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TLS: Speculative stores (squash)

» Suppose that the SV vector was labeled as speculative.
» Index x is not known at compile time.
Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)
t0 Speculative store + dependence detection .
t L+:alVar1‘:: sV t2 -
3 :é\;ixly = LocalVar2 R

t4 - Lofalvarl = SV[xI +

, QI Tt5
16 —-{SV[x])= LocalVar2 t6

17 LocalvVarl =/‘S;ix]
8 LofalvVarl %‘sv[g]\,

19 Localfar2
t10 i‘sv[;q}: Localyar2
-~
Time
v Speculative load: Most recent value retrieval
< <
< <
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TLS: Commitment of shared variables

» Suppose that the SV vector was labeled as speculative.
> Index x is not known at compile time.

Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)
(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

t0 Speculative store + dependence detection .

t Ln{calVarl( ‘svix] t2 -

Var2

18 4 sVIx]) = Local

t7 Localvarl =

LogalVarl =’\/’S [}]1

19 )= LocalVar2
{8V[x])= LocalYar2

< Y

3

Time In-order commit of data from correctly-executed blocks
v Speculative load: Most recent value retrieval
< <
< <
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The ATLaS runtime system

Most-spec
User-labeled
speculative
variables i Sliding window
chara float b . .
STATE Running Done Running Free
double ¢ Pointer to versioncopy |
3288 Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer ~ Data  Pointer Version Pointer ~ Data  Pointer Version
to ref. size  tolocal state to ref. size  tolocal state
copy version Pointer ~ Data  Pointer Version copy version
to ref. size  tolocal state
al b1 copy version a3 b3
6] [dsse7 "

Version copy data structures

c2 a2
[18.997 ] 128215 |
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The ATLaS runtime system

Most-spec
User-labeled
speculative
variables i Sliding window
chara float b . .
STATE Running Done Running Free
double ¢ Pointer to versioncopy |
3288 Slot 1 Slot 2 Slot 3 Slot 4
Id
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer ~ Data  Pointer Version Pointer ~ Data  Pointer Version
to ref. size  tolocal state to ref. size tolocal state
copy version Pointer ~ Data  Pointer Version copy version
to ref. size  tolocal state
al b1 copy version a3 b3
6] [dsse7 " " 2
18.997 | 128.215 |

Version copy data structures
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The ATLaS runtime system

Most-spec
User-labeled
speculative
variables i Sliding window
chara float b . .
STATE Running Done Running Free
double ¢ Pointer to verflioncopy |
32.88 —
Slot 1 Slot 2 Slot 3 Slot 4
14 Al
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer ~ Data  Pointer Version Pointer ~ Data  Pointer Version
to ref. size  tolocal state to ref. size  tolocal state
copy version Pointer ~ Data  Pointer Version copy version
to ref. size  tolocal state
b1 copy version a3 b3

at
[o] [H8.997 ]

Version copy data structures

b2 a2

c2
[18.997 ] 128215 |
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The ATLaS runtime system

Most-spec
User-labeled
speculative
variables i Sliding window
chara float b . .
STATE Running Done Running Free
double ¢ Pointer to versioncopy |
8 Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer ~ Data  Pointer Version Pointer ~ Data  Pointer Version
to ref. size  tolocal state to ref. size tolocal state
copy version Pointer ~ Data  Pointer Version copy version
to ref. size tolocal state
al b1 copy version a3 b3
6] [dsse7 " " 2
Version copy data structures [18997 ] [ 128215 ]
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ATLaS transition state diagram

Spec. load / Spec. store

Modified
(MOD)
Spec.
store
[ Not Accessed ]
Spec. load Spec.
load
Exposed Loaded
(EXPLD)
Spec.
store
Exp. Loaded and Updated
(ELUP)

Spec. load / Spec. store
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Evaluating ATLaS running on Xeon Phi

Benchmarks considered
» Three benchmarks representative of real-world problems:
» 2D-DT (Delaunay Triangulation)
» 2D-Hull (Convex Hull) with three different input sets.
» TREE
» They present a significant squash-and-restart rate due to
dependences (up to 15%), challenging STLS systems.
» One additional synthetic benchmark, FAST, to measure TLS
overheads.
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Results #1: Scalability

Fast Tree Delaunay
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» Scalability is better for the Xeon Phi, thanks to its superior
bandwidth.
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Results #2: Using
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> In general, performance degrades when launching more
threads than processors: the 4-way SMT offered by the Xeon
Phi is not useful in this case.
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Results #3: Absolute performance
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» True, our benchmarks do not benefit from vectorization.

» The Xeon Phi platform is consistently five times slower than
our Intel Xeon shared-memory system (OOQ execution, higher
clock speed).
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Conclusions
» The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just € 1500!

» However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

> The scalability is really good: The problem are the processors.

» We are aware that our parallel code does not need vectorization.
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>

The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just € 1500!

However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

The scalability is really good: The problem are the processors.

We are aware that our parallel code does not need vectorization.

Our "Wish List” for future releases of the Xeon Phi regarding to
TLS:

» Faster computational units.

» Qut-of-order execution.

» Some hardware support for TLS would help a lot.
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» Some hardware support for TLS would help a lot.

Future work: to use the remaining threads to help in the execution
of the threads in charge of each chunk of speculative iterations.
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Conclusions

>

The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just € 1500!

However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

The scalability is really good: The problem are the processors.
We are aware that our parallel code does not need vectorization.

Our "Wish List” for future releases of the Xeon Phi regarding to
TLS:

» Faster computational units.
» Qut-of-order execution.
» Some hardware support for TLS would help a lot.

Future work: to use the remaining threads to help in the execution
of the threads in charge of each chunk of speculative iterations.

You are invited to try ATLaS atlas.infor.uva.es
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