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Pathways Have Evolved
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To Study Biological Pathways



Proteins do interact... 

Protein-protein interactions map 
from yeast. Jeong H. et. al., Nature 

411, 2001



... constituting biological pathways. 

Generic representation of 
pathways involving cAMP



Studying Biological Pathways: Common Approaches

Which proteins are involved?
How do specific proteins interact?
What are the interaction kinetics?

What are the response dynamics? How 
do they change with different conditions 
(e.g. under drug treatment)?

Are there any general network properties?
Connectivity distribution, re-occuring interaction 
motifs, etc. ”Design Principles”??? 

Can we detect new pathways 
from low level data like 
protein sequences?

Experimental techniques

Conventional Modeling

Large Scale Data Analysis

Pathway Discovery



Studying Biological Pathways: “Limitations”

Time, techniques, and money
System specific results

Sparse data
System specific results

Broad conclusions (too broad ?) 

Usual suspects; reliability of 
data, algorithms, etc.

Experimental techniques

Conventional Modeling

Large Scale Data Analysis

Pathway Discovery



Bacterial Chemotaxis: The Behavior

Chemotaxis is a biased random walk:

Constant Tumbling Frequency Decreasing Tumbling 
Frequency



Bacterial Chemotaxis: The Pathway

Smooth Swimming:
- CheY-P unbound
- Motor rotates CCW

Tumbling:
- CheY-P bound
- Motor rotates CW



Bacterial Chemotaxis Solved
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Bacterial Chemotaxis Solved Or Not

Escherichia Coli Bacillus subtilis Rhodobacter sphaeroides Helicobacter pylori
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A Generic Pathway Model

                 Ligand  P1*   P2*    P3*   P4*   
P1     P1*      0.5    0.0    0.0     0.0   0.0
P2     P2*      0.0    0.9    0.0     0.0   -0.5 
P3     P3*      0.0    0.0    0.7     0.0   0.0 
P4     P4*      0.0    0.0    0.0     -0.7  0.0 

can exist either in an active P (e.g. phosphorylated) or
inactive P state. The equilibrium between the two states of
a protein depends on the interactions between this protein
and other active proteins in the system, where each
interaction is characterized by a specific interaction
coefficient (e.g. rate constant). The basic reaction dictating
the dynamics of such a system can be written as

Pi $

P
j
kij ½P"

j #

P
j
lij ½P"

j #
P"
i , (1)

where ½P"
i # represents the concentration of active form of

protein i and kij and lij represent the strength of the
interaction between protein i and j. We assume that
proteins do not interact with themselves (i.e. kii ¼ lii ¼ 0)
and their interaction with other proteins can only be
activating or deactivating (i.e. kij % lij ¼ 0), resulting in
n2&n parameters for a network of n proteins. Also, we set
the maximum value that an interaction coefficient can
attain to one for computational ease.

In order for the system to be able to respond to an
incoming signal we define one of the proteins as a receptor
and allow its equilibrium state to be influenced by the
ligand (i.e. the signal) concentration [L]:
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½L#þ
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j #
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j #
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We assume that the energy required for the activation and
deactivation reactions are provided from outside sources
such as high-energy molecules. Finally, we arbitrarily
choose another protein in the system as the effector and
specify that the concentration of its active form dictate the
behavior produced by the network.

Given a set of interaction coefficients for a set of
proteins, we can monitor the changes in the active effector
concentration in response to a signal, to evaluate the signal
processing capacity of the network. The concentrations of
active and inactive proteins in the system can be calculated
at any time point by solving the set of differential equations
resulting from (1):

d½Pi#
dt

¼ ½P"
i # %
X

j

lij % ½P"
j #

" #

& ½Pi# % di1 % ½L# þ
X

j

kij % ½P"
j #

 !" #

, ð3Þ

where di1 ¼ 1 for i ¼ 1 and di1 ¼ 0 for ia1. Note, that the
total concentration of each protein ½Ptot

i # is constant and set
to one (i.e. ½P"

i # ¼ 1& ½Pi#). The set of differential equations
as shown in Eq. (3) allows the simulation of a system of n
proteins in presence or absence of a ligand. For example,
for the 3-protein network shown in Fig. 1A these equations

would look like:

d½receptor#=dt ¼ ½receptor"# % 0:986 % ½protein1"#
& ½receptor# % ð½L# þ 0:007 % ½effector"#Þ,

d½protein1#=dt ¼ ½protein1"# % 0:04 % ½effector"#
& ½protein1# % 0:02 % ½receptor"#,

d½effector#=dt ¼ ½effector"# % 0:733 % ½receptor"#
& ½effector# % 0:726 % ½protein1"#. ð4Þ

4.2. In silico evolution

Using this generic model we can evaluate the response of
a given network to a given signal. This allows us to
simulate an evolutionary process in silico and evolve
networks that are capable of producing a certain response
to an incoming signal. The selection stage of the evolu-
tionary process requires a fitness function that captures the
possible selective pressures under which such response has
evolved. While it is plausible to use this generic model to
evolve various biological responses, here we use bacterial
chemotaxis pathway as a model system and evolve a
‘‘chemotactic’’ behavior. To do so, we treat the signal as
the concentration of a chemical attractant (i.e. a food
source) and the effector in our system as CheY, whose
active state concentration dictates the tumbling frequency
and hence the movement of the bacteria. We define the
fitness function based on the following observations made
on bacterial chemotaxis.
The ‘‘chemotactic’’ behavior employed by bacteria is

that of a biased random walk (Berg, 1983). Bacteria
explore the space by employing a certain tumbling
frequency in the absence of any food source. They then
decrease (increase) this tumbling frequency in increasing
(decreasing) food gradients in order to bias their random
walk towards higher food concentrations. The base
tumbling frequency of bacteria is not zero, enabling them
both to explore the space efficiently and to overcome the
issues related with living in an environment with a low
Reynolds number (Berg, 1983). Hence, we assume that the
main selective pressures on chemotactic behavior are the
ability to explore the environment while making maximal
gain out of available food sources. Here, we therefore
assume that there is an optimal tumbling frequency Ropt.. A
good responder should decrease (increase) its tumbling
frequency below (above) Ropt. in increasing (decreasing)
food gradients and should tumble with a frequency close to
Ropt. in absence of any food change. These two selective
pressures on the motility of bacteria are captured in the
following fitness function:

Fitness ¼
X

t

C % DF % ðRopt: & Ravg:Þ
! "

& ðRopt: & Ravg:Þ2
! "! "

.

(5)

Here, DF ¼ Ft+1&Ft and Ravg. ¼ (Rt+1+Rt)/2, where Rt

stands for the response of the network at time t (i.e. the
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Putting The Two Together: In Silico Evolution

Evaluate Response

Introduce Mutations
Iterate until no improvement

                 Ligand  P1*   P2*    P3*   P4*   
P1     P1*      0.5    0.0    0.0     0.3   0.0
P2     P2*      0.0    0.9    0.0     0.0   -0.5 
P3     P3*      0.0    0.0    0.2     0.0   0.0 
P4     P4*      0.0    0.0    0.0     -0.1  0.0 

                 Ligand  P1*   P2*    P3*   P4*   
P1     P1*      0.5    0.0    0.0     0.0   0.0
P2     P2*      0.0    0.9    0.0     0.0   -0.5 
P3     P3*      0.0    0.0    0.7     0.0   0.0 
P4     P4*      0.0    0.0    0.0     -0.7  0.0 

Analysis of pathway evolution using 
generic, extendable pathway models



Chemotaxis is achieved via a derivative-like response:
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Fitness: Capturing Bacterial Chemotaxis

can exist either in an active P (e.g. phosphorylated) or
inactive P state. The equilibrium between the two states of
a protein depends on the interactions between this protein
and other active proteins in the system, where each
interaction is characterized by a specific interaction
coefficient (e.g. rate constant). The basic reaction dictating
the dynamics of such a system can be written as
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where ½P"
i # represents the concentration of active form of

protein i and kij and lij represent the strength of the
interaction between protein i and j. We assume that
proteins do not interact with themselves (i.e. kii ¼ lii ¼ 0)
and their interaction with other proteins can only be
activating or deactivating (i.e. kij % lij ¼ 0), resulting in
n2&n parameters for a network of n proteins. Also, we set
the maximum value that an interaction coefficient can
attain to one for computational ease.

In order for the system to be able to respond to an
incoming signal we define one of the proteins as a receptor
and allow its equilibrium state to be influenced by the
ligand (i.e. the signal) concentration [L]:
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We assume that the energy required for the activation and
deactivation reactions are provided from outside sources
such as high-energy molecules. Finally, we arbitrarily
choose another protein in the system as the effector and
specify that the concentration of its active form dictate the
behavior produced by the network.

Given a set of interaction coefficients for a set of
proteins, we can monitor the changes in the active effector
concentration in response to a signal, to evaluate the signal
processing capacity of the network. The concentrations of
active and inactive proteins in the system can be calculated
at any time point by solving the set of differential equations
resulting from (1):

d½Pi#
dt

¼ ½P"
i # %
X
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j
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where di1 ¼ 1 for i ¼ 1 and di1 ¼ 0 for ia1. Note, that the
total concentration of each protein ½Ptot

i # is constant and set
to one (i.e. ½P"

i # ¼ 1& ½Pi#). The set of differential equations
as shown in Eq. (3) allows the simulation of a system of n
proteins in presence or absence of a ligand. For example,
for the 3-protein network shown in Fig. 1A these equations

would look like:

d½receptor#=dt ¼ ½receptor"# % 0:986 % ½protein1"#
& ½receptor# % ð½L# þ 0:007 % ½effector"#Þ,

d½protein1#=dt ¼ ½protein1"# % 0:04 % ½effector"#
& ½protein1# % 0:02 % ½receptor"#,

d½effector#=dt ¼ ½effector"# % 0:733 % ½receptor"#
& ½effector# % 0:726 % ½protein1"#. ð4Þ

4.2. In silico evolution

Using this generic model we can evaluate the response of
a given network to a given signal. This allows us to
simulate an evolutionary process in silico and evolve
networks that are capable of producing a certain response
to an incoming signal. The selection stage of the evolu-
tionary process requires a fitness function that captures the
possible selective pressures under which such response has
evolved. While it is plausible to use this generic model to
evolve various biological responses, here we use bacterial
chemotaxis pathway as a model system and evolve a
‘‘chemotactic’’ behavior. To do so, we treat the signal as
the concentration of a chemical attractant (i.e. a food
source) and the effector in our system as CheY, whose
active state concentration dictates the tumbling frequency
and hence the movement of the bacteria. We define the
fitness function based on the following observations made
on bacterial chemotaxis.
The ‘‘chemotactic’’ behavior employed by bacteria is

that of a biased random walk (Berg, 1983). Bacteria
explore the space by employing a certain tumbling
frequency in the absence of any food source. They then
decrease (increase) this tumbling frequency in increasing
(decreasing) food gradients in order to bias their random
walk towards higher food concentrations. The base
tumbling frequency of bacteria is not zero, enabling them
both to explore the space efficiently and to overcome the
issues related with living in an environment with a low
Reynolds number (Berg, 1983). Hence, we assume that the
main selective pressures on chemotactic behavior are the
ability to explore the environment while making maximal
gain out of available food sources. Here, we therefore
assume that there is an optimal tumbling frequency Ropt.. A
good responder should decrease (increase) its tumbling
frequency below (above) Ropt. in increasing (decreasing)
food gradients and should tumble with a frequency close to
Ropt. in absence of any food change. These two selective
pressures on the motility of bacteria are captured in the
following fitness function:

Fitness ¼
X

t

C % DF % ðRopt: & Ravg:Þ
! "

& ðRopt: & Ravg:Þ2
! "! "

.

(5)

Here, DF ¼ Ft+1&Ft and Ravg. ¼ (Rt+1+Rt)/2, where Rt

stands for the response of the network at time t (i.e. the
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Evolving Chemotaxis Pathways

Introduce Mutations

Evaluate Response

can exist either in an active P (e.g. phosphorylated) or
inactive P state. The equilibrium between the two states of
a protein depends on the interactions between this protein
and other active proteins in the system, where each
interaction is characterized by a specific interaction
coefficient (e.g. rate constant). The basic reaction dictating
the dynamics of such a system can be written as
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where ½P"
i # represents the concentration of active form of

protein i and kij and lij represent the strength of the
interaction between protein i and j. We assume that
proteins do not interact with themselves (i.e. kii ¼ lii ¼ 0)
and their interaction with other proteins can only be
activating or deactivating (i.e. kij % lij ¼ 0), resulting in
n2&n parameters for a network of n proteins. Also, we set
the maximum value that an interaction coefficient can
attain to one for computational ease.

In order for the system to be able to respond to an
incoming signal we define one of the proteins as a receptor
and allow its equilibrium state to be influenced by the
ligand (i.e. the signal) concentration [L]:
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We assume that the energy required for the activation and
deactivation reactions are provided from outside sources
such as high-energy molecules. Finally, we arbitrarily
choose another protein in the system as the effector and
specify that the concentration of its active form dictate the
behavior produced by the network.

Given a set of interaction coefficients for a set of
proteins, we can monitor the changes in the active effector
concentration in response to a signal, to evaluate the signal
processing capacity of the network. The concentrations of
active and inactive proteins in the system can be calculated
at any time point by solving the set of differential equations
resulting from (1):

d½Pi#
dt

¼ ½P"
i # %
X
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lij % ½P"
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& ½Pi# % di1 % ½L# þ
X

j
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where di1 ¼ 1 for i ¼ 1 and di1 ¼ 0 for ia1. Note, that the
total concentration of each protein ½Ptot

i # is constant and set
to one (i.e. ½P"

i # ¼ 1& ½Pi#). The set of differential equations
as shown in Eq. (3) allows the simulation of a system of n
proteins in presence or absence of a ligand. For example,
for the 3-protein network shown in Fig. 1A these equations

would look like:

d½receptor#=dt ¼ ½receptor"# % 0:986 % ½protein1"#
& ½receptor# % ð½L# þ 0:007 % ½effector"#Þ,

d½protein1#=dt ¼ ½protein1"# % 0:04 % ½effector"#
& ½protein1# % 0:02 % ½receptor"#,

d½effector#=dt ¼ ½effector"# % 0:733 % ½receptor"#
& ½effector# % 0:726 % ½protein1"#. ð4Þ

4.2. In silico evolution

Using this generic model we can evaluate the response of
a given network to a given signal. This allows us to
simulate an evolutionary process in silico and evolve
networks that are capable of producing a certain response
to an incoming signal. The selection stage of the evolu-
tionary process requires a fitness function that captures the
possible selective pressures under which such response has
evolved. While it is plausible to use this generic model to
evolve various biological responses, here we use bacterial
chemotaxis pathway as a model system and evolve a
‘‘chemotactic’’ behavior. To do so, we treat the signal as
the concentration of a chemical attractant (i.e. a food
source) and the effector in our system as CheY, whose
active state concentration dictates the tumbling frequency
and hence the movement of the bacteria. We define the
fitness function based on the following observations made
on bacterial chemotaxis.
The ‘‘chemotactic’’ behavior employed by bacteria is

that of a biased random walk (Berg, 1983). Bacteria
explore the space by employing a certain tumbling
frequency in the absence of any food source. They then
decrease (increase) this tumbling frequency in increasing
(decreasing) food gradients in order to bias their random
walk towards higher food concentrations. The base
tumbling frequency of bacteria is not zero, enabling them
both to explore the space efficiently and to overcome the
issues related with living in an environment with a low
Reynolds number (Berg, 1983). Hence, we assume that the
main selective pressures on chemotactic behavior are the
ability to explore the environment while making maximal
gain out of available food sources. Here, we therefore
assume that there is an optimal tumbling frequency Ropt.. A
good responder should decrease (increase) its tumbling
frequency below (above) Ropt. in increasing (decreasing)
food gradients and should tumble with a frequency close to
Ropt. in absence of any food change. These two selective
pressures on the motility of bacteria are captured in the
following fitness function:

Fitness ¼
X

t

C % DF % ðRopt: & Ravg:Þ
! "

& ðRopt: & Ravg:Þ2
! "! "

.

(5)

Here, DF ¼ Ft+1&Ft and Ravg. ¼ (Rt+1+Rt)/2, where Rt

stands for the response of the network at time t (i.e. the
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Evolved Pathways

Are able to give a derivative-like response:

4-protein Pathway Response 5-protein Pathway Response

3-protein Pathway Response
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Evolved Pathways

Are able to mediate chemotaxis-
like behavior:



Evolved Pathways



Distilling Key Features: 
Topology Analysis

Receptor Effector

Intermediary
Protein(s)

Important Interactions

slow

fast

Important Dynamical Features

proteins (see Supplementary Fig. 1 and Supplementary
Table 1 for information on additional networks). All these
networks achieve high fitness values and show the same
type of response to changes in ligand concentration. In
increasing (decreasing) food concentrations the tumbling
frequency (i.e. the active effector concentration) decreases
(increases) while returning close to a base value when there
is no change in food concentration (compare responses to
the signal shown in Fig. 1A). In other words, the response
tracks the derivative of the signal and balances the benefit
from moving up gradients of food against deviations from
a base response. This ensures some adaptive behavior as
seen in the response to the sigmoidal part of the signal
sequence. To summarize, the presented networks act as a
derivative sensor like the natural chemotaxis pathway
(Spiro et al., 1997) and their response to changing ligand
concentrations is similar to that seen in natural bacterial
chemotaxis (Block et al., 1983; Segall et al., 1986) or
detailed mathematical models of chemotaxis (see, for
example, Rao et al., 2004).

In order to test whether such a response really
corresponds to a chemotactic behavior, we implemented
these networks in virtual bacteria and performed a
stochastic simulation of their movement on a continuous
grid in the presence of a ligand distribution (see Section 4).
In Fig. 2 we show the behavior of these virtual bacteria
along with two others, whose movement was based on a

constant tumbling frequency or a detailed model of
chemotaxis (as described in Rao et al., 2004). These two
additional bacteria would thus correspond to a random
movement and perfect chemotaxis, respectively, and act as
a reference point. Each panel in Fig. 2 shows the simulation
grid, color-coded with the average time spent by the
bacterium on each grid location. We quantified the extent
of chemotactic behavior by calculating the average amount
of ligand (i.e. food) intake during these simulations (see
Section 4). Based on the results of this calculation (also
shown in Fig. 2) and the performance of a randomly
moving bacterium we can conclude that both the 4- and 5-
protein networks mediate chemotaxis-like behavior, while
the 3-protein network is not capable to outperform a
random tumbler with regards to food intake. That the
performance of the 3-protein network nevertheless corre-
sponds to a form of chemotaxis is seen in a more detailed
analysis of the behavior that it mediates (see Supplemen-
tary Fig. 2); the response of this network allows the
bacterium to swim up a gradient more often than a
randomly moving bacterium would do, but fails to keep it
at high ligand concentrations. The ability of the presented
networks to show some sort of chemotactic behavior in
these stochastic simulations is even more striking given the
fact that the signal encountered during these simulations
differs significantly from the signal used during the in silico
evolution process.

ARTICLE IN PRESS

Fig. 1. Evolved 3- to 5-protein networks. Response, interaction coefficients and topology of evolved networks with 3- to 5-proteins (panels A–C).
Network response shows the concentration of the active effector protein vs. simulation time in presence of a signal as changing ligand concentration (thin
line in panel A). The network coefficients are shown in a matrix arrangement, with row i showing the effect of other proteins on protein i. The absolute
values of negative and positive entries stand for deactivation and activation coefficients (i.e. lij and kij), respectively (see Eq. (4) in Section 4). In network
topologies, arrows and T-ended lines represent activating and deactivating interactions, respectively. Strong interactions (those with a coefficient larger
than 0.5) are shown in bold. See the text for discussion of the dynamics of these networks.

O.S. Soyer et al. / Journal of Theoretical Biology ] (]]]]) ]]]–]]] 3
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Distilling Key Features: Response Analysis

Imbalance in response to 
increasing and decreasing 
signals

Adaptation



Evolutionary Systems Biology: Chemotaxis
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Evolutionary Systems Biology: Chemotaxis
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Selection
Fitness = Food Encountered

A more realistic evolutionary setup

Initial Population

Final (evolved) Population
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Evolution Of Chemotaxis



Evolution Of Chemotaxis Pathways

biased random walk

couch potato

adaptive dynamics

non - adaptive dynamics



Non - Adaptive Chemotaxis is not due to

Initial Population with adaptive dynamics

Initial Population

Final (evolved) Population
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Non - Adaptive chemotaxis under fluctuating environments
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Minimal Non-Adaptive Chemotaxis Mechanisms



Reality or Modeling Curiosity ?

Chemotaxis in absence of adaptation has already been observed in 
nature in Rhodobacter sphaeroides and in mutant strains of Escherichia 
coli.

Pathways with non-adaptive dynamics 

- possible existence in many bacterial species

- a simple mechanism to couple metabolic and/
or other signals to conventional chemotaxis 

- evolutionary origins of chemotaxis

Poole PS and Armitage JP, J. Bacteriology, 170, 1988
Barak R and Eisenbach M, Mol. Microbiology, 31, 1999



Insights from Evolutionary Systems Biology

.....

Evolutionary Systems Biology 
approaches allow...

- Detecting key system properties

- Exploring alternative and minimal 
solutions for achieving a behavior

- Allows hypothesis development

Transfer of 
Knowledge

Natural 
Evolution

In Silico 
Evolution

Soyer OS, Pfeiffer T, Bonhoeffer S, JTB, 2006, 241(2)
Goldstein RA, Soyer OS, submitted

How do evolutionary processes 
affect pathway properties?

Tra
nsfer

 of K
nowled

ge



Adaptation to alternating environments...

Kashtan, N. & Alon, U. (2005) PNAS 102, 13773-8.

Pathway Modularity 

How does modularity arise in biological 
systems and how is it maintained?

Selection for evolvability...       

Kirschner, M. & Gerhart, J. (1998) PNAS 95, 8420-7.



Evolution of Modularity 

Through simple evolutionary 
processes....

Selection
Fitness = “Ability to mediate separate responses”



Two responses mediated by different structures 

modular

cross-talk

complex



The Model 

Initial Homogenous 
Population

Final Population
T

im
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are highly non-specific; the receptor is activated by all present signals and relays this 

activity to the effectors, and the intermediary protein inhibits both the receptor and the 

effectors (see Figure 1). This pathway could be thought of as the predecessor of bacterial 

two-component signaling pathways [30], where the receptor and the intermediary protein 

would correspond to a non-specific histidine kinase and phosphotase respectively.  

 

The initial population of ancestral pathways is evolved under selection for responding 

separately to the two signals presented at different times of the integration process as 

shown in Figure 1. Based on this selection criterion, pathway fitness (F) is defined as:  

 

F =
1

4
! (E

1

A
+ E

2

B
) + (E

1

A
+ E

2

B " E
1

B " E
2

A
)#$ %& " n ! c   [3]  

 

where E
1

A and E
2

A  (E
1

B and E
2

B ) stand for the maximum of the difference in active 

effector concentrations between their pre- (i.e. steady state) and post-signal values in the 

time bracket from introduction of signal A (B) until system reaches steady state again (as 

described above, also see Figure 1). Further, n is the number of proteins in the pathway 

and c is the fitness cost of each protein. The first part of the fitness function rewards 

pathways ability to respond to the two signals separately through the two effectors. The 

second part gives smaller pathways a fitness advantage, the extent of which is controlled 

by the parameter c (for the reported results c was 0.001). Presented results hold for c 

values as high as 0.1. At such high fitness cost, protein additions are rarely permitted, 

keeping pathways from growing in size and limiting the chances for emergence of 

modularity (see Results and Discussion). This fitness function is used throughout the total 

duration of an evolutionary simulation, representing a constant selective pressure on the 

pathways as they evolve.  Note that division by four is only to scale fitness between zero 

and one, allowing it to be used directly as replication probability in the evolutionary 

simulations (see below).  

 

Throughout the evolutionary simulation, each generation is created from the previous one 

by randomly selecting individuals for replication with replacement. Randomly selected 



The Model 

MUTATION PER PROTEIN
P = 0.05

- Delete Interaction  (P = 0.4)
- Delete Protein       (P = 0.2)
- Change Interaction (P = 0.2)
- Duplicate Protein   (P = 0.1)
- Add Interaction      (P = 0.1)  

replication with mutations

?
with new protein 

(i.e. Protein Recruitment)
between existing proteins



complex
cross-talk
modular

Modularity maintenance depends on mutational mechanisms



Modularity evolution depends on initial pathway topology 
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P(rcrtmnt) = 1.0



Protein duplications drive pathway 
evolution...

0 200 400 600 800 1000

−0
.6

−0
.2

0.
1

Generation

Fi
tn

es
s 

Ef
fe

ct

0 200 400 600 800 1000

0
4

8
12

Generation

Pa
th

w
ay

 S
iz

e
Duplications and pathway growth 

Interaction Loss

N 
M

ut
at

io
ns

0.0 −0.2 −0.5

0
20

0
50

0

Protein Recruitment

0.0 −0.2 −0.5

0
20

0
50

0

Interaction Formation

N 
M

ut
at

io
ns

0.0 −0.2 −0.5

0
20

0
50

0

Protein Loss

0.0 −0.2 −0.5

0
20

0
50

0

Coefficient Change

Fitness Effect

N 
M

ut
at

io
ns

0.0 −0.2 −0.5

0
20

0
50

0
Protein Duplication

Fitness Effect

0.0 −0.2 −0.5

0
20

0
50

0



New Answers To Old Questions Through Study of Evolution 

Natural 
Evolution

In Silico 
Evolution

Tra
nsfer

 of K
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ge

Modularity emerges readily under 
simple evolutionary processes without 
any specific selective pressure.

Determinants of modularity are the 
relevant rates of different mutational 
events and the initial location of a 
pathway in topology space

Approach extendable to study

	 - Complexity	 	 	 	 	
	 - Modularity
	 - Robustness
	 - Evolvability

Soyer OS,  BMC Evolutionary Biology, in print

Soyer OS, Bonhoeffer S, PNAS, 2006, 103(44)



Modularity evolution depends on pathway topology 
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Pathway Evolution: A random walk in topology space

Functional Minimum-Size Pathways, 
Initial Population  

Smaller, Non-Functional Pathways  

Larger, Non-Functional 
Pathways  

Larger, Functional 
Pathways  

How does the topology space look like?



Topology space is big

                 Ligand  P1*   P2*    P3*   P4*   
P1     P1*      0.5    0.0    0.0     0.0   0.0
P2     P2*      0.0    0.9    0.0     0.0   -0.5 
P3     P3*      0.0    0.0    0.7     0.0   0.0 
P4     P4*      0.0    0.0    0.0     -0.7  0.0 

Nparams = Nprots
2 − Nprots

Nntwrks = Nvalues
Nparams = 729           for N = 3 and values = {-1,0,1}

> 3x109        for N = 5 

= 531.444     for N = 4 

which topologies matter?



Topology space is heterogeneous

Constant Transient 
(Gauss - like)

Switch 
(step - like)

Adaptive 
(derivative - like)

Oscillatory

how do we classify 
topologies?

˜˜



Topology space and pathway nature

how do we model 
topologies?

                 Ligand  P1*   P2*    P3*   P4*   
P1     P1*      0.5    0.0    0.0     0.0   0.0
P2     P2*      0.0    0.9    0.0     0.0   -0.5 
P3     P3*      0.0    0.0    0.7     0.0   0.0 
P4     P4*      0.0    0.0    0.0     -0.7  0.0 

can exist either in an active P (e.g. phosphorylated) or
inactive P state. The equilibrium between the two states of
a protein depends on the interactions between this protein
and other active proteins in the system, where each
interaction is characterized by a specific interaction
coefficient (e.g. rate constant). The basic reaction dictating
the dynamics of such a system can be written as

Pi $

P
j
kij ½P"

j #

P
j
lij ½P"

j #
P"
i , (1)

where ½P"
i # represents the concentration of active form of

protein i and kij and lij represent the strength of the
interaction between protein i and j. We assume that
proteins do not interact with themselves (i.e. kii ¼ lii ¼ 0)
and their interaction with other proteins can only be
activating or deactivating (i.e. kij % lij ¼ 0), resulting in
n2&n parameters for a network of n proteins. Also, we set
the maximum value that an interaction coefficient can
attain to one for computational ease.

In order for the system to be able to respond to an
incoming signal we define one of the proteins as a receptor
and allow its equilibrium state to be influenced by the
ligand (i.e. the signal) concentration [L]:

P1 $
½L#þ
P

j
kij ½P"

j #

P
j
lij ½P"

j #
P"
1. (2)

We assume that the energy required for the activation and
deactivation reactions are provided from outside sources
such as high-energy molecules. Finally, we arbitrarily
choose another protein in the system as the effector and
specify that the concentration of its active form dictate the
behavior produced by the network.

Given a set of interaction coefficients for a set of
proteins, we can monitor the changes in the active effector
concentration in response to a signal, to evaluate the signal
processing capacity of the network. The concentrations of
active and inactive proteins in the system can be calculated
at any time point by solving the set of differential equations
resulting from (1):

d½Pi#
dt

¼ ½P"
i # %
X

j

lij % ½P"
j #

" #

& ½Pi# % di1 % ½L# þ
X

j

kij % ½P"
j #

 !" #

, ð3Þ

where di1 ¼ 1 for i ¼ 1 and di1 ¼ 0 for ia1. Note, that the
total concentration of each protein ½Ptot

i # is constant and set
to one (i.e. ½P"

i # ¼ 1& ½Pi#). The set of differential equations
as shown in Eq. (3) allows the simulation of a system of n
proteins in presence or absence of a ligand. For example,
for the 3-protein network shown in Fig. 1A these equations

would look like:

d½receptor#=dt ¼ ½receptor"# % 0:986 % ½protein1"#
& ½receptor# % ð½L# þ 0:007 % ½effector"#Þ,

d½protein1#=dt ¼ ½protein1"# % 0:04 % ½effector"#
& ½protein1# % 0:02 % ½receptor"#,

d½effector#=dt ¼ ½effector"# % 0:733 % ½receptor"#
& ½effector# % 0:726 % ½protein1"#. ð4Þ

4.2. In silico evolution

Using this generic model we can evaluate the response of
a given network to a given signal. This allows us to
simulate an evolutionary process in silico and evolve
networks that are capable of producing a certain response
to an incoming signal. The selection stage of the evolu-
tionary process requires a fitness function that captures the
possible selective pressures under which such response has
evolved. While it is plausible to use this generic model to
evolve various biological responses, here we use bacterial
chemotaxis pathway as a model system and evolve a
‘‘chemotactic’’ behavior. To do so, we treat the signal as
the concentration of a chemical attractant (i.e. a food
source) and the effector in our system as CheY, whose
active state concentration dictates the tumbling frequency
and hence the movement of the bacteria. We define the
fitness function based on the following observations made
on bacterial chemotaxis.
The ‘‘chemotactic’’ behavior employed by bacteria is

that of a biased random walk (Berg, 1983). Bacteria
explore the space by employing a certain tumbling
frequency in the absence of any food source. They then
decrease (increase) this tumbling frequency in increasing
(decreasing) food gradients in order to bias their random
walk towards higher food concentrations. The base
tumbling frequency of bacteria is not zero, enabling them
both to explore the space efficiently and to overcome the
issues related with living in an environment with a low
Reynolds number (Berg, 1983). Hence, we assume that the
main selective pressures on chemotactic behavior are the
ability to explore the environment while making maximal
gain out of available food sources. Here, we therefore
assume that there is an optimal tumbling frequency Ropt.. A
good responder should decrease (increase) its tumbling
frequency below (above) Ropt. in increasing (decreasing)
food gradients and should tumble with a frequency close to
Ropt. in absence of any food change. These two selective
pressures on the motility of bacteria are captured in the
following fitness function:

Fitness ¼
X

t

C % DF % ðRopt: & Ravg:Þ
! "

& ðRopt: & Ravg:Þ2
! "! "

.

(5)

Here, DF ¼ Ft+1&Ft and Ravg. ¼ (Rt+1+Rt)/2, where Rt

stands for the response of the network at time t (i.e. the
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d[Pi ]
dt

= [Pi
*] ⋅ (lij ⋅[Pj

*]+ sd + δ i1 ⋅dd) − [Pi ] ⋅ (kij ⋅[Pj
*]+ sa + δ i1 ⋅ ([L]+ da)⎡⎣ ⎤⎦

j
∑



Topology space for all 3-protein pathways

Topologies and Models: Biochemistry

Auto-
phosphorylation

Inhibitory 
Dimerization

Interaction
Only



Topology space for all 3-protein pathways

Topologies and Models: Kinetics

Binary Strength Kinetics {0 or 1} Random Strength Kinetics [0 , 1]

Kinetics do not seem to affect overall distribution



What Determines Pathway Dynamics ? Topology or Kinetics

Answer depends on topology and biochemistry

response type on the network. Others allow for various
response types as a function of the strength of various
interactions in the network. Fig. 3 lists some example
topologies that are highly robust or that can produce a
high diversity of responses (information on all topolo-
gies is available at http://www.eco.ethz.ch/tbdata/topo3/
html/networks2.html). Given their special properties, it
is plausible to expect that such topologies would be
abundant in natural systems depending on the require-
ments imposed by the environment or on the mechan-
isms involved in network evolution. Recently, the sin
operon in Bacillus subtilis is found to make up such a
network that allows diverse set of responses depending
on internal parameters of the system (Voigt et al., 2005).

All above-discussed analyses were conducted on
three-protein topologies with or without autocatalytic
activity. While such small signal transduction networks
are commonly found in biological systems, there are also
many larger networks. To understand the effects of
network size on possible responses and their distribu-
tion, we analyse all possible four-protein topologies
using binary coefficients and 500 000 randomly selected
four- and five-protein topologies using random coeffi-
cients. Even though the latter analyses are not exhaus-
tive over topology space, their results indicate that the
general pattern in the variation of response distribution
with various models is similar to that observed with
three-protein networks (see Figs. 2C and 4B and C).
This indicates that for the broad classification of
responses that is employed in this analysis, network size
has limited effects on the distribution of responses over
all topologies and that the observations we make
regarding the effects of biological processes may be
generalized to signal transduction networks of larger

size. However, we find that the capacity of a network to
achieve certain response types may change with network
size. For example, under the same model assumptions
we observe oscillatory responses with four-protein
networks but not with three-protein networks (compare
Fig. 2A with C).

In order to better relate this analysis to real signal
transduction networks we analysed one of the best-
known two-component signal transduction pathways:
the chemotaxis pathway in Escherichia coli. As a result
of two decades of intense research, there is almost
complete knowledge on the protein components in-
volved in this pathway and their interactions (see Blair,
1995; Bren and Eisenbach, 2000 for a good review) and
also the response they generate to a stimuli (Block et al.,
1982, 1983; Segall et al., 1986; Sourjik and Berg, 2002).
This pathway acts as a derivative sensor and allows
bacteria to respond to changes in nutrient concentra-
tions in its environment (Spiro et al., 1997). Both
experimental and mathematical studies indicate that a
‘‘chemotactic’’ response follows the derivative of the
signal (Segall et al., 1986; Bray et al., 1993; Spiro et al.,
1997; Rao et al., 2004). We have implemented the
topology of the chemotaxis pathway (as shown in Falke
et al., 1997) in terms of the generic model used in this
analysis and analysed its behavior by creating 1000
sample networks using random interaction coefficients.
Allowing relaxation type reactions both towards active
and inactive proteins in the model (model SA+SD) we
find that 35% of these give a derivative-like response
to an incoming signal. Hence this topology allows
‘‘chemotactic’’ behavior in a significant part of the vast
space of interaction coefficients (i.e. kinetic parameters
for phosphorylation and methylation reactions in this
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Fig. 3. Sample networks with special properties. Top and bottom panels show sample three-protein topologies with high robustness and response
diversity, respectively. The tables summarize the response distribution of mutant networks created from these topologies. Information for all
topologies is available as supplementary material. See text and legend of Table 1 for details on the calculation of diversity and robustness.
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can exist either in an active P (e.g. phosphorylated) or
inactive P state. The equilibrium between the two states of
a protein depends on the interactions between this protein
and other active proteins in the system, where each
interaction is characterized by a specific interaction
coefficient (e.g. rate constant). The basic reaction dictating
the dynamics of such a system can be written as

Pi $

P
j
kij ½P"

j #

P
j
lij ½P"

j #
P"
i , (1)

where ½P"
i # represents the concentration of active form of

protein i and kij and lij represent the strength of the
interaction between protein i and j. We assume that
proteins do not interact with themselves (i.e. kii ¼ lii ¼ 0)
and their interaction with other proteins can only be
activating or deactivating (i.e. kij % lij ¼ 0), resulting in
n2&n parameters for a network of n proteins. Also, we set
the maximum value that an interaction coefficient can
attain to one for computational ease.

In order for the system to be able to respond to an
incoming signal we define one of the proteins as a receptor
and allow its equilibrium state to be influenced by the
ligand (i.e. the signal) concentration [L]:

P1 $
½L#þ
P

j
kij ½P"

j #

P
j
lij ½P"

j #
P"
1. (2)

We assume that the energy required for the activation and
deactivation reactions are provided from outside sources
such as high-energy molecules. Finally, we arbitrarily
choose another protein in the system as the effector and
specify that the concentration of its active form dictate the
behavior produced by the network.

Given a set of interaction coefficients for a set of
proteins, we can monitor the changes in the active effector
concentration in response to a signal, to evaluate the signal
processing capacity of the network. The concentrations of
active and inactive proteins in the system can be calculated
at any time point by solving the set of differential equations
resulting from (1):

d½Pi#
dt

¼ ½P"
i # %
X

j

lij % ½P"
j #

" #

& ½Pi# % di1 % ½L# þ
X

j

kij % ½P"
j #

 !" #

, ð3Þ

where di1 ¼ 1 for i ¼ 1 and di1 ¼ 0 for ia1. Note, that the
total concentration of each protein ½Ptot

i # is constant and set
to one (i.e. ½P"

i # ¼ 1& ½Pi#). The set of differential equations
as shown in Eq. (3) allows the simulation of a system of n
proteins in presence or absence of a ligand. For example,
for the 3-protein network shown in Fig. 1A these equations

would look like:

d½receptor#=dt ¼ ½receptor"# % 0:986 % ½protein1"#
& ½receptor# % ð½L# þ 0:007 % ½effector"#Þ,

d½protein1#=dt ¼ ½protein1"# % 0:04 % ½effector"#
& ½protein1# % 0:02 % ½receptor"#,

d½effector#=dt ¼ ½effector"# % 0:733 % ½receptor"#
& ½effector# % 0:726 % ½protein1"#. ð4Þ

4.2. In silico evolution

Using this generic model we can evaluate the response of
a given network to a given signal. This allows us to
simulate an evolutionary process in silico and evolve
networks that are capable of producing a certain response
to an incoming signal. The selection stage of the evolu-
tionary process requires a fitness function that captures the
possible selective pressures under which such response has
evolved. While it is plausible to use this generic model to
evolve various biological responses, here we use bacterial
chemotaxis pathway as a model system and evolve a
‘‘chemotactic’’ behavior. To do so, we treat the signal as
the concentration of a chemical attractant (i.e. a food
source) and the effector in our system as CheY, whose
active state concentration dictates the tumbling frequency
and hence the movement of the bacteria. We define the
fitness function based on the following observations made
on bacterial chemotaxis.
The ‘‘chemotactic’’ behavior employed by bacteria is

that of a biased random walk (Berg, 1983). Bacteria
explore the space by employing a certain tumbling
frequency in the absence of any food source. They then
decrease (increase) this tumbling frequency in increasing
(decreasing) food gradients in order to bias their random
walk towards higher food concentrations. The base
tumbling frequency of bacteria is not zero, enabling them
both to explore the space efficiently and to overcome the
issues related with living in an environment with a low
Reynolds number (Berg, 1983). Hence, we assume that the
main selective pressures on chemotactic behavior are the
ability to explore the environment while making maximal
gain out of available food sources. Here, we therefore
assume that there is an optimal tumbling frequency Ropt.. A
good responder should decrease (increase) its tumbling
frequency below (above) Ropt. in increasing (decreasing)
food gradients and should tumble with a frequency close to
Ropt. in absence of any food change. These two selective
pressures on the motility of bacteria are captured in the
following fitness function:

Fitness ¼
X

t

C % DF % ðRopt: & Ravg:Þ
! "

& ðRopt: & Ravg:Þ2
! "! "

.

(5)

Here, DF ¼ Ft+1&Ft and Ravg. ¼ (Rt+1+Rt)/2, where Rt

stands for the response of the network at time t (i.e. the
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on pathway dynamics 
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