Evaluating the capabilities of the Xeon Phi platform in the
context of software-only, thread-level speculation

Alvaro Estebanez, Diego R. Llanos,
Arturo Gonzalez-Escribano
Trasgo Computing Research Group
University of Valladolid, Spain

HLPP 2015, Pisa, ltaly, July 2nd, 2015

W di

Grupo Trasgo Departamento de
S Informatica . . -
Universidad de Valladolid Universidad deValladolid

Evaluating the Xeon Phi platform in the context of Software TLS

/ 27

Summary

In this talk, we will. ..
» Briefly review the capabilities of the Xeon Phi coprocessor.

» Present a not-so-common case study: Thread-Level
Speculation (TLS).

» Describe our software-based TLS solution (ATLaS).

» Show what happens when running ATLaS in the Xeon Phi.

» Enumerate conclusions and discuss future work.

Evaluating the Xeon Phi platform in the context of Software TLS

27

Intel Xeon Phi in a nutshell

» Coprocessor launched in 2012.

» Can run an OS by itself, but still needs a host computer.
» Composed of up to 61 four-way SMT cores.

> Interconnected by a high-speed bidirectional ring.

Core Core Core Core

Evaluating the Xeon Phi platform in the context of Software TLS

/ 27

Intel Xeon Phi: Pros and cons

» Pros:

» It acts as a shared-memory multiprocessor.

» Standard parallel programming models (OpenMP, MPI,
OpenCL) can be used.

» Uses Intel 64-bits architecture with 512-bits-wide FP SIMD
instructions.

» Excellent memory bandwidth (240 GB/s vs. 51.2 GB/s of our
AMD Opteron SM system).

» Cons:

> In-order execution.

» Modest clock speed.

» If SIMD instructions are not heavily used, no so many
computational units to overcome these limitations.

Evaluating the Xeon Phi platform in the context of Software TLS

27

How to use the Intel Xeon Phi

Two ways:
» Native execution Once an OS is installed, log into the
system, compile and run the parallel application natively.
» Offloading from the host Compile the code in the host

system, using software extensions in the source code to
offload tasks from the host to the Xeon Phi.

» OpenMP example: #pragma offload target{mic}
» Variables exchange should be declared explicitly, with in(),
out () or inout () clauses.

Evaluating the Xeon Phi platform in the context of Software TLS

27

How to use the Intel Xeon Phi

Two ways:

» Native execution Once an OS is installed, log into the
system, compile and run the parallel application natively.
» Offloading from the host Compile the code in the host

system, using software extensions in the source code to
offload tasks from the host to the Xeon Phi.

» OpenMP example: #pragma offload target{mic}
» Variables exchange should be declared explicitly, with in(),
out () or inout () clauses.
Our goal: to evaluate the Xeon Phi capabilities when running
a software-based Thread-Level Speculation (TLS) system.

Evaluating the Xeon Phi platform in the context of Software TLS

Thread-Level Speculation (TLS)

Parallelization with OpenMP

for (i=0; i<MAX; i++) {
b = func(i);
v[i]l = b * a[i];

}

(a) Original loop

#pragma omp parallel for \
private (i,b) shared (a,v)
for (i=0; i<MAX; i++) {

b = func(i);

v[i] = b * a[il;

}

(b) Loop parallelized with OpenMP directives

Evaluating the Xeon Phi platform in the context of Software TLS

/ 27

Thread-Level Speculation (TLS)

What happens if the loop may present dependence

violations?

for (i=0; i<MAX; i++) {
b = func(i);
if (b==k)
v[i] = v[i-b];
else
v[i]l = b * a[il;
}

Loop not safely parallelizable

Evaluating the Xeon Phi platform in the context of Software TLS

7/27

Thread-Level Speculation (TLS)

Aims to execute in parallel fragments of code without
requiring compile-time analysis.

Iterations are divided in blocks and optimistically executed in
parallel, hoping that no dependence violations will appear.

In software-based TLS, original code is augmented with

function calls that monitors the parallel execution at runtime.

Offending threads (that have consumed a value before being
produced by a predecessor thread) are dynamically stopped
and re-started with correct values.

Consistency with sequential semantics is ensured by the
runtime system.

Suitable for shared-memory systems.

Evaluating the Xeon Phi platform in the context of Software TLS

The ATLaS framework

» ATLaS! is a software-based, TLS framework that extends
OpenMP functionalities to allow the parallelization of loops
that may present dependences between iterations.

» ATLaS allow the speculative management of scalar variables
and data structures, and can handle accesses through pointer
arithmetic.

» Documentation and software download:

atlas.infor.uva.es

1!An OpenMP Extension that Supports Thread-Level Speculation,
Aldea, Estebanez, Llanos, Gonzalez-Escribano, IEEE TPDS, 2015.

Evaluating the Xeon Phi platform in the context of Software TLS

Speculative parallelization using ATLaS

for (i=0; i<MAX; i++) {
b = func(i);
if (b==k)
v[i] = v[i-b]l;
else
v[i] = b * a[il;

}

(a) Loop not parallelizable safely

#pragma omp parallel for \
private (i,b) shared (a,k) \
speculative(v)

for (i=0; i<MAX; i++) {

b = func(i);
if (b==k)

v[i] = v[i-b]l;
else

v[i]

b * alil;

}

(b) Loop parallelizable using ATLaS

Evaluating the Xeon Phi platform in the context of Software TLS

10/

27

The ATLaS compile phase

» At compile time, the ATLaS GCC compiler plug-in replaces
accesses to speculative variables with calls to speculative
functions.

» Example: Let a, b and c be three variables labeled as

speculative:
Original code Augmented code
#pragma omp. . #pragma omp. ..
speculatlve (a b,c)

for (...) { for (...) {
a = 9; specstore (&a,sizeof (a),9);
b = 11.7%2; specstore (&b, sizeof (b),23.4);
lhs = c; specload(&c,sizeof (c) ,&lhs);

} }

Evaluating the Xeon Phi platform in the context of Software TLS

11

27

TLS: An example

» Suppose that the SV vector was labeled as speculative.
» Index x is not known at compile time.

Thread 1 (non spec) Thread 2
(iter. 1, x = 1) (iter. 2, x = 1)

Thread 3 Thread 4 (most-spec)
(iter. 3, x = 2) (iter. 4, x = 2)

t1 LocalVarl t2
3 :‘S\;ixL = LocalVar2 JU
Tt t4 Localvarl = SV[x]
s
6 (\SV[xl}: LocalvVar2 6

... 17 + Localvarl = SV[x]
8 LocalVarl = SV[x} el T

el "7 19 1-sV[x])= LocalVar2
110 4=SV[x])= Localvar2

Time

Evaluating the Xeon Phi platform in the context of Software TLS

12/
A

27

TLS: Speculative loads

» Suppose that the SV vector was labeled as speculative.
> Index x is not known at compile time.

Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)
(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

t0
t1 - LocalvVari, sV 2
B sVixD = tocalvar2
% - Localvarl = SV[x]
6 "Sfl:[:xil= LocalVar2 ® 6

17 LocalVarl \=/‘Srv[x\]
18 LocalVarl = SV[x) e

9 SV[x] = LocalVar2

10 4 8V[x)= Localyarz

-
Time
Y S5 Speculative load: Most recent value retrieval

3

Evaluating the Xeon Phi platform in the context of Software TLS

A

13/

27

TLS: Speculative stores (no violations)

» Suppose that the SV vector was labeled as speculative.
» Index x is not known at compile time.
Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)
t0 Speculative store + dependence detection .
t L+:alVar1‘:: sV t2 -
3 :é\;ixly = LocalVar2 R

4 LofalVarl = SV[x]

, QI T
16 —-{SV[x])= LocalVar2 t6

17 LocalVarl =/S\;ix]
8 Localvarl %‘sv[g]\, bt

9 SV[x]1= Localjar2
t10 i‘sv[;q}: Localyar2

-
Time

v 53 Speculative load: Most recent value retrieval
<

Evaluating the Xeon Phi platform in the context of Software TLS

A

14 /

27

TLS: Speculative stores (squash)

» Suppose that the SV vector was labeled as speculative.
» Index x is not known at compile time.
Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)
t0 Speculative store + dependence detection .
t L+:alVar1‘:: sV t2 -
3 :é\;ixly = LocalVar2 R

t4 - Lofalvarl = SV[xI +

, QI Tt5
16 —-{SV[x])= LocalVar2 t6

17 LocalvVarl =/‘S;ix]
8 LofalvVarl %‘sv[g]\,

19 Localfar2
t10 i‘sv[;q}: Localyar2
-~
Time
v Speculative load: Most recent value retrieval
< <
< <

Evaluating the Xeon Phi platform in the context of Software TLS

A

15 /

27

TLS: Commitment of shared variables

» Suppose that the SV vector was labeled as speculative.
> Index x is not known at compile time.

Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)
(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

t0 Speculative store + dependence detection .

t Ln{calVarl(‘svix] t2 -

Var2

18 4 sVIx]) = Local

t7 Localvarl =

LogalVarl =’\/’S [}]1

19)= LocalVar2
{8V[x])= LocalYar2

< Y

3

Time In-order commit of data from correctly-executed blocks
v Speculative load: Most recent value retrieval
< <
< <

Evaluating the Xeon Phi platform in the context of Software TLS

16 / 27
A

The ATLaS runtime system

Most-spec
User-labeled
speculative
variables i Sliding window
chara float b . .
STATE Running Done Running Free
double ¢ Pointer to versioncopy |
3288 Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer ~ Data Pointer Version Pointer ~ Data Pointer Version
to ref. size tolocal state to ref. size tolocal state
copy version Pointer ~ Data Pointer Version copy version
to ref. size tolocal state
al b1 copy version a3 b3
6] [dsse7 "

Version copy data structures

c2 a2
[18.997] 128215 |

Evaluating the Xeon Phi platform in the context of Software TLS

A

17/

27

The ATLaS runtime system

Most-spec
User-labeled
speculative
variables i Sliding window
chara float b . .
STATE Running Done Running Free
double ¢ Pointer to versioncopy |
3288 Slot 1 Slot 2 Slot 3 Slot 4
Id
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer ~ Data Pointer Version Pointer ~ Data Pointer Version
to ref. size tolocal state to ref. size tolocal state
copy version Pointer ~ Data Pointer Version copy version
to ref. size tolocal state
al b1 copy version a3 b3
6] [dsse7 " " 2
18.997 | 128.215 |

Version copy data structures

Evaluating the Xeon Phi platform in the context of Software TLS ey

A

27

The ATLaS runtime system

Most-spec
User-labeled
speculative
variables i Sliding window
chara float b . .
STATE Running Done Running Free
double ¢ Pointer to verflioncopy |
32.88 —
Slot 1 Slot 2 Slot 3 Slot 4
14 Al
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer ~ Data Pointer Version Pointer ~ Data Pointer Version
to ref. size tolocal state to ref. size tolocal state
copy version Pointer ~ Data Pointer Version copy version
to ref. size tolocal state
b1 copy version a3 b3

at
[o] [H8.997]

Version copy data structures

b2 a2

c2
[18.997] 128215 |

Evaluating the Xeon Phi platform in the context of Software TLS ey

A

27

The ATLaS runtime system

Most-spec
User-labeled
speculative
variables i Sliding window
chara float b . .
STATE Running Done Running Free
double ¢ Pointer to versioncopy |
8 Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer ~ Data Pointer Version Pointer ~ Data Pointer Version
to ref. size tolocal state to ref. size tolocal state
copy version Pointer ~ Data Pointer Version copy version
to ref. size tolocal state
al b1 copy version a3 b3
6] [dsse7 " " 2
Version copy data structures [18997] [128215]

Evaluating the Xeon Phi platform in the context of Software TLS oy

A

27

ATLaS transition state diagram

Spec. load / Spec. store

Modified
(MOD)
Spec.
store
[Not Accessed]
Spec. load Spec.
load
Exposed Loaded
(EXPLD)
Spec.
store
Exp. Loaded and Updated
(ELUP)

Spec. load / Spec. store

Evaluating the Xeon Phi platform in the context of Software TLS

A

21

/27

Evaluating ATLaS running on Xeon Phi

Benchmarks considered
» Three benchmarks representative of real-world problems:
» 2D-DT (Delaunay Triangulation)
» 2D-Hull (Convex Hull) with three different input sets.
» TREE
» They present a significant squash-and-restart rate due to
dependences (up to 15%), challenging STLS systems.
» One additional synthetic benchmark, FAST, to measure TLS
overheads.

Evaluating the Xeon Phi platform in the context of Software TLS 5

A

27

Results #1: Scalability

Fast Tree Delaunay

50 Heracles —— = s Heracles —— 8 L — I —
HI g0 L H
& 2 & & ¢

s -

10] 2

o 0 o

s Intel Xeon Phi ——— o Intel Xeon Phi —— 14 Intel Xeon Phi ——

4 Heracles —— 8 Heracles —— — 12 Heracles ——
g £ g =
== i. — 0 1
& 2 e g ¢ L

» Scalability is better for the Xeon Phi, thanks to its superior
bandwidth.

Evaluating the Xeon Phi platform in the context of Software TLS

23 /27
A

Results #2: Using

Speedup

Speedup

Fast
60 Intel Xeon Phi———— L
50
)
30
2
10
0
50 100 150 200
Number of threads
20-Hul-Dise
5 Intel Xeon Phi ——
4
3
2
1
0
50 100 150 200
Number of threads

Speedup

Speedup

all threads of the Xeon Phi

Tree Delaunay
10
[e S intel Xeon Phi -
A 8
Ely
&
2
o
50 100 150 200 50 100 150 200
Number of threads Number of threads
2D-Hul-Square 2D-Hull-Kuzmin
Tntel Xeon Phi 14 el KeonPhi |]
12 s
g 10
g 8
-
4
I I 2
I I o i
50 100 150 200 50 100 150 200
Number of threads Number of threads

> In general, performance degrades when launching more
threads than processors: the 4-way SMT offered by the Xeon
Phi is not useful in this case.

Evaluating the Xeon Phi platform in the context of Software TLS

A

24)

27

Results #3: Absolute performance

Fast Tres Delaunay
1000 1000
L 1000 o 2 o0
£ 10 £ 10T £
g w0 g 10 g v
i i i
& Fraclos, soquontal & Fracios, socontal & Horaclos, soquenial
o [y —) S et Ron bal —— P S el aon bhl ——
Fetaces races fes
0 = 4 & & o R I S TR o @ 4 e & o
Namber of threads Number of threads Number of threads
20 HullDisc 20 Hulk Square 20 HlkKuzmin
0 . . 1 100
£ o : : E o £ o g_’/
g 3 g
2 Heracles, sequential 2 Heracles, sequential 2 Heracles, sequential
01 Intel Xeon Phi 0.1 p Intel Xeon Phi ——— L Intel Xeon Phi
Heraces Keracies Heraces
0 = @ w8 00 0w s w & 10 0 = @ & 00
Nomber of teads Number o threads Nomber of teads

» True, our benchmarks do not benefit from vectorization.

» The Xeon Phi platform is consistently five times slower than
our Intel Xeon shared-memory system (OOQ execution, higher
clock speed).

Evaluating the Xeon Phi platform in the context of Software TLS 5

A

Conclusions
» The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just € 1500!

» However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

> The scalability is really good: The problem are the processors.

» We are aware that our parallel code does not need vectorization.

Evaluating the Xeon Phi platform in the context of Software TLS %

A

27

Conclusions

>

The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just € 1500!

However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

The scalability is really good: The problem are the processors.

We are aware that our parallel code does not need vectorization.

Our "Wish List” for future releases of the Xeon Phi regarding to
TLS:

» Faster computational units.

» Qut-of-order execution.

» Some hardware support for TLS would help a lot.

Evaluating the Xeon Phi platform in the context of Software TLS %

A

27

Conclusions

>

The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just € 1500!

However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

The scalability is really good: The problem are the processors.

We are aware that our parallel code does not need vectorization.

Our "Wish List” for future releases of the Xeon Phi regarding to
TLS:

» Faster computational units.

» Qut-of-order execution.

» Some hardware support for TLS would help a lot.

Future work: to use the remaining threads to help in the execution
of the threads in charge of each chunk of speculative iterations.

Evaluating the Xeon Phi platform in the context of Software TLS %

A

27

Conclusions

>

The Xeon Phi was too good to be true: Hundreds of CPU-like
threads for just € 1500!

However, absolute performance for ATLaS (in the end, an OpenMP
application) is five times poorer than when using a good
shared-memory system.

The scalability is really good: The problem are the processors.
We are aware that our parallel code does not need vectorization.

Our "Wish List” for future releases of the Xeon Phi regarding to
TLS:

» Faster computational units.
» Qut-of-order execution.
» Some hardware support for TLS would help a lot.

Future work: to use the remaining threads to help in the execution
of the threads in charge of each chunk of speculative iterations.

You are invited to try ATLaS atlas.infor.uva.es

Evaluating the Xeon Phi platform in the context of Software TLS %

A

27

Evaluating the capabilities of the Xeon Phi platform in the
context of software-only, thread-level speculation

Alvaro Estebanez, Diego R. Llanos,
Arturo Gonzalez-Escribano
Trasgo Computing Research Group
University of Valladolid, Spain

HLPP 2015, Pisa, ltaly, July 2nd, 2015

W di

Grupo Trasgo Departamento de
S Informatica . . -
Universidad de Valladolid Universidad deValladolid

Evaluating the Xeon Phi platform in the context of Software TLS

A

27

/27

