Using Evolutionary Approaches To Study Biological Pathways

Orkun S. Soyer The Microsoft Research - University of Trento Centre for Computational and Systems Biology

Protein-protein interactions map from yeast. Jeong H. et. al., Nature 411, 2001

Proteins do interact...

... constituting biological pathways.

Studying Biological Pathways: Common Approaches

Experimental techniques

Which proteins are involved? How do specific proteins interact? What are the interaction kinetics?

Conventional Modeling

What are the response dynamics? How do they change with different conditions (e.g. under drug treatment)?

Pathway Discovery

Can we detect new pathways from low level data like protein sequences?

Large Scale Data Analysis

Are there any general network properties? Connectivity distribution, re-occuring interaction motifs, etc. "Design Principles"???

Studying Biological Pathways: "Limitations"

Experimental techniques

Time, techniques, and money System specific results

Conventional Modeling

Sparse data System specific results

Pathway Discovery

Usual suspects; reliability of data, algorithms, etc.

Large Scale Data Analysis Broad conclusions (too broad ?)

Bacterial Chemotaxis: The Behavior

Chemotaxis is a biased random walk:

Constant Tumbling Frequency


```
Decreasing Tumbling
Frequency
```

Bacterial Chemotaxis: The Pathway

Bacterial Chemotaxis Solved

Bacterial Chemotaxis Solved Or Not

Halobacterium salinarum

Escherichia Coli

А

Rhodobacter sphaeroides Helicobacter pylori

Evolutionary Approaches for Studying Biological Pathways

Abstract Models for Studying Biological Pathways

A Generic Pathway Model

Putting The Two Together: In Silico Evolution

Analysis of pathway evolution using generic, extendable pathway models

Fitness: Capturing Bacterial Chemotaxis

Chemotaxis is achieved via a **derivative-like** response:

 $\begin{array}{l} \begin{array}{l} \text{Chemotactic} \\ \text{Ability} \end{array} = \sum_{t} \left[C \cdot \left[\Delta F \cdot (R_{opt.} - R_{avg.}) \right] - \left[(R_{opt.} - R_{avg.})^2 \right] \right]. \\ \text{Reward food intake over a} \\ \text{time interval} \end{array} \right] - \left[(R_{opt.} - R_{avg.})^2 \right]. \\ \begin{array}{l} \text{Penalize deviation from a} \\ \text{base (optimum) response} \end{array} \right]. \end{array}$

Evolving Chemotaxis Pathways

Evolved Pathways

Are able to give a derivative-like response:

Evolved Pathways

Are able to mediate chemotaxislike behavior:

Evolved Pathways

protein 2

-0.934

-0.981

0.000

0.979

effector

-0.991

0.000

	receptor	protein 1	protein 2	protein 3	effector
receptor	0.000	-0.137	-0.990	-0.984	0.010
protein 1	0.574	0.000	-0.070	0.618	-0.050
protein 2	-0.303	-0.180	0.000	-0.086	0.150
protein 3	0.030	0.000	-0.040	0.000	0.000
effector	-0.995	-0.143	0.010	0.679	0.000

Important Interactions

Important Dynamical Features

Parameters For 3-protein Network

	receptor	protein 1	effector
receptor	0.000	-0.986	0.007
protein 1	0.020	0.000	-0.040
effector	-0.733	0.726	0.000

Distilling Key Features: Response Analysis

Evolutionary Systems Biology: Chemotaxis

Pathway => Dynamics => Behavior

Evolutionary Systems Biology: Chemotaxis

Behavior => Fitness => Evolution

Can pathways evolve that allow bacteria to find the food?

How would the structure/dynamics of these pathways change with environment/pathway constraints?

Do all bacteria evolve the same strategy (i.e. pathway structure)?

Do we find population wide variances?

A more realistic evolutionary setup

Evolution Of Chemotaxis

Evolution Of Chemotaxis Pathways

Non - Adaptive Chemotaxis is not due to

Non - Adaptive chemotaxis under fluctuating environments

Minimal Non-Adaptive Chemotaxis Mechanisms

Reality or Modeling Curiosity ?

Chemotaxis in absence of adaptation has already been observed in nature in *Rhodobacter sphaeroides* and in mutant strains of *Escherichia coli*.

Poole PS and Armitage JP, J. Bacteriology, 170, 1988 Barak R and Eisenbach M, Mol. Microbiology, 31, 1999

Pathways with non-adaptive dynamics

- possible existence in many bacterial species
- a simple mechanism to couple metabolic and/ or other signals to conventional chemotaxis
- evolutionary origins of chemotaxis

Insights from Evolutionary Systems Biology

Soyer OS, Pfeiffer T, Bonhoeffer S, JTB, 2006, 241(2) Goldstein RA, Soyer OS, *submitted*

Pathway Modularity

How does modularity arise in biological systems and how is it maintained?

b **C** Modularly Varying Goals: Fixed Goal: G1 = L and RG1 = L and R G2 = L or RRetina Retina Adaptation to alternating environments... Kashtan, N. & Alon, U. (2005) PNAS 102, 13773-8. T=0 T=0 QT=00 T=20 n=12 n=13 epoch 1: T=2 T=-1 epoch 2: T=1 OUTPUT OUTPUT

Selection for evolvability...

Kirschner, M. & Gerhart, J. (1998) PNAS 95, 8420-7.

Two responses mediated by different structures

Effector1

protein4

Effector1

The Model

(i.e. Protein Recruitment)

between existing proteins

Modularity maintenance depends on mutational mechanisms

Generation

Modularity evolution depends on initial pathway topology

random initial pathways of size 6

of size 7

of size 9

P(rcrtmnt) = 1.0

Random Initial Population Of Pathways With Size 9 1:0 1:0 0.8 0.8 0.6 0.6 Frequency Frequency 0.4 0.4 0.2 0.2 0.0 0:0 200 400 600 800 1000 0

600

Generation

Generation

800

1000

0

200

400

Generation

600

200

0

400

Generation

800

1000

200

400

Generation

600

800

1000

Duplications and pathway growth

Interaction Loss

Protein Recruitment

Protein duplications drive pathway evolution...

Generation

Interaction Formation

Protein Loss

Coefficient Change

Protein Duplication

New Answers To Old Questions Through Study of Evolution

Determinants of modularity are the relevant rates of different mutational events and the initial location of a pathway in topology space

Approach extendable to study

- Complexity

Natural

Evolution

- Modularity

Soyer OS, Bonhoeffer S, PNAS, 2006, 103(44)

- Soyer OS, BMC Evolutionary Biology, in print
- Robustness
- Evolvability

Modularity evolution depends on pathway topology

random initial pathways of size 6

of size 9

of size 7

P(rcrtmnt) = 1.0

Frequency

1000

1000

Pathway Evolution: A random walk in topology space

How does the topology space look like?

Topology space is big

	Ligand	PI*	P2*	P3*	P4*
PI ↔ PI*	0.5	0.0	0.0	0.0	0.0
P2 ↔ P2*	0.0	0.9	0.0	0.0	-0.5
P3 ↔ P3*	0.0	0.0	0.7	0.0	0.0
P4 ↔ P4*	0.0	0.0	0.0	-0.7	0.0

which topologies matter?

$$N_{params} = N_{prots}^2 - N_{prots}$$

$$N_{ntwrks} = N_{values}^{N_{params}} = 729$$
 for N = 3 and values = {-1,0,1}
= 531.444 for N = 4
> 3x10⁹ for N = 5

Topology space is heterogeneous

how do we classify topologies?

Topology space and pathway nature

how do we model topologies?

Topologies and Models: Biochemistry

Topologies and Models: Kinetics

Topology space for all 3-protein pathways

Binary Strength Kinetics {0 or 1}

Random Strength Kinetics [0, 1]

ID+IA+DD

Kinetics do not seem to affect overall distribution

What Determines Pathway Dynamics ? Topology or Kinetics

Topology Nr. 19

P1

(P2)	Model		Response Summary of 1000 Mutants						
S		Constant	Gauss-like	Derivative-like	Oscillatory	Bistable Switch	Integrator-like	Diversity	
	Null	0	0	0	0	0	1000	0.034	
-	SD	0	1000	0	0	0	0	0.034	
	SA	1000	0	0	0	0	0	0.039	
	SD+SA	2	998	0	0	0	0	0.036	

Topology Nr. 260

Model	Response Summary of 1000 Mutants							
	Constant	Gauss-like	Derivative-like	Oscillatory	Bistable Switch	Integrator-like	Diversity	
Null	554	0	0	0	167	279	0.549	
SD	23	460	103	413	0	0	1.391	
SA	1000	0	0	0	0	0	0.039	
SD+SA	19	979	2	0	0	0	0.078	

Topology Nr. 291

Model	Response Summary of 1000 Mutants							
	Constant	Gauss-like	Derivative-like	Oscillatory	Bistable Switch	Integrator-like	Diversity	
Null	4	996	0	0	0	0	0.039	
SD	0	306	305	388	0	0	1.585	
SA	2	998	0	0	0	0	0.036	
SD+SA	1	348	651	0	0	0	0.954	

Topology Nr. 526

Model	Response Summary of 1000 Mutants							
	Constant	Gauss-like	Derivative-like	Oscillatory	Bistable Switch	Integrator-like	Diversity	
Null	1000	0	0	0	0	0	0.039	
SD	8	468	153	359	0	0	1.468	
SA	1000	0	0	0	0	0	0.039	
SD+SA	4	991	5	0	0	0	0.081	

Answer depends on topology and biochemistry

Specific Topologies

Steady state concentration of active Protein 3

Solution of ODEs indicate neutral stability with respect to protein 3

$$P_i \xrightarrow{\sum_j k_{ij} [P_j^*]} P_i^*$$

 $Pi + Pi^* = const.$

In numerical simulations, protein 3 has specific SS value with changing active fraction of proteins at start of simulation.

Specific Topologies

Steady state concentration of active Protein 3

Topologies, Biochemistry, and Evolution

Biochemical processes, even those treated as negligable, can have important effects on pathway dynamics

Dimerization, auto phosphorylation might be important as determinants of dynamic behavior and robustness

Soyer OS, Salathe M, Bonhoeffer S, JTB, 2006, 238

- From Systems to Denavio
- Global Properties
- Design Principles ??

Theoretical Biology Group at ETH, Zürich

Richard Goldstein MRC, UK