
Evaluating the capabilities of the Xeon Phi platform in the
context of software-only, thread-level speculation

Alvaro Estebanez, Diego R. Llanos,
Arturo Gonzalez-Escribano

Trasgo Computing Research Group
University of Valladolid, Spain

HLPP 2015, Pisa, Italy, July 2nd, 2015

1 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Summary

In this talk, we will. . .

I Briefly review the capabilities of the Xeon Phi coprocessor.

I Present a not-so-common case study: Thread-Level
Speculation (TLS).

I Describe our software-based TLS solution (ATLaS).

I Show what happens when running ATLaS in the Xeon Phi.

I Enumerate conclusions and discuss future work.

2 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Intel Xeon Phi in a nutshell
I Coprocessor launched in 2012.
I Can run an OS by itself, but still needs a host computer.
I Composed of up to 61 four-way SMT cores.
I Interconnected by a high-speed bidirectional ring.

PCIe
Client
Logic

GDDR
MC

GDDR
MC

GDDR
MC

GDDR
MC

4-threads
Core

L2

4-threads
Core

L2

TDTD

4-threads
Core

L2

4-threads
Core

L2

TDTD

4-threads
Core

L2

4-threads
Core

L2

TDTD

4-threads
Core

L2

4-threads
Core

L2

TDTD

3 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Intel Xeon Phi: Pros and cons

I Pros:
I It acts as a shared-memory multiprocessor.
I Standard parallel programming models (OpenMP, MPI,

OpenCL) can be used.
I Uses Intel 64-bits architecture with 512-bits-wide FP SIMD

instructions.
I Excellent memory bandwidth (240 GB/s vs. 51.2 GB/s of our

AMD Opteron SM system).

I Cons:
I In-order execution.
I Modest clock speed.
I If SIMD instructions are not heavily used, no so many

computational units to overcome these limitations.

4 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

How to use the Intel Xeon Phi

Two ways:

I Native execution Once an OS is installed, log into the
system, compile and run the parallel application natively.

I Offloading from the host Compile the code in the host
system, using software extensions in the source code to
offload tasks from the host to the Xeon Phi.

I OpenMP example: #pragma offload target{mic}
I Variables exchange should be declared explicitly, with in(),

out() or inout() clauses.

Our goal: to evaluate the Xeon Phi capabilities when running
a software-based Thread-Level Speculation (TLS) system.

5 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

How to use the Intel Xeon Phi

Two ways:

I Native execution Once an OS is installed, log into the
system, compile and run the parallel application natively.

I Offloading from the host Compile the code in the host
system, using software extensions in the source code to
offload tasks from the host to the Xeon Phi.

I OpenMP example: #pragma offload target{mic}
I Variables exchange should be declared explicitly, with in(),

out() or inout() clauses.

Our goal: to evaluate the Xeon Phi capabilities when running
a software-based Thread-Level Speculation (TLS) system.

5 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Thread-Level Speculation (TLS)

Parallelization with OpenMP

#pragma omp parallel for \
private (i,b) shared (a,v)

for (i=0; i<MAX; i++) { for (i=0; i<MAX; i++) {
b = func(i); b = func(i);

v[i] = b * a[i]; v[i] = b * a[i];

} }

(a) Original loop (b) Loop parallelized with OpenMP directives

6 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Thread-Level Speculation (TLS)

What happens if the loop may present dependence
violations?

for (i=0; i<MAX; i++) {
b = func(i);

if (b==k)

v[i] = v[i-b];

else

v[i] = b * a[i];

}

Loop not safely parallelizable

7 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Thread-Level Speculation (TLS)

I Aims to execute in parallel fragments of code without
requiring compile-time analysis.

I Iterations are divided in blocks and optimistically executed in
parallel, hoping that no dependence violations will appear.

I In software-based TLS, original code is augmented with
function calls that monitors the parallel execution at runtime.

I Offending threads (that have consumed a value before being
produced by a predecessor thread) are dynamically stopped
and re-started with correct values.

I Consistency with sequential semantics is ensured by the
runtime system.

I Suitable for shared-memory systems.

8 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

The ATLaS framework

I ATLaS1 is a software-based, TLS framework that extends
OpenMP functionalities to allow the parallelization of loops
that may present dependences between iterations.

I ATLaS allow the speculative management of scalar variables
and data structures, and can handle accesses through pointer
arithmetic.

I Documentation and software download:

atlas.infor.uva.es

1An OpenMP Extension that Supports Thread-Level Speculation,
Aldea, Estebanez, Llanos, Gonzalez-Escribano, IEEE TPDS, 2015.

9 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Speculative parallelization using ATLaS

#pragma omp parallel for \
private (i,b) shared (a,k) \
speculative(v)

for (i=0; i<MAX; i++) { for (i=0; i<MAX; i++) {
b = func(i); b = func(i);

if (b==k) if (b==k)

v[i] = v[i-b]; v[i] = v[i-b];

else else

v[i] = b * a[i]; v[i] = b * a[i];

} }

(a) Loop not parallelizable safely (b) Loop parallelizable using ATLaS

10 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

The ATLaS compile phase

I At compile time, the ATLaS GCC compiler plug-in replaces
accesses to speculative variables with calls to speculative
functions.

I Example: Let a, b and c be three variables labeled as
speculative:

Original code Augmented code

#pragma omp... #pragma omp...

speculative (a,b,c)

for (...) { for (...) {
a = 9; specstore(&a,sizeof(a),9);

b = 11.7*2; specstore(&b,sizeof(b),23.4);

lhs = c; specload(&c,sizeof(c),&lhs);

} }

11 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

TLS: An example

I Suppose that the SV vector was labeled as speculative.

I Index x is not known at compile time.

t0

LocalVar1 = SV[x]t1

t3

t2

t4

t6

t5

t8

t10

t6

t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

SV[x] = LocalVar2

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

Thread 3Thread 2 Thread 4 (most−spec)Thread 1 (non spec)

Time

12 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

TLS: Speculative loads

I Suppose that the SV vector was labeled as speculative.

I Index x is not known at compile time.

t0

LocalVar1 = SV[x]t1

t3

t2

t4

t6

t5

t8

t10

t6

t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

SV[x] = LocalVar2

Speculative load: Most recent value retrieval

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

Thread 3Thread 2 Thread 4 (most−spec)Thread 1 (non spec)

Time

13 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

TLS: Speculative stores (no violations)

I Suppose that the SV vector was labeled as speculative.

I Index x is not known at compile time.

t0

LocalVar1 = SV[x]t1

t3

t2

t4

t6

t5

t8

t10

t6

t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

SV[x] = LocalVar2

Speculative store + dependence detection

Speculative load: Most recent value retrieval

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

Thread 3Thread 2 Thread 4 (most−spec)Thread 1 (non spec)

Time

14 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

TLS: Speculative stores (squash)

I Suppose that the SV vector was labeled as speculative.

I Index x is not known at compile time.

t0

LocalVar1 = SV[x]t1

t3

t2

t4

t6

t5

t8

t10

t6

t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

SV[x] = LocalVar2

Speculative store + dependence detection

Speculative load: Most recent value retrieval

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

Thread 3Thread 2 Thread 4 (most−spec)Thread 1 (non spec)

Time

15 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

TLS: Commitment of shared variables

I Suppose that the SV vector was labeled as speculative.

I Index x is not known at compile time.

t0

LocalVar1 = SV[x]t1

t3

t2

t4

t6

t5

t8

t10

t6

t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

SV[x] = LocalVar2

Speculative store + dependence detection

Speculative load: Most recent value retrieval

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

Thread 3Thread 2 Thread 4 (most−spec)Thread 1 (non spec)

Time In−order commit of data from correctly−executed blocks

16 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

The ATLaS runtime system

1

Non−spec window slot

3

Most−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

7

a3 b3

25.8

&a 1 EXPLD

MOD&b 4 &b3

&a3

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

8&c ELUP&c2

&b 4 EXPLD&b2

&a 1 &a2 MOD

Running Done Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative
variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4

Version copy data structures

Slot 1 Slot 2 Slot 3 Slot 4

17 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

The ATLaS runtime system

1

Non−spec window slot

3

Most−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

7

a3 b3

25.8

&a 1 EXPLD

MOD&b 4 &b3

&a3

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

8&c ELUP&c2

&b 4 EXPLD&b2

&a 1 &a2 MOD

Running Done Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative
variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4

Version copy data structures

Slot 1 Slot 2 Slot 3 Slot 4

18 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

The ATLaS runtime system

1

Non−spec window slot

3

Most−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

7

a3 b3

25.8

&a 1 EXPLD

MOD&b 4 &b3

&a3

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

8&c ELUP&c2

&b 4 EXPLD&b2

&a 1 &a2 MOD

Running Done Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative
variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4

Version copy data structures

Slot 1 Slot 2 Slot 3 Slot 4

19 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

The ATLaS runtime system

1

Non−spec window slot

3

Most−spec window slot

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

18.997

b1

9

a1

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

7

a3 b3

25.8

&a 1 EXPLD

MOD&b 4 &b3

&a3

18.997

b2 c2

128.215 7

a2

Pointer
to ref.
copy

Data
size

Pointer
to local
version

Version
state

8&c ELUP&c2

&b 4 EXPLD&b2

&a 1 &a2 MOD

Running Done Running FreeSTATE

Pointer to version copy

Sliding window
float bchar a

double c

9 23.4

32.88

speculative
variables

User−labeled

&a

&b &b1 MOD

EXPLD&a11

4

Version copy data structures

Slot 1 Slot 2 Slot 3 Slot 4

20 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

ATLaS transition state diagram

Exp. Loaded and Updated

(ELUP)

Exposed Loaded

(EXPLD)

Not Accessed

Modified

(MOD)

store

load

store

Spec.

Spec.

Spec.

Spec. load

Spec. load / Spec. store

Spec. load / Spec. store

21 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Evaluating ATLaS running on Xeon Phi

Benchmarks considered
I Three benchmarks representative of real-world problems:

I 2D-DT (Delaunay Triangulation)
I 2D-Hull (Convex Hull) with three different input sets.
I TREE

I They present a significant squash-and-restart rate due to
dependences (up to 15%), challenging STLS systems.

I One additional synthetic benchmark, FAST, to measure TLS
overheads.

22 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Results #1: Scalability

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

S
p

e
e

d
u

p

Number of threads

Fast

Intel Xeon Phi
Heracles

 0

 5

 10

 15

 20

 10 20 30 40 50 60

S
p

e
e

d
u

p

Number of threads

Tree

Intel Xeon Phi
Heracles

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60

S
p

e
e

d
u

p

Number of threads

Delaunay

Intel Xeon Phi
Heracles

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60

S
p

e
e

d
u

p

Number of threads

2D-Hull-Disc

Intel Xeon Phi
Heracles

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60

S
p

e
e

d
u

p

Number of threads

2D-Hull-Square

Intel Xeon Phi
Heracles

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60

S
p

e
e

d
u

p

Number of threads

2D-Hull-Kuzmin

Intel Xeon Phi
Heracles

I Scalability is better for the Xeon Phi, thanks to its superior
bandwidth.

23 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Results #2: Using all threads of the Xeon Phi

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200

S
p
e
e
d
u
p

Number of threads

Fast

Intel Xeon Phi

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200

S
p
e
e
d
u
p

Number of threads

Tree

Intel Xeon Phi

 0

 2

 4

 6

 8

 10

 50 100 150 200

S
p
e
e
d
u
p

Number of threads

Delaunay

Intel Xeon Phi

 0

 1

 2

 3

 4

 5

 50 100 150 200

S
p
e
e
d
u
p

Number of threads

2D-Hull-Disc

Intel Xeon Phi

 0

 2

 4

 6

 8

 10

 50 100 150 200

S
p
e
e
d
u
p

Number of threads

2D-Hull-Square

Intel Xeon Phi

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200

S
p
e
e
d
u
p

Number of threads

2D-Hull-Kuzmin

Intel Xeon Phi

I In general, performance degrades when launching more
threads than processors: the 4-way SMT offered by the Xeon
Phi is not useful in this case.

24 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Results #3: Absolute performance

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

Number of threads

Fast

Heracles, sequential
Intel Xeon Phi

Heracles
 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

Number of threads

Tree

Heracles, sequential
Intel Xeon Phi

Heracles
 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

Number of threads

Delaunay

Heracles, sequential
Intel Xeon Phi

Heracles

 0.1

 1

 10

 100

 0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

Number of threads

2D-Hull-Disc

Heracles, sequential
Intel Xeon Phi

Heracles

 0.1

 1

 10

 100

 0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

Number of threads

2D-Hull-Square

Heracles, sequential
Intel Xeon Phi

Heracles

 0.1

 1

 10

 100

 0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

Number of threads

2D-Hull-Kuzmin

Heracles, sequential
Intel Xeon Phi

Heracles

I True, our benchmarks do not benefit from vectorization.

I The Xeon Phi platform is consistently five times slower than
our Intel Xeon shared-memory system (OOO execution, higher
clock speed).

25 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Conclusions

I The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just e 1 500!

I However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

I The scalability is really good: The problem are the processors.

I We are aware that our parallel code does not need vectorization.

I Our “Wish List” for future releases of the Xeon Phi regarding to
TLS:

I Faster computational units.
I Out-of-order execution.
I Some hardware support for TLS would help a lot.

I Future work: to use the remaining threads to help in the execution
of the threads in charge of each chunk of speculative iterations.

I You are invited to try ATLaS atlas.infor.uva.es

26 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Conclusions

I The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just e 1 500!

I However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

I The scalability is really good: The problem are the processors.

I We are aware that our parallel code does not need vectorization.

I Our “Wish List” for future releases of the Xeon Phi regarding to
TLS:

I Faster computational units.
I Out-of-order execution.
I Some hardware support for TLS would help a lot.

I Future work: to use the remaining threads to help in the execution
of the threads in charge of each chunk of speculative iterations.

I You are invited to try ATLaS atlas.infor.uva.es

26 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Conclusions

I The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just e 1 500!

I However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

I The scalability is really good: The problem are the processors.

I We are aware that our parallel code does not need vectorization.

I Our “Wish List” for future releases of the Xeon Phi regarding to
TLS:

I Faster computational units.
I Out-of-order execution.
I Some hardware support for TLS would help a lot.

I Future work: to use the remaining threads to help in the execution
of the threads in charge of each chunk of speculative iterations.

I You are invited to try ATLaS atlas.infor.uva.es

26 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Conclusions

I The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just e 1 500!

I However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

I The scalability is really good: The problem are the processors.

I We are aware that our parallel code does not need vectorization.

I Our “Wish List” for future releases of the Xeon Phi regarding to
TLS:

I Faster computational units.
I Out-of-order execution.
I Some hardware support for TLS would help a lot.

I Future work: to use the remaining threads to help in the execution
of the threads in charge of each chunk of speculative iterations.

I You are invited to try ATLaS atlas.infor.uva.es

26 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

Evaluating the capabilities of the Xeon Phi platform in the
context of software-only, thread-level speculation

Alvaro Estebanez, Diego R. Llanos,
Arturo Gonzalez-Escribano

Trasgo Computing Research Group
University of Valladolid, Spain

HLPP 2015, Pisa, Italy, July 2nd, 2015

27 / 27
Evaluating the Xeon Phi platform in the context of Software TLS

N

