(Cognome)	(Nome)	(Matricola)

Esercizio 1. Un'industria automobilistica produce 3 diversi modelli di autovettura: classic, elegance e sport. Ogni autovettura deve essere lavorata in tre diversi stabilimenti A, B e C. I tempi necessari alla lavorazione sono riportati, in minuti, nella seguente tabella, insieme al profitto netto in euro realizzato per autovettura:

	classic	elegance	sport
A	20	30	62
В	31	42	51
$^{\mathrm{C}}$	16	81	10
Profitto	10000	15000	22000

La capacità produttiva giornaliera dei tre stabilimenti è limitata ad 8 ore per gli stabilimenti A e B ed a 5 ore per lo stabilimento C. Il numero di autovetture sport non deve superare il 20% del totale, mentre il numero di autovetture classic deve costituire almeno il 40% della produzione complessiva. Tenendo conto che l'industria può vendere tutte le autovetture prodotte, determinare le quantità giornaliere da produrre per ciascun modello, in modo da massimizzare i profitti, rispettando i vincoli di produzione.

variabili decisionali:		
modello:		

Esercizio 2. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max 9 \ x_1 + x_2 \\ x_2 \le 0 \\ -x_1 + x_2 \le 2 \\ x_1 \le 0 \\ -x_2 \le 4 \\ -x_1 - x_2 \le 6 \\ -x_1 + 2 \ x_2 \le 2 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x =		
{1, 5}	y =		

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 2.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{2,6}					
2° iterazione						

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 18 x_1 + 5 x_2 \\ 12 x_1 + 10 x_2 \le 47 \\ 6 x_1 + 17 x_2 \le 66 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$v_I(P) =$$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 5. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	23	31	32	20
2		11	16	24
3			15	18
4				22

a) Trovare una valutazione inferiore del valore ottimo calcolando l'1-albero di costo minimo.

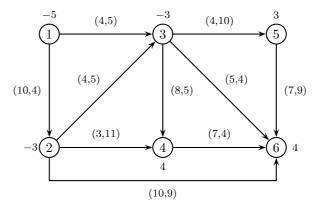
1-albero: $v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando l'1-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{13} , x_{14} , x_{12} .

Esercizio 6. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

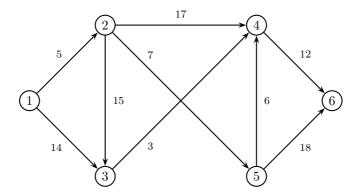


Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (2,3) (3,4)				
(3,5)(5,6)	(1,3)(3,6)	x =		
(1,3) $(2,3)$ $(2,4)$				
(2,6)(3,5)	(3,4)(4,6)	$\pi = (0,$		

Esercizio 7. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 6.

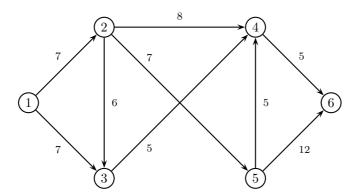
	1° iterazione	2° iterazione
Archi di T	(1,3) (2,3) (2,4) (3,5) (4,6)	
Archi di U	(1,2) (3,4)	
x		
π		
Arco entrante		
ϑ^+, ϑ^-		
Arco uscente		

Esercizio 8. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.



	iter 1		iter 1 iter 2		iter 3		iter 4		iter 5		iter 6	
	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato												
nodo 2												
nodo 3												
nodo 4												
nodo 5												
nodo 6												
$\stackrel{\text{insieme}}{Q}$												

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.



cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

SOLUZIONI

Esercizio 1. Variabili decisionali:

 x_1 = numero di autovetture classic prodotte x_2 = numero di autovetture elegance prodotte x_3 = numero di autovetture sport prodotte

Modello:

$$\begin{cases} \max & 10000x_1 + 15000x_2 + 22000x_3 \\ 20x_1 + 30x_2 + 62x_3 \le 480 \\ 31x_1 + 42x_2 + 51x_3 \le 480 \\ 16x_1 + 81x_2 + 10x_3 \le 300 \\ x_3 \le 0.2(x_1 + x_2 + x_3) \\ x_1 \ge 0.4(x_1 + x_2 + x_3) \\ x_1, x_2, x_3 \in \mathbb{N} \end{cases}$$

Esercizio 2.

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
{1, 2}	x = (-2, 0)	SI	SI
{1, 5}	y = (-8, 0, 0, 0, -9, 0)	NO	NO

Esercizio 3.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{2, 6\}$	(-2, 0)	(0, -19, 0, 0, 0, 10)	2	0, 1	1
2° iterazione	$\{1, 6\}$	(-2, 0)	(19, 0, 0, 0, 0, -9)	6	2	3

Esercizio 4.

a) sol. ottima del rilassamento = $\left(\frac{47}{12},0\right)$ $v_S(P)=70$ b) sol. ammissibile = (3,0) $v_I(P)=54$

c)

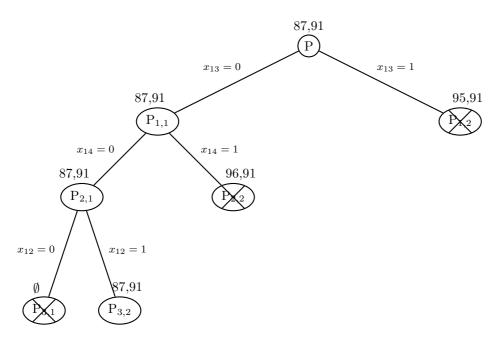
r = 1 $x_1 \leq 3$

 $6x_1 + 5x_2 \le 23$ r = 4

a) 1-albero: (1, 2) (1, 5) (2, 3) (3, 4) (3, 5) $v_I(P) = 87$

b) ciclo: 4 - 3 - 2 - 1 - 5 $v_S(P) = 91$

c)



Esercizio 6.

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (2,3) (3,4)				
(3,5) (5,6)	(1,3)(3,6)	x = (0, 5, 3, 0, 0, 4, 3, 4, 0, 0)	SI	SI
(1,3) $(2,3)$ $(2,4)$				
(2,6)(3,5)	(3,4) (4,6)	$\pi = (0, 0, 4, 3, 8, 10)$	NO	SI

Esercizio 7.

	1° iterazione	2° iterazione				
Archi di T	(1,3) $(2,3)$ $(2,4)$ $(3,5)$ $(4,6)$	(1,3) (2,3) (2,4) (3,5) (4,6)				
Archi di U	(1,2) (3,4)	(3,4)				
x	(4, 1, 4, 3, 0, 5, 3, 0, 4, 0)	(0, 5, 0, 3, 0, 5, 3, 0, 4, 0)				
π	(0, 0, 4, 3, 8, 10)	(0, 0, 4, 3, 8, 10)				
Arco entrante	(1,2)	(3,4)				
ϑ^+,ϑ^-	$4\;,4$	8,0				
Arco uscente	(1,2)	(2,3)				

Esercizio 8.

a)

	iter	1	iter	: 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato	1		2		5		3		4		6	
nodo 2	5	1	5	1	5	1	5	1	5	1	5	1
nodo 3	14	1	14	1	14	1	14	1	14	1	14	1
nodo 4	$+\infty$	-1	22	2	18	5	17	3	17	3	17	3
nodo 5	$+\infty$	-1	12	2	12	2	12	2	12	2	12	2
nodo 6	$+\infty$	-1	$+\infty$	-1	30	5	30	5	29	4	29	4
$\stackrel{\text{insieme}}{Q}$	2,	3	3, 4	, 5	3, 4	1, 6	4,	6	6	3	Q)

b)

cammino aumentante	δ	x	v
1 - 2 - 4 - 6	5	(5, 0, 0, 5, 0, 0, 5, 0, 0)	5
1 - 2 - 5 - 6	2	(7, 0, 0, 5, 2, 0, 5, 0, 2)	7
1 - 3 - 4 - 2 - 5 - 6	5	(7, 5, 0, 5, 7, 5, 5, 0, 7)	12

Taglio di capacità minima: $N_s = \{1,3\}$ $N_t = \{2,4,5,6\}$