Mirror from https://sites.google.com/a/aixia.it/mldm2016/home
Fifth Italian Workshop on
Machine Learning and Data Mining
MLDM.it 2016

28-29 November 2016
Genoa, Italy

Workshop of the XV AI*IA Conference of the Italian Association for Artificial Intelligence

Following the success of the first four editions of the Italian Workshop on Machine Learning and Data Mining (MLDM.it) at the AI*IA Symposiums and AI*IA Conferences on Artificial Intelligence, this workshop aims at bringing together researchers actively involved in the fields of machine learning, data mining, deep learning, pattern recognition, and knowledge discovery.

During the workshop, researchers will have the opportunity to present their recent results and discuss problems and challenges relevant to the community.
Following the tradition of MLDM.it, presentations are upon invitation.
Attendance to MLDM.it is open and welcome to all the AI*IA Conference participants.

The meeting is organized by the AI*IA Working Group on Machine Learning and Data Mining whose general goal is to promote Italian scientific activities in the field of machine learning and data mining, and foster collaborations between research groups.
See the last MLDM.it (2014 and 2015) editions at the following URL:

For registration please visit the AI*IA2016 webpage.

Advisory Board

Workshop Organizers

28 November 2016 - DAY 1
9.00 - 9.10  Welcome
 Session on "Learning Theory, Regularization and Feature Learning"  
9.10 - 9.30  Less is more: optimal learning by subsampling and regularization  L. A. Rosasco , R. Camoriano, A. Rudi
9.30 - 9.50  PAC-Bayesian and Stability Analysis of Distribution Dependent Priors  L. Oneto, D. Anguita
9.50 - 10.10  A constrained machine-learning paradigm  G. Gnecco, M. Gori, S. Melacci, M. Sanguineti
10.10 - 10.30  Fast and Scalable Stochastic Frank-Wolfe Methods for Lasso  E. Frandi, R. Nanculef, S. Lodi, C. Sartori, J. A. K. Suykens
 Coffee Break  
11.00 - 11.20  Tensor decomposition methods for machine learning  M. Donini, M. Pontil
11.20 - 11.40  Human Intention Prediction with Unsupervised Feature Learning  R. Volpi, A. Zunino, J. Cavazza, C. Becchio, V. Murino
 Session on "Ensemble Methods"  
11.40 - 12.00  A hyper-ensemble approach for the genome-wide prediction of disease and trait-associated genetic variants  M. Schubach, M. Re, P. N. Robinson, G. Valentini
12.00 - 12.20  A theoretical and Experimental Analysis of Majority and Plurality Voting in Classification  L. Saitta
 Lunch Break  
 Session on "Learning with Complex and Networks Data"  
14.20 - 14.40  Learning Neural-Generative Models for Structured Data  D. Bacciu
14.40 - 15.00  Survival Factorization for Topical Cascades on Diffusion Networks  G. Manco, N. Barbieri, E. Ritacco
15.00 - 15.20  Machine Learning and Data Mining Techniques for Efficient Social Recommender Systems  C. Biancalana, D. Feltoni Gurini, F. Gasparetti, A. Micarelli, G. Sansonetti
15.20 - 15.40  Learning over networks with non-convex cost functions  S. Scardapane
15.40 - 16.00  Clustering non-stationary data streams  A. Abdullatif, F. Masulli, S. Rovetta
Coffee Break    
 Session on "Applications"  
16.30 - 16.50  A Multi-Objective Deep Learning approach to estimate the risk of Neuroblastoma disease  C. Zarbo, V. Maggio, M. Chierici, G. Jurman, C. Furlanello
16.50 - 17.10  Machine learning for data-driven management of large computing systems  A. Sirbu, O. Babaoglu
17.10 - 18.00  Discussion: The future of MLDM.it  
29 November 2016 - DAY 2
9.30 - 9.40  Welcome
 Session on "Probabilistic Learning and Hybrid Approaches"  
9.40 - 10.00  Learning and Reasoning in Hybrid Domains  A. Passerini
10.00 - 10.20  Statistical comparison of classifiers through Bayesian hierarchical modelling  G. Corani
10.20 - 10.40  Scalable Statistical Relational Learning  F. Riguzzi, E. Bellodi, R. Zese, G. Cota, E. Lamma
10.40 - 11.00  The Multilabel Naive Credal Classifier  A. Antonucci
 Coffee Break  
 Session on "Kernel Methods"  
11.30 - 11.50  Learning Deep Kernels in the Space of Dot Product Polynomials  M. Donini, F. Aiolli
11.50 - 12.10  Brain Networks Characterization Using Graph Laplacians  D. Sona, L. Dodero, V. Murino
12.10 - 12.40  Nystrom embeddings for Large-scale Kernel-based Language Learning  D. Croce and R. Basili
12.40 - 13.00  Conclusion remarks  
Lunch Break     

Note on registration: the option "Workshops only (28 Nov)" is also valid on 29 Nov morning for MLDM.it participants. 
For further information see AI*IA contacts at www.aixia2016.unige.it