
Introduction Hybrid Systems sCCP and Biomodeling sCCP and HS

Hybrid Systems and Systems Biology

Alberto Policriti

Dpt. of Mathematics and Informatics, University of Udine.

Applied Genomics Institute

October 23rd, 2007

A. Policriti Hybrid Systems and Systems Biology 1/41



Introduction Hybrid Systems sCCP and Biomodeling sCCP and HS

Outline

Hybrid Systems: de�nition and applications to Systems
Biology;

a Stochastic Process Algebra (SPA) for biological modeling:
sCCP;

from sCCP to ODE's;

problems and about ... being more �discrete�.
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A biological circuit: MAPKinase
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Circadian Clock (J. M. G. Vilar, H. Yuan Kueh, N. Barkai, and S. Leibler.

PNAS, 2002.)

A. Policriti Hybrid Systems and Systems Biology 3/41



Introduction Hybrid Systems sCCP and Biomodeling sCCP and HS

Circadian Clock

p_gate(αA, α
′
A, γA, θA,MA,A) ‖

p_gate(αR , α
′
R , γR , θR ,MR ,A) ‖

reaction(βA, [MA], [A]) ‖
reaction(δMA, [MA], []) ‖
reaction(βR , [MR ], [R]) ‖
reaction(δMR , [MR ], []) ‖
reaction(γC , [A,R], [AR]) ‖
reaction(δA, [AR], [R]) ‖
reaction(δA, [A], []) ‖
reaction(δR , [R], [])
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Modeling: Stochastic vs. Diff. Equations

Differential Equations

mature

computationally a�ordable (one run)

Stochastic something

precise

computationally costly (many runs!)
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Hybrid Systems

Many real systems have a double nature. They:

evolve in a continuous way,

are ruled by a discrete system.

Modeling?

hybrid systems/automata
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The Example

A thermostat model

Ẋ = −krX Ẋ = kh − krX

X < 15;X ′ = X

X ≥ 20;X ′ = X

Off On
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Hybrid Automata - Syntax

Alur et al. 1992

Definition (Hybrid Automaton - Syntax)

A tuple H = 〈Z ,Z ′,V,E, Inv ,Dyn,Act,Reset〉 where:

Z and Z ′ are varibles in Rk

〈V,E〉 is a graph

Each v ∈ V is labelled by Inv(v)[Z ] and Dyn(v)[Z ,Z ′,T ]

Each e ∈ E is labelled by Act(e)[Z ] and Reset(e)[Z ,Z ′]

We consider Dyn(v)[Z ,Z ′,T ] of the form Z ′ = pv (Z ,T ), where pv
is the solution of the vectorial �eld P(v).
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Hybrid Automata - Intuitively

Finite Automata plus Time

Time �ows when within states:

H evolves from Z to Z ′ in time T when Dyn(v)[Z ,Z ′,T ]

in mode v , Z must always satisfy Inv(v)[Z ]

H can cross e only if Act(e)[Z ]

when H crosses e, Reset(e)[Z ,Z ′]

A. Policriti Hybrid Systems and Systems Biology 8/41



Introduction Hybrid Systems sCCP and Biomodeling sCCP and HS

Hybrid Automata - States and Transitions

Definition (Hybrid Automaton State)

A state is a pair in V× Rk .

Definition (Continuous Transition)

〈v , r〉 t−→C 〈v , s〉 ⇐⇒

∃f : R+ 7→ Rk continuous such that
r = f (0), s = f (t), and ∀t ′ ∈
[0, t] the formulæ Inv(v)[f (t ′)] and
Dyn(v)[r , f (t ′), t ′] hold.

Definition (Discrete Transition)

〈v , r〉 〈v ,u〉−−−→D 〈u, s〉 ⇐⇒
〈v , u〉 ∈ E and Inv(v)[r ],
Act(〈v , u〉)[r ], Reset(〈v , u〉)[r , s],
and Inv(u)[s] hold.
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Hybrid Automaton's Traces and Reachability

Definition (Hybrid Automaton Trace)

A trace `0 . . . `n from `0 to `n is a sequence of admissible states

such that either `i−1
t−→C `i or `i−1

e−→D `i for all i ∈ [1, n].

Definition (Hybrid Automaton Reachability)

q ∈ Rk is reachable from p ∈ Rk if there exists a trace from a state
〈v , p〉 to a state 〈u, q〉.
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Reachability Problem

Reachability

Given two sets S and T , is there any p ∈ S and q ∈ T such that q
is reachable from p?

Reachability can be used to verify system's

properties

φ is always false in H ⇐⇒ Sat(φ) is not reachable from H's
initial states
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Decidability of the Reachability Problem

Question

Can I say when T is reachable from S?
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Decidability of the Reachability Problem

Question

Can I say when T is reachable from S?

Answer

The halting problem for 2-counters machines can be reduced to a
reachability problem over hybrid automata (Alur et al. 1995).
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Examples of use of HS for Systems Biology

Escherichia coli

a bacterium detecting the food
concentration through a set of
receptors;

moving by �agellar rotations.

Depending on the concentration of
attractans and repellents, E. coli responds
to stimuli in one of two ways:

�RUNS� � it moves in a straight line
by moving its �agella
counterclockwise (CCW)

�TUMBLES� � it randomly changes
its heading by moving its �agella
clockwise (CW)

E. Coli Model

Y Y p B Bp

A

W

Tar

Z

CW rotation

Demethylation
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Examples of use of HS for Systems Biology

E. coli IDA Model

y = Yp

Y0
> θ ∧ ω′ = +1 ∧ Y ′P = YP ∧ Y ′0 = Y0 ∧

B′P = BP ∧ B′0 = B0 ∧ Z ′ = Z ∧ P ′ = P

y = Yp

Y0
< θ ∧ ω′ = −1 ∧ Y ′P = YP ∧ Y ′0 = Y0 ∧

B′P = BP ∧ B′0 = B0 ∧ Z ′ = Z ∧ P ′ = P

ω = −1

ẎP = kyP (Y0 − YP )− k−yZYP

ḂP = kbP (B0 −BP )− k−bBP

P = LT2p + LT3p + LT4p+
T2p + T3p + T4p

ω = +1

ẎP = kyP (Y0 − YP )− k−yZYP

ḂP = kbP (B0 −BP )− k−bBP

P = LT2p + LT3p + LT4p+
T2p + T3p + T4p

RUN [CCW] TUMBLE [CW]

A. Casagrande et al., Independent Dynamics Hybrid Automata in Systems

Biology, AB('05) Tokyo, 2005
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Examples of use of HS for Systems Biology

Parameters in Genetic Regulatory Networks

Use �well behaving�
di�erential equations (e.g.
piece-wise multi a�ne
functions);

use temporal logic to
express dynamical
properties;

partition the
parameters'space in such
a way to guarantee
validity of temporal
properties.

PM-Systems Model Checking

Genetic Regulatory Networks with

Applications to Synthetic Biology,

G. Batt and C. Belta

(Typical) Key Property

Theorem (Multia�ne functions on hyperrectangular

polytopes) f multia�ne function and P

hyperrectangular polytope:

f (P) ⊆ hull({f (v) | v ∈ VP}),

that is ∀x ∈ P, f (x) is a linear combination of
the values of f at vertices of P.
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Examples of use of HS for Systems Biology

Switching among simulation techniques

Use di�erent simulation techniques as the number of molecule
varies;

1 stochastic simulation for low numbers;

2 ode simulation for high numbers;

Alur et al. Hybrid Modeling and Simulation of Biochemical

Networks
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Modeling: Stochastic vs. Diff. Equations

Differential Equations

mature

computationally a�ordable (one run)

Stochastic something

precise

computationally costly (many runs!)
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A Bridge: our attempt

First step

Use a Stochastic version of Concurrent Constraint Programming as
Stochastic Process Algebra tool.

Problems! (with behavioral equivalence)

Second step

Introduce Hybrid Systems.

Modes of the HS ⇔ Combinations of Stochastic choices
Dynamics ⇔ Ad-hoc edge's variables with activations constrained

by rates
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The General View

Find the balance

1 Use the continuous simulation to decrease cost.

2 (Re)Introduce discrete transition to maintain behavioral
equivalence.
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Stochastic Concurrent Constraint

Programming

What is

A SPA with a computational �twist�.

Maintains a form of local storage.

Keeps separated the description of interactions and the
management of data for computations.

(Naturally) Introduce functional rates.
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Concurrent Constraint Programming

Constraint Store

In this process algebra, the main objects are constraints , which are
formulae over an interpreted �rst order language (i.e. X = 10,
Y > X − 3).

Constraints can be added to a "container", the constraint store, but can
never be removed.

Agents

Agents can perform two basic operations on this
store (asynchronously):

Add a constraint (tell ask)

Ask if a certain relation is entailed by the
current con�guration (ask instruction)

V. Saraswat, Concurrent Constraint Programming, MIT press, 1993

Syntax of CCP

Program = Decl.A

D = ε | Decl.Decl | p(x) : −A

A = 0

| tell(c).A
| ask(c1).A1 + ask(c2).A2

| A1 ‖ A2 | ∃xA | p(x)
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Syntax of sCCP

Syntax of Stochastic CCP

Program = D.A

D = ε | D.D | p(~x) : −A

A = 0 | tell∞(c).A | M | ∃xA | A ‖ A
M = π.G | M + M

π = tellλ(c) | askλ(c)
G = 0 | tell∞(c).G | p(~y) | M | ∃xG | G ‖ G

L. Bortolussi, Stochastic Concurrent Constraint Programming, QAPL, 2006

Stochastic Rates

Rates are functions from the constraint store C to positive reals:

λ : C −→ R+.
Rates can be thought as speed or duration of communications.
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sCCP � technical details

Operational Semantics Show Details

There are two transition relations, one instantaneous (�nite and
con�uent) and one stochastic.

Traces are sequences of events with variable time delays among them.

Discrete vs. Continuous Semantics Show Details

The operational semantics is abstract w.r.t. the notion of time: we can
map the labeled transition system into a discrete or a continuous time
Markov Chain.

Implementation

We have an interpreter written in
Prolog, using the CLP engine of

SICStus to manage the constraint
store.

E�ciency issues.

Stream Variables

Quantities varying over time can
be represented in sCCP as
unbounded lists.

Hereafter: special meaning of
X = X + 1.
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Continuous Time Markov Chains

A Continuous Time Markov Chain (CTMC) is a direct graph with edges
labeled by a real number, called the rate of the transition (representing the
speed or the frequency at which the transition occurs).

In each state, we select the next state
according to a probability distribution

obtained normalizing rates (from S to S1 with
prob. r1

r1+r2
).

The time spent in a state is given by an
exponentially distributed random variable,
with rate given by the sum of outgoing

transitions from the actual node (r1 + r2).
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Biochemical Arrows to sCCP processes

R1 + . . . + Rn →k P1 + . . . + Pm

reaction(k, [R1, . . . ,Rn ], [P1, . . . ,Pm ]) : −
askrMA(k,R1,...,Rn )

(∧n
i=1(Ri > 0)

)
.(

‖ni=i tell∞(Ri = Ri − 1) ‖mj=1 tell∞(Pj = Pj + 1)
)
.

reaction(k, [R1, . . . ,Rn ], [P1, . . . ,Pm ])

R1 + . . . + Rn 

k1
k2

P1 + . . . + Pm
reaction(k1, [R1, . . . ,Rn ], [P1, . . . ,Pm ]) ‖
reaction(k2, [P1, . . . ,Pm ], [R1, . . . ,Rn ])

S 7→E
K,V0

P

mm_reaction(K ,V0, S,P) : −
askrMM (K,V0,S)(S > 0).

(tell∞(S = S − 1) ‖ tell∞(P = P + 1)) .
mm_reaction(K ,V0, S,P)

S 7→E
K,V0,h

P

hill_reaction(K ,V0, h, S,P) : −
askrHill (K,V0,h,S)(S > 0).

(tell∞(S = S − h) ‖ tell∞(P = P + h)) .
Hill_reaction(K ,V0, h, S,P)

where rMA(k,X1, . . . ,Xn) = k·X1 · · ·Xn ; rMM (K ,V0, S) =
V0S

S + K
; rHill (k,V0, h, S) =

V0S
h

Sh + Kh

A. Policriti Hybrid Systems and Systems Biology 23/41



Introduction Hybrid Systems sCCP and Biomodeling sCCP and HS

Enzymatic reaction

S + E 
k1
k−1

ES →k2 P + E

Mass Action Kinetics

enz_reaction(k1, k−1, k2, S,E ,ES,P) :-
reaction(k1, [S,E ], [ES]) ‖
reaction(k−1, [ES], [E , S]) ‖
reaction(k2, [ES], [E ,P])

Mass Action Equations

d [ES]

dt
= k1[S][E ]− k2[ES]− k−1[ES]

d [E ]

dt
= −k1[S][E ] + k2[ES] + k−1[ES]

d [S]

dt
= −k1[S][E ]

d [P]

dt
= k2[ES]

Michaelis-Menten Equations

d [P]

dt
=

V0S
S+K

V0 = k2[E0]

K =
k2+k−1

k1

Michaelis-Menten Kinetics

mm_reaction

(
k2 + k−1

k1
, k2 · E , S,P

)
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MAP-Kinase cascade

enz_reaction(ka, kd , kr ,KKK ,E1,KKKE1,KKKS) ‖
enz_reaction(ka, kd , kr ,KKKS,E2,KKKSE2,KKK) ‖
enz_reaction(ka, kd , kr ,KK ,KKKS,KKKKKS,KKP) ‖
enz_reaction(ka, kd , kr ,KKP,KKP1,KKPKKP1,KK) ‖

enz_reaction(ka, kd , kr ,KKP,KKKS,KKPKKKS,KKPP) ‖
enz_reaction(ka, kd , kr ,KP,KP1,KPKP1,K) ‖
enz_reaction(ka, kd , kr ,K ,KKPP,KKKPP,KP) ‖

enz_reaction(ka, kd , kr ,KKPP,KKP1,KKPPKKP1,KKP) ‖
enz_reaction(ka, kd , kr ,KP,KKPP,KPKKPP,KPP) ‖
enz_reaction(ka, kd , kr ,KPP,KP1,KPPKP1,KP)
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Repressilator

neg_gate(0.1, 1, 0.0001,A,C) ‖
reaction(0.0001, [A], []) ‖

neg_gate(0.1, 1, 0.0001,B,A) ‖
reaction(0.0001, [B], []) ‖

neg_gate(0.1, 1, 0.0001,C ,B) ‖
reaction(0.0001, [C ], [])
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Connecting SPA and ODE models
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From sCCP to ODE

What?

We want to associate a set of ODE to an sCCP program (written in a
restricted syntax).

Why?

ODE can be numerically simulated faster than stochastic processes.

On the market...

There are (syntactic) methods to write set of ODEs for PEPA and stochastic
π-calculus, looking at the speed of creation and destruction of terms (We did
the same for sCCP).
However, the ODE can show a behavior di�erent from that of SPA models.
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From sCCP to ODE: example

Idea

Collapse all instantaneous transitions following a stochastic one and
add their updates to the edge's label denoting such a transition.

Reduced Transitions Systems

Associate a labeled graph to each sequential component of an
sCCP program:

edges are transitions and are labeled by a set of guards,
a set of updates of variables of the store, and the
corresponding rates;

nodes are stochastic choices.

Procedure calls are resolved by inserting a copy of the called
procedure.

Syntactic restrictions are necessaries.
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From sCCP to ODE: example

Example

A :- askλ1(true).tell∞(X = X + 1).B
B :- tellλ2(X = X − 1).A

The RTS
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From sCCP to ODE: example

Interaction matrix andx reaction vector

I =

t1 t2
X 1 −1
A −1 1
B 1 −1

r =

(
λ1 · A
λ2 · B

)

ode = I · r

ode


Ẋ = λ1 · A− λ2 · B
Ȧ = −λ1 · A + λ2 · B
Ḃ = λ1 · A− λ2 · B
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The strange beast of repressilator

Modeling 3 Negative Gene Gates

Neg(X ,R) :- tellkp(X = X + 1).Neg(X ,R)
+ askkbR(R ≥ 1).askku(true).Neg(X ,R)

Degrade(X ) :- askkdX (X > 0).tell∞(X = X − 1).Degrade(X )

Neg(A,C ) ‖ Neg(B,A) ‖ Neg(C ,B) ‖ Degrade(A) ‖ Degrade(B) ‖
Degrade(C )
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Ȧ = kpYA − kdA

Ḃ = kpYB − kdB

Ċ = kpYC − kdC

ẎA = kuZA − kbYAC

ẎB = kuZB − kbYBA

ẎC = kuZC − kbYCB

ŻA = kbYAC − kuZA

ŻB = kbYBA− kuZB

ŻC = kbYCB − kuZC

A. Policriti Hybrid Systems and Systems Biology 33/41
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The strange beast of repressilator

Repressilator with gene gates

Repressilator: ODE from sCCP

Repressilator in sCCP

Repressilator: average of sCCP model
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From sCCP to Hybrid Automata

What?

We want to associate an hybrid system to a sCCP network.

Why?

The mixed discrete/continuous dynamics of HS is more natural than
simple ODE, as it can preserve some logical structure of sCCP networks.

Hybrid automata are equipped with well developed analysis methods.

How?

The separation between constraint store and logical description of agents
makes easy to identify (discrete) modes of the automata

Activation conditions need to look at the temporal semantics of
stochastic actions.
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Example: a �distilled� Repressilator

A :- tellk+
(X = X + 1).A

+ askk−X
(X > 0).

tell∞(X = X − 1).A
+ askk0

(true).B

B :- tellk−
(X = X + 1).B

+ askk+X
(X > 0).

tell∞(X = X − 1).B
+ askk0

(true).A
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HA associated to an sCCP-ntwrk

Ideas

localize the construction to looping edges in order to
determine �ow conditions;

use (non constant) rates to govern variables associated to
edges;

use variables associated to edges in activation conditions.

A. Policriti Hybrid Systems and Systems Biology 37/41



Introduction Hybrid Systems sCCP and Biomodeling sCCP and HS

HA associated to an sCCP-ntwrk

N = A1 ‖ . . . ‖ AM be an sCCP-network.

Definition (sketch)

1 control modes Σ = (σ1, . . . , σM);

2 control edges corresponding to non-looping arcs tij ∈ Ti of RTS(Ai );

3 variables: stream variables X1, . . . ,Xk of N, plus one variable Yi,j for
each RTS-edge tij ;

4 �ow conditions odeΣ =
∑M

i=1 odei,σi , where odei,σi = Ii,σi · ri,σi .
Moreover, if the label of tij is (gij , cij , λij ), Ẏij = λij (X1, . . . ,Xk);

5 activation condition corresponding to tij , is the predicate gij ∧ Yij ≥ 1,
where gij is the guard predicate of the transition;

6 resets corresponding to tij , with cij =
∧hij
k=1 Xik

= Xik
+ δij , hij∧

k=1

X ′ik = Xik
+ δij

 ∧
 ∧

tij∈Ti

Y ′ij = 0

 .
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Hybrid Repressilator

Repressilator with gene gates

Repressilator: ODE from sCCP

Repressilator in sCCP

Hybrid Repressilator from sCCP
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Conclusions

HS for: biochemical reactions, genetic networks, etc.

SPA to ODE: problems (the stochastic component averaged
away).

Localize ODE's and maintain a discrete portion of the
network: Hybrid Systems (with the right control variables).

Future

De�ne a lattice of HSs.

Formalize the behavioral properties to guide/determine the
level of discreteness to maintain.

A. Policriti Hybrid Systems and Systems Biology 41/41


	Introduction
	Hybrid Systems
	Stochastic Concurrent Constraint Programming
	sCCP and Hybrid Systems

