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1. INTRODUCTION

The growing interest in vector problems, both from a theoretical

1 Sections 1 and 2 are due to F. Giannessi; Sections 3,5,6,9,11, are
due to G. Mastroeni; Sections 4,7,8,10 are due to L. Pellegrini.
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point of view and as it concerns applications to real problems, asks
for a general scheme which embraces several existing developments
and stimulates new ones.

The present paper aims at contributing to set up such a scheme,
by taking into account recent results. Indeed, a first proposal in this
direction was made in [18]. It has produced some developments in
the field of Vector Optimization Problems (for short, VOP): initially
in [14]; subsequently, by exploiting the approach of [19], in [30,31];
recently, in [32,5,23]. The hints contained in [18,19] have been taken
by Chen and other Authors in the field of Vector Variational In-
equalities (for short, VVI); see References on VVI at the end of this
Volume.

As far as VOP are concerned, we note that, several years after
[18], some aspects of the image space analysis proposed in [18] have
appeared in some papers independently from each other and from
[18]; see [2,3,9,10,15–17].

Sects. 2–4 contain the general Image Space (for short, IS) anal-
ysis and separation theory for VOP as concerns both the generalized
Pareto case and the so–called weak case. This analysis is extended
to VVI in Sect. 9. Then, it is shown how to derive, from the general
separation theory, necessary optimality conditions for VOP (Sect.
5), saddle point optimality conditions for VOP (Sect. 6), duality for
VOP (Sect. 7), scalarization (Sect. 8 for VOP and Sect. 10 for VVI)
and penalization (Sect. 11).

Since the main scope of the present paper is not the existence
of extrema, in what follows the assumptions on their existence will
be understood.

2. IMAGE SPACE AND SEPARATION FOR VOP

Let the positive integers `,m, n and the cone C ⊂ IR` be given.
In the following it will be assumed that C is convex, closed and
pointed with apex at the origin and with intC 6= ∅, namely with
nonempty interior 2. Inclusion (with possible coincidence) and strict

2 Some of the propositions which will be established do not require
all these assumptions on C.
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inclusion (without coincidence) will be denoted by ⊆ and ⊂, respec-
tively.

Let us consider the vector–valued functions f : IRn → IR`,
g : IRn → IRm, and the subset X ⊆ IRn. We will consider the
following vector minimization problem, which is called generalized
Pareto problem:

(2.1) minC\{0} f(x) , subject to x ∈ K := {x ∈ X : g(x) ≥ 0},

where minC\{0} marks vector minimum with respect to the cone
C\{0} : y ∈ K is a (global) vector minimum point (for short, v.m.p.)
of (2.1), iff

(2.2) f(y) 6≥C\{0} f(x) , ∀x ∈ K,

where the inequality means f(y)− f(x) /∈ C\{0}. At C = IR`
+, (2.1)

becomes the classic Pareto vector problem.
A vector minimization problem which is often associated to (2.1)

is the following one, called weak vector problem:

(2.3) min intC f(x) , s.t. x ∈ K,

where min intC marks vector minimum with respect to the cone
intC : y ∈ K is a (global) v.m.p. of (2.3), iff

(2.4) f(y) 6≥ intC f(x) , ∀x ∈ K,

where the inequality means f(y)− f(x) /∈ intC. At C = IR`
+, (2.3)

is called weak vector Pareto problem.
Problem (2.3) is obviously different from (2.1), since different

cones identify different vector problems. The term “weak” comes
from the following tradition. Notwithstanding the fact that (2.1) and
(2.3) are distinct problems, since the solutions of (2.1) are solutions
also of (2.3) (but not necessarily vice versa), then the solutions of
(2.3) are often called “weak solutions” of (2.1). It would be better to
say that being a solution to (2.3) is necessary in order to be a solution
to (2.1). Indeed, the term “weak” is misleading and in contrast with
its use in other branches of Mathematics; “relaxed” would be a more
appropriate term. Instead of cutting off the entire3 frt C we might
subtract any part of it obtaining several “relaxations” of (2.1).

3 frt denotes frontier.
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It is trivial to note that (2.2) is satisfied iff the system (in the
unknown x):

(2.5) f(y)− f(x) ≥C\{0} 0 , g(x) ≥ 0 , x ∈ X

is impossible. Consider the sets:

H := {(u, v) ∈ IR`× IRm : u ≥C\{0} 0 , v ≥ 0} = (C\{0})× IRm
+ ,

K(y) := {(u, v) ∈ IR`× IRm : u = f(y)− f(x) , v = g(x), x ∈ X}.

In what follows, when there is no fear of confusion, K(y) will be
denoted merely by K. H and K are subsets of IR`+m, which is called
image space; K is called the image of (2.1). We see that (2.1) is
equivalent – through the mapMy(x) := (f(y)− f(x), g(x)) – to the
following vector maximization problem:

(2.6) maxC\{0} u , s.t. (u, v) ∈ K ∩ (IR`× IRm
+ ) ,

where maxC\{0} marks vector maximum with respect to the cone
C\{0} : (ū, v̄) ∈ K ∩ (IR`× IRm

+ ) is a vector maximum point of (2.6)
iff

(2.7) ū 6≤C\{0} u , ∀(u, v) ∈ K ∩ (IR`× IRm
+ ).

(2.6) is called image problem associated to (2.1).
Let K0 and K0 denote the sets of solutions of (2.1) and (2.6),

respectively; of course, K0 = My(K0). We observe that if K is
compact, f and g continuous, then K is compact. If K is a polytope,
f linear and g affine, then K is a polytope; in this case K0 ⊆ frt K
and K0 ⊆ frt K. If K, f and −g are convex, then K is not necessarily
convex; this might seem a drawback; it is easy to overcome it by
replacing equivalently K with a wider set (see (2.8)′ below), which is
convex.

The systematic investigation of the relations between the prop-
erties of (2.1) and those of (2.6) is substantially still to be done. This
aspect is important, not only for the development of the theory,
but also for the construction of algorithms. Indeed, the investiga-
tions done in the IS have occurred as an auxiliary step toward other
achievements. For instance, in [2,3,15] the main scope is the defini-
tion of algorithms for solving (2.1); they take great advantage from
the analysis in the IS, notwithstanding the fact that it is limited.
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With regard to the theory, even existence theorems can receive
improvements. In the scalar case, the analysis in the IS has led to
extend substantially the known existence theorems [40] and, above
all, to give a “source” for deriving theorems; it would be interesting
to extend these results to the vector case.

The analysis carried out in the present paper is based on a
generic cone C, instead of the classic IR`

+. This has several ad-
vantages. Apart from the fact that the ordering criterion might be
expressed by a cone C 6= IR`

+, even if it is exactly IR`
+, we might

desire to cut off certain “irregular” cases. More precisely, consider
the class where: (i) a nonzero element of the ordering cone C is limit
point of f(y) − f(K); or (ii) an element of H is limit point of a se-
quence of elements of K; or (iii) the Bouligand tangent cone to K
at the origin intersects H. These cases (which would be extremely
interesting to characterize in terms of C,X, f and g) might represent
undesirable situations, in the sense that small perturbations in the
data might delete the optimality of a v.m.p. . Drawback (i) can be
overcome by replacing, in (2.1) and (2.2), the ordering cone with a
cone C ′ with apex at the origin and such that C\(0) ⊂ intC ′. In this
case a v.m.p. of (2.1) is called proper efficient v.m.p. (see Definition
3.1.8 of [39]). If C = IR`

+, the previous definition is equivalent to the
following one [39]: y ∈ K is a proper Pareto minimum point (or is a
v.m.p. of (2.1) at C ′ ⊃ IR`

+) iff ∃M > 0, such that

x ∈ K
fi(x) < fi(y)

}
⇒

{
∃j such that fj(x) > fj(y) and
fi(y)− fi(x) ≤ −M [fj(y)− fj(x)].

When drawback (ii) happens, which is more general that (i), since
the elements of the sequence in (ii) are not necessarily images of
elements of K, then replacing C with C ′ may not work; namely,
a proper efficient v.m.p. may continue to suffer from the above–
mentioned “instability”.

Drawbacks (ii) and (iii) are illustrated by the two following ex-
amples.

Example 1. Let us set ` = 2,m = 1, n = 3, C = IR2
+, X = IR3

+,
f1(x) = x2

1x3, f2(x) = x2
2x3, g(x) = x3; y0 := (0, 0, 0) is a v.m.p. of

(2.1), since (2.2) becomes

(−x2
1x3,−x2

2x3) /∈ IR2
+ \{0} , ∀(x1, x2, x3) s.t. x3 ≥ 0,
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and it is trivially satisfied. No other feasible y is a v.m.p. We have:

K(y0) = {(u1, u2, v) ∈ IR3 : u1 = −x2
1v, u2 = −x2

2v, x1, x2 ∈ IR} =

= {(u1, u2, v) ∈ IR3 : u1, u2 ≥ 0, v < 0 or u1, u2 ≤ 0, v > 0}.

Therefore every element of (C\{0})×{0} is a limit point of elements
of K(y0). In fact, let (ū1, ū2) ∈ C\{0} and set x1 =

√
ū1n , x2 =√

ū2n , v = −1/n, with n ∈ IN \{0}. Then, the point (u1, u2, v) =
(−x2

1v,−x2
2v, v) = (ū1, ū2,−1/n) ∈ K(y0) defines a sequence of ele-

ments of K(y0) converging to (ū1, ū2, 0) as n→ +∞.

Example 2. Let us set ` = 2,m = 1, n = 1, C = IR2
+, X = IR−,

f1(x) = x, f2(x) = −4
√
−x, g(x) = −

√
−x; y0 = 0 is obviously (the

only) v.m.p. of (2.1), since it is the only feasible point. We have:

K(y0) = {(u1, u2, v) ∈ IR3 : u1 ≥ 0, u2 = 4√u1 , v = −
√
u1} .

It is easy to see that the Bouligand tangent cone to K(y0) at the
origin intersects (C\{0}) × {0} (even if no element of it is limit
point of elements of K(y0)). In fact, we will show that the follow-
ing element of (C\{0}) × {0}, namely (ū1 = 0, ū2 > 0, v̄ = 0),
belongs also to the Bouligand tangent cone to K(y0) at the ori-
gin. By setting u1 = 1/n with n ∈ IN \{0}, we see that the point
(u1, u2, v) = (1/n, , 1/4

√
n,−1/

√
n) ∈ K(y0) defines a sequence con-

verging to (0, 0, 0) as n → +∞, and that the same point, when
multiplied by the positive scalar αn := ū2

4
√
n, defines a sequence

converging to (0, ū2, 0) as n→ +∞.

Now, observe that system (2.5) is impossible iff

(2.8) H ∩K = ∅ .

It is easy to see that (2.8) holds iff

(2.8)′ H ∩ [K − c`H] = 0 ,

where the difference is meant in vector sense and c` denotes closure.
E(y) := K − c`H is called conic extension4 of the image; it often

4 Unless necessary, the depencence on y will be understood.
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enjoys more properties than the image itself. The map My, which
leads from the image to its conic extension, implies a change of the
functions f and g and hence a transformation of the VOP without
losing the optimality of a global v.m.p. (the implications of this as-
pect are still to be investigated). As mentioned earlier, the conic
extension E plays an important role in making (2.6) convex in some
cases where K is not so. More generally, E “regularizes” (2.6) by
deleting, for instance, some nonconvexities and discontinuities. It
can be useful also in constructing algorithms. For instance, in [15] it
has been introduced, independently of the existing literature (where
the concept of conic extension is an old one; its! ! use in optimiza-
tion has been done in [19]), under a neologism (set of “satisfactory
vectors”) and turned out to be of fundamental importance in the
algorithmic developments.

The analysis in the IS must be viewed as a preliminary and
auxiliary step – and not as a concurrent analysis – for studying a
VOP. If this aspect is understood, then the IS analysis may be highly
fruitful. In fact, in the IS we may have a sort of “regularization”: the
conic extension of the image may be convex or continuous or smooth
when the VOP (and its image) do not enjoy the same property, so
that convex or continuous or smooth analysis can be developed in
the IS, but not in the given space. The image of a VOP is finite
dimensional even if X is a subset of a Hilbert space (and not of IRn

as it is here) provided that the image of g be finite dimensional (if
not, the present approach is still valid, but must be substantially
modified); hence, in the IS such infinite dimensional problems can
be analysed by means of the same mathematical concepts which are
used for the finite dimensional case. Since the definition of K depends
on y – namely, the unknown – it ! ! may seem that the analysis of its
properties depends on the knowledge of y; note that the change of y
implies merely a translation of K and does not affect its properties.

Now, let us observe that obviously y is a v.m.p. of (2.1) iff (2.8)
holds. Unfortunately, to prove (2.8) directly is, in general, a difficult
task. A way of proving (2.8) indirectly consists in obtaining the
existence of a function, such that two of its disjoint level sets contain
H and K, respectively. To this end, let k be a positive integer and
D ⊂ IRk a cone. The vector polar of D with respect to C is given by
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5

D∗C := {M ∈ IR`×k : Md ≥C 0 , ∀d ∈ D},

where IR`×k denotes the set of matrices with real entries and of order
` × k, and where the inequality means Md ∈ C. At ` = 1, D∗C
becomes either the positive or negative polar cone of D, according to
C = IR+ or C = IR−, respectively. When C = IR`

+ (the Pareto case),
then we have:

(2.9) D∗IR`+
=

M =

 d∗1
...
d∗`

 ∈ IR`×k : d∗i ∈ D∗ , i = 1, . . . , `

 ,

where d∗i is the i–th row of M and D∗ denotes the (positive) polar
cone of D.

Now, we can introduce the above–mentioned function for prov-
ing indirectly (2.8). To this end, let us set U := C\{0} and V := IRm

+ ,
and consider the function w : IR`× IRm → IR`, given by

(2.10) w = w(u, v; Θ,Λ) = Θu+ Λv , Θ ∈ U∗C\{0},Λ ∈ V
∗
C ,

where Θ and Λ are parameters. Indeed, (2.10) is a family of func-
tions within which we will look for one in order to achieve the above
purpose. The following proposition shows that the class of functions
(2.10) has the aforesaid property. Consider the “positive” level set
of (2.10):

WC\{0}(u, v; Θ,Λ) := {(u, v) ∈ IR`× IRm : w(u, v; Θ,Λ) ≥C\{0} 0} .

Proposition 1. If w is given by (2.10), then we have:

(2.11a) H ⊂WC\{0}(u, v; Θ,Λ), ∀Θ ∈ U∗C\{0} ∀Λ ∈ V
∗
C ,

(2.11b) H =
⋂

Θ∈U∗
C\{0}

Λ∈V ∗
C

WC\{0}(u, v; Θ,Λ) .

5 Of course, such a definition does not require that C be convex,
closed and pointed. However, since C expresses a partial order, the
lack of these properties restricts the possible applications.
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Proof. (u, v) ∈ H ⇔ u ∈ U, v ∈ V . Therefore, ∀Θ ∈ U∗C\{0} and
∀Λ ∈ V ∗C , we have Θu + Λv ∈ C\{0}; hence w(u, v; Θ,Λ) ≥C\{0} 0.
(2.11a) follows. Because of (2.11a), to show (2.11b) it is enough to
prove that no element of the complement of H belongs to the right–
hand side of (2.11b); namely that, ∀(ũ, ṽ) /∈ H,∃Θ̃ ∈ U∗C\{0} and
∃Λ̃ ∈ V ∗C , such that

(2.12) (ũ, ṽ) /∈ WC\{0}(u, v; Θ̃, Λ̃).

(ũ, ṽ) /∈ H implies at least one of the following cases: (i) ũ /∈ C\{0}
or (ii) ṽ /∈ IRm

+ . If (i) holds, (2.12) is obtained with Θ̃ = I` (the
identity matrix of order `) and Λ̃ = 0 (the null matrix of order
` ×m), since we have w(ũ, ṽ; Θ̃, Λ̃) = ũ /∈ C\{0}. If (ii) holds, then
∃i0 ∈ {1, . . . ,m}, such that ṽi0 < 0. Set

Θ̃ = αI`, Λ̃ =

 0 . . . 0 c̃1i0 0 . . . 0
...

...
...

...
...

0 . . . 0 c̃`i0 0 . . . 0

 ,

where c̃T := (c̃1i0 , . . . , c̃`i0) ∈ C\{0} and α > 0. Note that Λ̃ ∈ V ∗C ,
since, ∀v ∈ IRm

+ , Λ̃v = vi0 c̃ ∈ C. We have w(ũ, ṽ; Θ̃, Λ̃) = αũ+ ṽi0 c̃.
Since C is pointed and ṽi0 < 0, then ṽi0 c̃ /∈ C. Therefore, ṽi0 c̃
belongs to the complement of C which is open. If α is small enough
we obtain

w(ũ, ṽ; Θ̃, Λ̃) = α̃ũ+ ṽi0 c̃ /∈ C

which shows (2.12). ut

Now, we are in the position to state an optimality condition for
(2.1).

Theorem 1. Let y ∈ K. If there exist matrices Θ ∈ U∗C\{0} and
Λ ∈ V ∗C , such that

(2.13) Θ[f(y)− f(x)] + Λg(x) 6≥C\{0} 0 , ∀x ∈ X,

then y is a (global) v.m.p. of (2.1).
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Proof. From Proposition 1 and (2.13) we have6

H ⊂WC\{0}(u, v; Θ,Λ) and K ⊆ ∼WC\{0}(u, v; Θ,Λ) ,

respectively. Therefore, (2.8) holds. ut

At ` = 1 the above theorem collapses to an existing one for scalar
optimization (see Corollary 5.1 of [19]); Θ can now be replaced by
1, since here it is a positive scalar and (2.13) is homogeneous with
respect to the parameters.

Theorem 1 shows that the functions of the class (2.10) are weak
separation functions in the sense of [19]; namely, H is contained in
the “positive level set” of each w of the class; indeed, (2.11b) shows
something more. In fact, because of (2.11b), the intersection of the
“positive level sets” of the separation functions (2.10) is not open,
since H is not open. Therefore, an element of H may be limit point
of elements of K, or the Bouligand tangent cone to K at the origin
may intersect H even when (2.8) holds7, so that no element of the
class (2.10) may exist which fulfils (2.13) and then (2.8). Hence, it is
useful to develop an alternative approach, which consists in replacing
the class (2.10) with the wider class:

(2.14) w = w(u, v; Θ,Λ) = Θu+ Λv, Θ ∈ U∗C , Λ ∈ V ∗C .

The intersection of the “positive level sets” of the separation func-
tions (2.14) is open.

Of course, with a w of class (2.14) condition (2.13) no longer
guarantees that y be a v.m.p. of (2.1). This drawback can be over-
come by restricting the class of problems (2.1). Such a restriction is
made by means of a condition, which is called constraint qualifica-
tion if it deals only with the constraints, and regularity condition if
it involves the objective functions too.

Before closing this section, let us pose a question which should
be interesting to investigate in the IS. A VOP may be a dummy

6 ∼ denotes complement.
7 A characterization, in terms of X, f and g, of this case would

be extremely interesting.
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problem, in the sense that the set of its v.m.p. coincides with K or it
is a singleton. With regard to the first aspect, we state a proposition,
in the given space, in order to stimulate further investigation.

It may happen that every element of K be a v.m.p. of (2.1).
In this case (2.1) is trivial; it has been investigated in the case of
C = IR`

+ and called completely efficient (see [3]). We will show that,
when C is as in Sect. 2, a characterization of complete efficiency is
easy:

let p ∈ intC∗; every element of K is a v.m.p. of (2.1) iff

(2.15) max
f(y)−f(x)∈C

x,y∈K

〈p, f(y)− f(x)〉 = 0 .

Only if. By assumption, (2.2) holds, or

(2.16) ∀y ∈ K : f(y)− f(x) /∈ C\{0} ∀x ∈ K ,

so that

∀y ∈ K :
f(y)− f(x) ∈ C

x ∈ K

}
⇒ f(y)− f(x) = 0 ⇒ (2.15) .

If. Ab absurdo, suppose that ∃y ∈ K and ∃xy ∈ K, such that

f(y)− f(xy) ∈ C\{0} ,

so that f(y) − f(xy) 6= 0. It follows 〈p, f(y) − f(xy)〉 > 0, which
contradicts (2.15). ut

At C = IR`
+, condition (2.15) becomes a known one; see [3]. Of

course, by considering y fixed, (2.15) is a necessary and sufficient
condition for y to be a v.m.p. of (2.1). Starting from (2.15) it is in-
teresting to study existence conditions for (2.1). When the maximum
of (2.15) is positive, its value might be used to define the “width” of
the set of v.m.p. relative to that of K.
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3. OTHER KINDS OF SEPARATION

With the class (2.10) we have adopted a linear vector separation
function w having ` components. Of course, we might have adopted a
nonlinear w or a w with any number of components, even with infinite
ones. In particular, we can choose a scalar w, i.e. w : IR`× IRm → IR.
It may be linear or nonlinear; in the linear case it is given by8 [19,23]:

(3.1) w = w(u, v; θ, λ) = 〈θ, u〉+〈λ, v〉 , θ ∈ intC∗, λ ∈ V ∗ = IRm
+ ,

where 〈·, ·〉 denotes scalar product.

Proposition 2. If w is given by (3.1), then we have

(3.2a)
H ⊂ lev>0w := {(u, v) ∈ IR`× IRm : w(u, v; θ, λ) > 0},

∀θ ∈ intC∗, ∀λ ∈ V ∗ ,

(3.2b) H =
⋂

θ∈ intC∗
λ∈V ∗

lev>0 w(u, v; θ, λ) .

Proof. (u, v) ∈ H ⇔ u ∈ U, v ∈ V . From this we have that,
∀θ ∈ intC∗ and ∀λ ∈ V ∗, inequalities 〈θ, u〉 > 0 and 〈λ, v〉 ≥ 0
hold , so that w(u, v; θ, λ) > 0, and (3.2a) follows. Because of (3.2a),
to show (3.2b) it is enough to prove that no element of the comple-
ment of H belongs to the right–hand side of (3.2b); namely that,
∀(ũ, ṽ) /∈ H, ∃θ̃ ∈ intC∗ and ∃λ̃ ∈ V ∗, such that

(3.3) (ũ, ṽ) /∈ lev>0 w(u, v; θ̃, λ̃) .

(ũ, ṽ) /∈ H implies at least one of the following cases: (i) ũ /∈ C\{0}
or (ii) ṽ /∈ IRm

+ . If (i) holds and ũ = 0, then (3.3) is fulfilled by
choosing any θ̃ ∈ intC∗ and λ̃ = 0. If (i) holds and ũ 6= 0, then ũ /∈ C
and hence ∃θ̃ ∈ intC∗ such that 〈θ̃, ũ〉 < 0; in fact, the inequality
〈θ, ũ〉 ≥ 0, ∀θ ∈ intC∗ would imply ũ ∈ ( intC∗)∗ = (C∗)∗ = C
and lead to contradict the assumption. Then by setting, here too,
λ̃ = 0, the pair (θ̃, λ̃) fulfils (3.3). If (ii) holds, then there exists (at
least) an index j such that vj < 0. Let us choose any θ̃ ∈ intC∗,
and λ̃ = (λ̃1, . . . , λ̃m) such that λ̃j = α > 0, λ̃i = 0 ∀i 6= j. Then
〈θ̃, ũ〉+ 〈λ̃, ṽ〉 = 〈θ̃, ũ〉+ αṽj , and (3.3) holds with α ≥ − 1

ṽj
〈θ̃, ũ〉. ut

8 U and V are as in Sect.2.
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From the class of separation functions (3.1) we can derive a
sufficient condition, in the same way Theorem 1 has been obtained
from the class (2.10).

Theorem 2. Let y ∈ K. If there exist vectors θ ∈ intC∗ and
λ ∈ V ∗, such that

(3.4) 〈θ, f(y)− f(x)〉+ 〈λ, g(x)〉 ≤ 0 , ∀x ∈ X ,

then y is a (global) v.m.p. of (2.1).

Proof. Because of Proposition 2 and of (3.4) we have

H⊂ lev>0 w and K⊆ lev≤0 w ,

respectively. Therefore, (2.8) holds. ut

At ` = 1 the above theorem and Theorem 1 coincide with the
corresponding one of [19].

When the kind of separation (linear, nonlinear,...) has been
fixed, then the outcome obviously depends on the format of the sys-
tem we are referred to. For instance, system (2.5) can be equivalently
split into the ` systems (in the unknown x):

(3.5)
fr(y)− fr(x) 6= 0 , f(y)− f(x) ∈ C , g(x) ≥ 0, x ∈ X ,

r ∈ I := {1, . . . , `} .

Hence (2.2) is satisfied iff all the ` systems (3.5) are impossible.
System (3.5) can be further split into

(3.6a)
fr(y)− fr(x) > 0 , f(y)− f(x) ∈ C, g(x) ≥ 0 , x ∈ X ,

r ∈ I .

and

(3.6b)
fr(x)− fr(y) > 0 , f(y)− f(x) ∈ C, g(x) ≥ 0 , x ∈ X ,

r ∈ I .
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Obviously, (2.2) is satisfied iff all the 2` systems (3.6) are impossible.
To each of the systems (3.6) we can apply the separation scheme
adopted for scalar optimization [19]. Indeed, by setting

K(y) := {x ∈ X : f(y)− f(x) ∈ C, g(x) ≥ 0},

the impossibility of (3.6a) is obviously a necessary and sufficient con-
dition for y to be a scalar global minimum point of the parametric
problem:

(3.7a) min fr(x) , s.t. x ∈ K(y) ,

where the feasible region – which will play an important role later
in the scalarization – depends (parametrically) on the unknown; we
may call (3.7a) Quasi–minimum Problem (following the variational
terminology). Analogously, the impossibility of (3.6b) is obviously a
necessary and sufficient condition for y to be a scalar global maxi-
mum point of the parametric problem:

(3.7b) max fr(x) , s.t. x ∈ K(y),

which may be called Quasi–maximum Problem. Consider the sets:

Ĥ := {(t, u, v) ∈ IR× IR`× IRm : t > 0, u ∈ C, v ∈ IRm
+} =

= (IR+ \{0})× C × IRm
+ ;

Kr := {(t, u, v) ∈ IR× IR`× IRm : t = fr(y)− fr(x), u = f(y)− f(x),
v = g(x), x ∈ X};

K̄r := {(t, u, v) ∈ IR× IR`× IRm : t = fr(x)− fr(y), u = f(y)− f(x),
v = g(x), x ∈ X} ;

r ∈ I .

Now, observe that the systems (3.6) are all impossible iff

(3.8) Ĥ ∩ Kr = ∅ , Ĥ ∩ K̄r = ∅ , r ∈ I .

∀r ∈ I, for each of the pairs (Ĥ,Kr), (Ĥ, K̄r), we can introduce a
weak separation function, respectively,

(3.9a)
wr = wr(t, u, v; θr, λr) = t+ 〈θr, u〉+ 〈λr, v〉 ,

θr ∈ C∗ , λr ∈ IRm
+ ,
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and

(3.9b)
w̄r = w̄r(t, u, v; θ̄r, λ̄r) = t+ 〈θ̄r, u〉+ 〈λ̄r, v〉 ,

θ̄r ∈ C∗ , λ̄r ∈ IRm
+ .

It can be shown that (see [19]):

Proposition 3. If ∀r ∈ I, wr and w̄r are given by (3.9), then we
have:

Ĥ⊂ lev>0 wr(t, u, v; θr, λr) , Ĥ =
⋂

θr∈C∗

λr∈IRm
+

lev>0 wr(t, u, v; θr, λr),

Ĥ⊂ lev>0 w̄r(t, u, v; θ̄r, λ̄r) , Ĥ =
⋂

θ̄r∈C∗
λ̄r∈IRm

+

lev>0 w̄r(t, u, v; θ̄r, λ̄r),

where all the level sets are meant with respect to t, u, v.

Now, we can state an optimality condition. Take into account
that polarity and Cartesian product are permutable.

Theorem 3. Let y ∈ K. If ∀r ∈ I, there exist θr, θ̄r ∈ C∗ and
λr, λ̄r ∈ IRm

+ , such that:

(3.10a) fr(y)−fr(x)+〈θr, f(y)−f(x)〉+〈λr, g(x)〉 ≤ 0 , ∀x ∈ X ,

(3.10b) fr(x)− fr(y) + 〈θ̄r, f(y)− f(x)〉+ 〈λ̄r, g(x)〉 ≤ 0, ∀x ∈ X,

then y is a (global) v.m.p. of (2.1).

Proof. Because of Proposition 3 and of (3.10), ∀r ∈ I we have:

Ĥ⊂ lev>0 wr , K⊆ lev≤0 wr ,

Ĥ⊂ lev>0 w̄r , K̄⊆ lev≤0 w̄r .

Therefore, (3.8) hold. ut
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It is interesting to note that, ∀r ∈ I, summing up side by side
(3.10a) and (3.10b) leads to

〈θr + θ̄r , f(y)− f(x)〉+ 〈λr + λ̄r, g(x)〉 ≤ 0 , ∀x ∈ X ,

which is equivalent to (3.4), provided that θr + θ̄r ∈ intC∗. More-
over, the matrices Θ̄ and Λ̄, whose r−th rows are given, respectively,
by θr + θ̄r and λr + λ̄r, allow us to find, within the class (2.14), a
vector separation function w(u, v; Θ̄, Λ̄) which fulfils (2.13).

When C = IR`
+, then the ` systems (3.6b) are impossible ∀y, so

that the impossibility of all the 2` systems (3.6) is equivalent to that
of the following ` systems (in the unknown x):

(3.6)′
fr(y)− fr(x) > 0 , f(y)− f(x) ≥ 0 , g(x) ≥ 0 , x ∈ X ,

r ∈ I .

Consequently, (3.7b), K̄r and w̄r disappear. Since in the present case
the condition f(y)−f(x) ∈ C is split into the system fs(y)−fs(x) ≥
0, s ∈ I, then the r− th of these inequalities becomes redundant and
can be deleted. Therefore, Kr can be replaced by K itself and, with
the introduction of Ir := I\{r} ∀r ∈ I, the set Ĥ, conditions (3.8)
and functions (3.9a) can be replaced, respectively, by9

Hr := {(u, v) ∈ IR`× IRm : ur > 0, us ≥ 0 s ∈ Ir, v ≥ 0},

(3.8)′ Hr ∩ K = ∅ , r ∈ I

and

(3.9)′
wr = wr(u, v; θrs s ∈ Ir, λr) := ur +

∑
s∈Ir

θrsus + 〈λr, v〉,

θrs ≥ 0 s ∈ Ir, λr ∈ IRm
+ ,

for each r ∈ I. Hence, Theorem 3 becomes:

Corollary 1. Let y ∈ K. Assume that, ∀r ∈ I, there exist θrs ≥
0 s ∈ Ir and λr ∈ IRm

+ , such that

(3.10)′
fr(y)− fr(x) +

∑
s∈Ir

θrs [fs(y)− fs(x)]+

+ 〈λr, g(x)〉 ≤ 0 , ∀x ∈ X ,

9 Recall that ur, and us s ∈ Ir are the ` elements of u.
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for each r ∈ I. Then, y is a (global) v.m.p. of (2.1) with C = IR`
+ .

Remark 1. For every fixed r ∈ I, (3.10)′ ensures a scalar separa-
tion with the property that the r−th component of the multiplier
θr is strictly positive. Therefore, summing up side by side the `
inequalities (3.10)′, we obtain a (scalar) separation function of the
class (3.1).

Of course, Theorem 3 can be simplified in cases other than C =
IR`

+. If C⊆ IR`
+ (resp., C⊆ IR`

−), then system (3.6b) (resp., (3.6a)) is
impossible and disappears.

In Sect. 2 the image space associated with (2.1) was (` + m) –
dimensional; the same happened with the approach which led to
Theorem 2. While, having turned (2.5) into (3.5), the associated
image space became (1 + ` + m) – dimensional. Such an increase
of dimensionality can be avoided by replacing the cone C with the
cone Ĉr := C ∩ {u ∈ IR` : ur 6= 0}. However, the advantage due to
the decrease of dimensionality is balanced by the fact that we would
be faced with Hr := Ĉr × IRm

+ (while K would remain as in Sect.
2) which now might be not convex, because of the possible lack of
convexity of Ĉr. Then the introduction of a weak separation function
would be difficult.

4. SEPARATION IN THE WEAK CASE

The separation approach, which has been developed in Sect. 2
for problem (2.1), can be defined for other kinds of problems, in
particular for problem (2.3). This will be now briefly outlined.

Obviously, (2.4) is satisfied iff the system (in the unknown x):

(4.1) f(y)− f(x) ≥ intC 0 , g(x) ≥ 0 , x ∈ X

is impossible. The setsH and U of Sect. 2 are, in the present section,
replaced by

H := {(u, v) ∈ IR`× IRm : u ≥ intC 0, v ≥ 0} = ( intC)× IRm
+

and U := intC, respectively; while K and V are the same as in Sect.
2. In place of (2.10), we now consider the function w : IR`× IRm →
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IR`, given by10:

(4.2) w = w(u, v; Θ,Λ) = Θu+ Λv , Θ ∈ U∗intC , Λ ∈ V ∗C ,

where Θ and Λ are the same parameters as in Sect.2. Consider the
“positive level set” of (4.2):

W intC(u, v; Θ,Λ) := {(u, v) ∈ IR`× IRm : w(u, v; Θ,Λ) ≥ intC 0}.

Proposition 4. If w is given by (4.2), then we have

(4.3a) H⊂W intC(u, v; Θ,Λ), ∀Θ ∈ U∗intC , ∀Λ ∈ V ∗C ;

(4.3b) H =
⋂

Θ∈U∗
intC

Λ∈V ∗
C

W intC(u, v; Θ,Λ) .

Proof. (u, v) ∈ H ⇔ u ∈ U, v ∈ V . This implies that, ∀Θ ∈
U∗intC and ∀Λ ∈ V ∗C , we have Θu + Λv ∈ intC, and thus (4.3a)
follows. Because of (4.3a), to show (4.3b) it is enough to prove that
no element of the complement of H belongs to the right–hand side
of (4.3b); namely that, ∀(ũ, ṽ) /∈ H , ∃Θ̃ ∈ U∗intC and ∃Λ̃ ∈ V ∗C , such
that

(4.4) (ũ, ṽ) /∈W intC(u, v; Θ̃, Λ̃) .

(ũ, ṽ) /∈ H implies at least one of the following cases: (i) ũ /∈ intC or
(ii) ṽ /∈ IRm

+ . Since now the proof is the same as that of Proposition
1, by merely changing C\{0} into intC. ut

Theorem 4. Let y ∈ K. If there exist matrices Θ ∈ U∗intC and
Λ ∈ V ∗C , such that

(4.5) Θ[f(y)− f(x)] + Λg(x) 6≥ intC 0 , ∀x ∈ X ,

then y is a (global) v.m.p. of (2.3).

Proof. Because of Proposition 4 and of (4.5) we have

H⊂W intC(u, v; Θ,Λ) and K⊆ ∼W intC(u, v; Θ,Λ) ,

respectively. Therefore, H ∩ K = ∅ which is (here too) a necessary
and sufficient condition for (2.4) to hold. ut

10 Without any fear of confusion, we use here the notation w as in
Sect. 2.
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At ` = 1 Theorems 4 and 1 coincide. At C = IR`
+, (4.5) is a

sufficient optimality condition for y to be a so–called weak Pareto
v.m.p.; in this case, the class of separation functions (4.2) can be
“scalarized” by choosing the scalar function within the class of the
so–called min–functions [11]; we restrict ourselves to the linear case.
To this end, consider the function w0 : IR`× IRm → IR, given by

(4.6)
w0 = w0(u, v; Θ,Λ) := min{〈θr, u〉+ 〈λr, v〉, r ∈ I},

Θ ∈ U∗int IR`+
, Λ ∈ V ∗IR`+ ,

where θr and λr are the r–th rows of Θ and Λ, respectively. It is
easy to see that (w is given by (4.2)):

∼W intC(u, v; Θ,Λ) = lev≤0 w
0(u, v; Θ,Λ) :=

{(u, v) ∈ IR`× IRm : w0(u, v; Θ,Λ) ≤ 0} ,

which shows that the sufficient condition (4.5) can be scalarized by
replacing w with w0 and 6≥int IR`+

with merely ≤ .

5. NECESSARY OPTIMALITY CONDITIONS

In this section it will be shown that the separation approach in
the image space can be considered as a source for deriving also nec-
essary optimality conditions for the several kinds of VOP (sufficient
ones have been obtained in Sects.2–4). More precisely, following the
approach developed in [20] for the scalar case, necessary conditions
will be obtained by separating H from a suitable approximation of
the image K. Here, such an approximation will be obtained by as-
suming G–semidifferentiability11 for f and g and then by replacing
them with their G–semiderivatives.

Assume that12 X = IRn and denote by G a given subset of the
set, say G, of positively homogeneous functions of degree 1 on X−y.

Definition 1. A function ϕ : X → IR is said lower G–semidifferen-
tiable at y ∈ X iff there exist functions DGϕ : X × X → IR and
εϕ : X ×X → IR, such that:

11 It will be briefly recalled; see [20] for details.
12 X can be merely a truncated cone with apex at y.
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(i) DGϕ(y; ·) ∈ G;

(ii) ϕ(x)− ϕ(y) = DGϕ(y;x− y) + εϕ(y;x− y) , ∀x ∈ X;

(3i) lim inf
x→y

εϕ(y;x−y)
‖x−y‖ ≥ 0;

(4i) for every pair (h, ε) of functions (of the same kind, respectively,
ofDGϕ and εϕ), which satisfy (i)–(3i), we have epih ⊇ epiDGϕ.

DGϕ(y; x−y
‖x−y‖ ) is called the lower G–semiderivative of ϕ at y.

An analogous definition is given for an upper G–semidifferentiable
function, whose upper G–semiderivative at y is denoted by

D̄Gϕ(y;
x− y
‖x− y‖

).

Let us introduce the index sets J := {1, . . . ,m} and J0(y) :=
{i ∈ J : gi(y) = 0, εgi(y;x − y) 6≡ 0}. In the present section we
will consider the particular case C = IR`

+, namely the Pareto case.
Next lemma is a generalization of the classic Linearization Lemma
of Abadie [1].

Lemma 1. Let the functions fi i ∈ I be upper Φ–semidifferentiable
at y and gi i ∈ J lower Γ–semidifferentiable at y, where Φ,Γ⊆G. If
y is a v.m.p. of (2.1), then the system (in the unknown x):

(5.1)


D̄Φfi(y;x− y) < 0 , i ∈ I,
DΓgi(y;x− y) > 0 , i ∈ J0(y),
DΓgi(y;x− y) ≥ 0 , i ∈ J\J0(y),
x ∈ X

is impossible.

Proof. The assumption that y be v.m.p. is equivalent to the im-
possibility of (2.5) which, due to the semidifferentiability of f and g,
becomes:

(5.2)

{−(D̄Φfi(y;x− y) + εfi(y;x− y), i ∈ I) ∈ C\{0},
gi(y) +DΓgi(y;x− y) + εgi(y;x− y) ≥ 0, i ∈ J,
x ∈ X .



Image space analysis and separation 173

Ab absurdo, suppose that (5.1) be possible, and let x̂ be a solution of
(5.1). Then x(α) := (1−α)y+αx̂ is a solution of (5.1) ∀α ∈ ]0, 1], due
to the positive homogeneity of the semiderivatives. The remainders
satisfy the inequalities:

lim sup
x→y

εfi(y;x− y)
‖x− y‖

≤ 0, i ∈ I; lim inf
x→y

εgi(y;x− y)
‖x− y‖

≥ 0, i ∈ J .

From the definitions of lim sup and lim inf, for every fixed δ > 0,
∃αδ > 0 such that ∀α ∈ ]0, αδ], we have:

(5.3a)
εfi(y;α(x̂− y))
‖α(x̂− y)‖

≤ δ , i ∈ I,

(5.3b)
εgi(y;α(x̂− y))
‖α(x̂− y)‖

≥ −δ , i ∈ J0(y).

Because of the positive homogeneity of D̄Φfi and DΓgi, we have:

(5.4a) D̄Φfi(y;α(x̂− y)) + εfi(y;α(x̂− y)) =

=
[
D̄Φfi(y; x̂− y)
‖x̂− y‖

+
εfi(y;α(x̂− y))

α‖x̂− y‖

]
· α‖x̂− y‖, i ∈ I

(5.4b) DΓgi(y;α(x̂− y)) + εgi(y;α(x̂− y)) =

=
[
DΓgi(y; x̂− y)
‖x̂− y‖

+
εgi(y;α(x̂− y))

α‖x̂− y‖

]
· α‖x̂− y‖, i ∈ J0(y).

From (5.4), taking into account (5.3), we draw the existence of δ > 0
and αδ > 0, such that ∀α ∈ ]0, αδ] we have:

D̄Φfi(y;α(x̂− y)) + εfi(y;α(x̂− y)) < 0, i ∈ I,
DΓgi(y;α(x̂− y)) + εgi(y;α(x̂− y)) > 0, i ∈ J0(y).

When i ∈ J\J0(y), there are two cases: gi(y) = 0 and εgi ≡ 0; or
gi(y) > 0. In the latter, choosing α small enough, we have

(5.5) DΓgi(y;α(x̂− y)) + gi(y) + εgi(y;α(x̂− y)) ≥ 0;

while in the former the inequality (5.5) is fulfilled ∀α ≥ 0. There-
fore ∃ᾱ ∈ ]0, αδ] such that x(ᾱ) is a solution of (5.2), and this fact
contradicts the hypothesis. ut
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The impossibility of system (5.1) is a 1st order optimality con-
dition for (2.1), which is expressed in terms of the sign of semideriva-
tives. Now, we will give it a “multiplier form”. To this end, carrying
on the image space analysis of Sect.2, let us introduce the sets:

HG := {(u, v) ∈ IR`× IRm : u ∈ int IR`
+; vi > 0, i ∈ J0(y);

vi ≥ 0, i ∈ J\J0(y)}

KG := {(u, v) ∈ IR`× IRm : ui = −D̄Φfi(y;x− y), i ∈ I;
vi = DΓgi(y;x− y), i ∈ J ; x ∈ X}

so that (5.1) is impossible iff HG ∩ KG = ∅. Let C be the set of
sublinear functions13 on X − y.

Theorem 5. Suppose that fi i ∈ I are upper Φ–semidifferentiable
functions at y, with Φ⊆C; suppose that gi i ∈ J are lower Γ–
semidifferentiable functions at y, with Γ⊆(−C). If y is an optimal
solution of (2.1), then there exists a vector (θ, λ) ∈ IR`

+× IRm
+ , with

(θ, λ) 6= 0, such that:

(i)
∑
i∈I

θiD̄Φfi(y;x− y)−
∑
i∈J

λiDΓgi(y;x− y) ≥ 0, ∀x ∈ X;

(ii)
∑
i∈J

λigi(y) = 0 .

Proof. By the assumption the functions −D̄Φfi
i ∈ I, and DΓgi i ∈ J , are concave so that the set EG := KG− c`HG
is convex (see [19]). Moreover, it has been proved (see [6]) that
HG ∩KG = ∅ iff HG ∩EG = ∅. Therefore, by Lemma 1, the optimal-
ity of y implies that HG∩EG = ∅. Since HG and EG are convex sets,
there exists a vector (θ, λ) ∈ IR`× IRm, with (θ, λ) 6= 0, such that:

(5.6)

∑
i∈I

θi(−D̄Φfi(y;x− y)) +
∑

i∈J0(y)

λiDΓgi(y;x− y)

+
∑

i∈J\J0(y)

λi(DΓgi(y;x− y) + gi(y)) ≤ 0, ∀x ∈ X.

13 i.e., convex and positively homogeneous of degree one.
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It is trivial to prove that (θ, λ) ∈ IR`
+× IRm

+ , since 〈θ, u〉+ 〈λ, v〉 ≥ 0
∀(u, v) ∈ HG. From (5.6) we obtain:

(5.7)

∑
i∈I

θiD̄Φfi(y;x− y)−
∑
i∈J

λiDΓgi(y;x− y) ≥∑
i∈J\J0(y)

λigi(y), ∀x ∈ X.

Computing (5.7) for x = y, we obtain
∑

i∈J\J0(y)

λigi(y) = 0 and

therefore (i). Taking into account that gi(y) = 0 ∀i ∈ J0(y), we have
(ii) and hence the thesis. ut

We recall (see [20]) that, when G⊆C, the generalized subdiffer-
ential of a lower (or upper) G–semidifferentiable function ϕ at y,
denoted by ∂Gϕ(y), is defined as the subdifferential of the convex
function DGϕ(y;x− y) (or D̄Gϕ(y;x− y)).

Theorem 6. Let Φ⊆C and Γ = −Φ. Suppose that fi i ∈ I are
upper Φ–semidifferentiable functions and gi i ∈ J are lower Γ–
semidifferentiable functions at y ∈ X. If y is a v.m.p. of (2.1),
then there exists (θ, λ) ∈ IR`

+× IRm
+ , with (θ, λ) 6= 0, such that:

(5.8)
{

0 ∈ ∂ΦL(x; θ, λ), 〈λ, g(x)〉 = 0
λ ≥ 0, θ ≥ 0, g(x) ≥ 0, x ∈ X.

Proof. We recall that −DΓg = D̄Φ(−g), so that the function 〈θ, f〉−
〈λ, g〉 is upper Φ–semidifferentiable at y. The following inequalities
hold:

D̄Φ(〈θ, f〉 − 〈λ, g〉)(y;x− y) ≥
〈θ, D̄Φf(y;x− y)〉+ 〈λ, D̄Φ(−g)(y;x− y)〉 ≥ 0, ∀x ∈ X.

The first inequality follows from Theorem 3.3 of [33], while the second
from Theorem 5. The previous relation implies that 0 ∈ ∂ΦL(y; θ, λ);
from Theorem 5 we have the complementarity relation 〈λ, g(y)〉 = 0,
and the proof is complete. ut
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The system (5.8) is a generalization to nondifferentiable VOP
of the well–known John condition [1,29].

Theorem 7. Let fi i ∈ I, and gi i ∈ J be differentiable functions
at y. If y is a v.m.p. of (2.1), then there exists (θ, λ) ∈ IR`

+× IRm
+ ,

with (θ, λ) 6= 0, such that:{ ∑
i∈I

θi∇fi(y)−
∑
i∈J λi∇gi(y) = 0, 〈λ, g(y)〉 = 0,

θ ≥ 0, λ ≥ 0, g(y) ≥ 0, y ∈ X.

Proof. Let G be the set of the linear functions. With Φ = Γ = G,
we have that the hypotheses of Theorem 5 are fulfilled, and it is
known [19] that

D̄Gfi(y;x− y) = 〈∇fi(y),
x− y
‖x− y‖

〉, i ∈ I

DGgi(y;x− y) = 〈∇gi(y),
x− y
‖x− y‖

〉, i ∈ J.

Therefore, there exists (θ, λ) ∈ IR`
+× IRm

+ , with (θ, λ) 6= 0, such that

∑
i∈I

θi〈∇fi(y),
x− y
‖x− y‖

〉 −
∑
i∈J

λi〈∇gi(y),
x− y
‖x− y‖

〉 ≥ 0, ∀x ∈ X

.
The previous condition is equivalent to the following:

〈
∑
i∈I

θi∇fi(y)−
∑
i∈J

λi∇gi(y) , z〉 ≥ 0,

∀z ∈ IRn, with ‖z‖ = 1. Since z is arbitrary, we obtain:∑
i∈I

θi∇fi(y)−
∑
i∈J

λi∇gi(y) = 0.

From (ii) of Theorem 5 we have that 〈λ, g(y)〉 = 0 and this completes
the proof. ut
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Under suitable regularity assumptions on (2.1), which ensure
that the vector of multipliers is different from the zero vector in IR`,
the system (5.8) is a generalization to nondifferentiable VOP of the
classic Kuhn–Tucker conditions. Similar results have been obtained
in [8] using the Clarke subdifferential but under the more general
assumptions that the feasible region be defined by means of equality
and inequality constraints and the ordering cone be not necessarily
the positive orthant.

6. SADDLE POINT CONDITIONS

Like in the scalar case [19], also in the vector case the saddle
point type conditions can be derived from the separation scheme.
More precisely, we will show that the sufficient condition (2.13) can
be equivalently put in a saddle point format. At first we recall the
definition of a saddle point for a vector function.

Definition 2. Let F : X × Y → IR`. (x̄, ȳ) is a saddle point for F
on X × Y iff

F (x, ȳ) 6≤C\{0} F (x̄, ȳ) 6≤C\{0} F (x̄, y) , ∀x ∈ X, ∀y ∈ Y.

Let us introduce the (generalized) vector Lagrangian function
L : IRn× IR`×`× IR`×m → IR`, defined by

(6.1) L(x; Θ,Λ) := Θf(x)− Λg(x) .

Definition 3. A pair (x̄, Λ̄) ∈ X × V ∗C is a generalized vector saddle
point of (6.1) on X × V ∗C iff there exists Θ̄ ∈ U∗C\{0} such that:

(6.2) L(x; Θ̄, Λ̄) 6≤C\{0} L(x̄; Θ̄, Λ̄) 6≤C\{0} L(x̄; Θ̄,Λ),

∀x ∈ X, ∀Λ ∈ V ∗C .

Now let us consider the class of separation functions (2.10), and
state the following:
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Theorem 8. Let y ∈ K. The following statements are equivalent:
(i) There exists (Θ̄, Λ̄) ∈ U∗C\{0} × V

∗
C such that:

w(u, v; Θ̄, Λ̄) 6≥C\{0} 0 , ∀(u, v) ∈ K(y);

(ii) (y, Λ̄) ∈ X×V ∗C is a generalized vector saddle point for L(x; Θ̄,Λ)
on X × V ∗C .

Proof. (i) ⇒ (ii). (i) is equivalent to the condition

(6.3) Θ̄[f(y)− f(x)] + Λ̄g(x) 6≥C\{0} 0 , ∀x ∈ X .

By setting x = y in (6.3), we obtain Λ̄g(y) 6≥C\{0} 0. Since Λ̄ ∈ V ∗C
we have that Λ̄g(y) ≥C 0 and therefore

(6.4) Λ̄g(y) = 0 .

Taking into account (6.4), condition (6.3) is equivalent to

L(y; Θ̄, Λ̄) 6≥C\{0} L(x; Θ̄, Λ̄) , ∀x ∈ X,

that is y is a v.m.p. of L(x; Θ̄, Λ̄) on X. We have to show that Λ̄ is
a v.m.p. for −L(y; Θ̄,Λ) on V ∗C . We see that:

L(y; Θ̄,Λ) = Θ̄f(y)− Λg(y) so that − L(y; Θ̄, Λ̄) = −Θ̄f(y) .

For every Λ ∈ V ∗C it is Λg(y) ≥C 0 and therefore

−L(y; Θ̄, Λ̄) + L(y; Θ̄,Λ) = −Λg(y) 6≥C\{0} 0 , ∀Λ ∈ V ∗C ,

since C is a pointed cone.
(ii) ⇒ (i). From the condition

−L(y; Θ̄, Λ̄) + L(y; Θ̄,Λ) 6≥C\{0} 0 , ∀Λ ∈ VC

computed for Λ equal to the null matrix, we obtain Λ̄g(y) 6≥C\{0} 0
and, since Λ̄ ∈ V ∗C , we have (6.4). As in the proof of the reverse
implication, exploiting the complementarity relation (6.4), we have
that the condition

L(y; Θ̄, Λ̄) 6≥C\{0} L(x; Θ̄, Λ̄) , ∀x ∈ X

is equivalent to (6.3), that is (i). ut
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Remark 2. We observe that, in the statement of Theorem 8, the set
U∗C\{0} can be replaced by any subset of the s× ` matrices, provided
that C be a closed and convex cone in IRs.

Example 3. Let f1(x) = 2x1 + x2 , f2(x) = x1 + 2x2, g(x) =
x1 + x2 − 2 , X = IR2

+, C = IR2
+. It is easy to prove that K̂ :=

{x ∈ X : x1 + x2 = 2} is the set of v.m.p. of (2.1). Let x̄ = (a, b)
with a+ b = 2, a, b ≥ 0. Since the present VOP is linear, there exist
Θ̄ ∈ U∗C\{0} and Λ̄ ∈ V ∗C such that (x̄; Λ̄) is a vector saddle point of

L(x; Θ̄,Λ) on X × V ∗C . Put Θ̄ =
(

1 0
0 1

)
and Λ =

(
3/2
3/2

)
. The

first inequality in (6.2) becomes:

(6.5)

(
2a+ b

a+ 2b

)
6≥C\{0}

 2x1 + x2 −
3
2

(x1 + x2 − 2)

x1 + 2x2 −
3
2

(x1 + x2 − 2)

 ,∀x ∈ X.

Consider the system

(6.6)


2a+ b ≥ 1

2 (x1 − x2) + 3

a+ 2b ≥ 1
2 (x2 − x1) + 3

x1, x2 ≥ 0 .

Since b = 2− a, (6.6) is equivalent to

a ≥ 1
2

(x1 − x2) + 1

− a ≥ 1
2

(x2 − x1)− 1

⇒ a =
1
2

(x1−x2)+1 and b =
1
2

(x2−x1)+1.

Therefore any solution x of (6.6) fulfils the relation L(x̄; Θ̄, Λ̄) −
L(x; Θ̄, Λ̄) = 0 and this implies that (6.5) holds. With regard to the
second inequality in (6.2), it is immediate to see that it becomes:

−
(
λ1

λ2

)
(a+ b− 2) 6≥C\{0} −

(
3/2
3/2

)
(a+ b− 2)



180 Giannessi – Mastroeni – Pellegrini

which is fulfilled by any
(
λ1

λ2

)
∈ IR2

+.

In the last part of this section, like in Sect. 3, we will consider
the case of a scalar separation function w(u, v; θ, λ) := 〈θ, u〉+〈λ, v〉 ,
where (θ, λ) ∈ C∗ × IRm

+ , (θ, λ) 6= (0, 0). If we choose θ ∈ intC∗,
then we have precisely (3.1), so that

w(u, v; θ, λ)〉 > 0 , ∀(u, v) ∈ H ,

and (3.4) is a sufficient optimality condition for the point y ∈ K.
More generally, if (θ, λ) ∈ C∗× IRm

+ exists such that (3.4) holds, then
we will say that K and H admit a linear separation.

Consider the Lagrangian function associated with (2.1), namely
L(x; θ, λ) := 〈θ, f(x)〉 − 〈λ, g(x)〉. Under suitable convexity assump-
tions and regularity conditions, the optimality of a point y is equiva-
lent to the existence of a saddle point for L(x; θ̄, λ) on X × IRm

+ . We
recall the following preliminary result.

Proposition 5. H and K(y) admit a linear separation iff ∃(θ̄, λ̄) ∈
C∗ × IRm

+ , with (θ̄, λ̄) 6= 0, such that the point (y, λ̄) is a (scalar)
saddle point of L(x; θ̄, λ) on X × IRm

+ .

Proof. It follows from Proposition 3.1 of [25] putting f(x, y) :=
f(y) − f(x), or readapting the proof of Theorem 8, taking into ac-
count Remark 2. ut

Moreover, let us recall the following regularity condition [28],
which is a generalization of the Slater condition for scalar optimiza-
tion problems.

Condition 1. Let C = IR`
+ and y ∈ K; assume that ∀i ∈ I the

following system is possible:

fj(y)− fj(x) > 0, j ∈ I \ {i}; g(x) > 0; x ∈ X .

Proposition 6. Suppose that f and −g are convex functions on the
convex set X and that:



Image space analysis and separation 181

(i) Condition 1;
or
(ii) C = int IR`

+ and ∃x̄ ∈ X such that g(x̄) > 0;
hold. Then y is a v.m.p. of (2.1) iff there exists (θ̄, λ̄) ∈ IR`

+× IRm
+ ,

with (θ̄, λ̄) 6= 0, such that (y, λ̄) is a saddle point for L(x; θ̄, λ) on
X × IRm

+ .

Proof. It is proved [19] that, if f and −g are convex, then the conic
extension E (see Sect. 2) is a convex set. Recall the equivalence
between (2.8) and (2.8)′.
Necessity. Let y be a v.m.p. of (2.1). Noting that K⊆E , we have
that H and K are linearly separable and, by Proposition 5, a saddle
point for L exists.
Sufficiency. It is well–known that, if (y, λ) ∈ X × IRm

+ is a saddle
point for L(x; θ̄, λ) on X × IRm

+ , then y ∈ K. If (i) holds, then it is
proved (see Theorem 2.1 of [33]) that θ̄ > 0. Applying Proposition
2.4 of [33], and recalling the equivalence between (2.8) and (2.8)′, we
obtain that H ∩ E = ∅ and therefore y is a v.m.p. of (2.1). If (ii)
holds then θ̄ 6= 0 (see Theorem 2.1 of [33]) and, by Proposition 2.4
of [33], H ∩ E = ∅, which implies that y is v.m.p. of (2.1). ut

7. DUALITY

In trying to satisfy the sufficient condition expressed by The-
orem 1, it is natural to study, for each fixed (Θ,Λ), the following
vector maximum problem:

(7.1) maxC\{0} w(u, v; Θ,Λ) , s.t. (u, v) ∈ K ,

where w is given by (2.10), and, like in (2.6), maxC\{0} marks vector
maximum with respect to C\{0} : (ũ, ṽ) ∈ K is a vector maximum
point of (7.1), iff

(7.2) w(ũ, ṽ; Θ,Λ) 6≤C\{0} w(u, v; Θ,Λ), ∀(u, v) ∈ K .

Lemma 2. If a maximum point in (7.1) exists, then we have:

(7.3) max
(u,v)∈K

C\{0} w(u, v; Θ,Λ) 6≤C\{0} 0, ∀Θ ∈ U∗C\{0}, ∀Λ ∈ V
∗
C ,
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where the inequality is meant to be satisfied by every element of the
“set max”.

Proof. The pair (ũ := f(y) − f(y), v := g(y)) belongs to K and is
such that w(ũ, ṽ; Θ,Λ) = Θ[f(y)−f(y)]+Λg(y) = Λg(y) ≥C 0. Since
C is pointed we have −Λg(y) /∈ C\{0}. Hence, if (ũ, ṽ) is a vector
maximum point of (7.1), then (7.3) holds. If not, let (u0, v0) ∈ K be
a maximum point of (7.1), then by (7.2) we have:

w(u0, v0; Θ,Λ) 6≤C\{0} w(ũ, ṽ; Θ,Λ)

or, equivalently,

w(ũ, ṽ; Θ,Λ)− w(u0, v0; Θ,Λ) /∈ C\{0}.

Since w(ũ, ṽ; Θ,Λ) ∈ C, we have −w(u0, v0; Θ,Λ) /∈ C\{0} and the
thesis follows. ut

Theorem 9. For any y ∈ K and Λ ∈ V ∗C it results

(7.4) f(y) 6≤C\{0} min
x∈X C\{0}[f(x)− Λg(x)] .

Proof. From (7.3), since I` ∈ U∗C\{0}, we have that ∀y ∈ K and
∀Λ ∈ V ∗C it results

max
x∈X C\{0}[f(y)− f(x) + Λg(x)] 6≤C\{0} 0

or, equivalently,

f(y) 6≤C\{0} −max
x∈X

[−f(x) + Λg(x)]

and therefore (7.4) holds. ut

Consider the set–valued function Φ : U∗C\{0} × V
∗
C⇒ IR`, where

Φ(Θ,Λ) is the set of the optimal values of (7.1).
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Let us recall the definition of vector Maximum of the above
set–valued map [38]:

Definition 4. (Θ̂, Λ̂) ∈ U∗C\{0} × V
∗
C is a vector Maximum14, with

respect to the cone C\{0}, of the set–valued map Φ(Θ,Λ) iff

(7.5)
∃ẑ ∈ Φ(Θ̂, Λ̂) s.t. ẑ 6≤C\{0} z, ∀z ∈ Φ(Θ,Λ),

∀(Θ,Λ) ∈ U∗C\{0} × V
∗
C .

The definition of vector Minimum is quite analogous.

Let us define the following vector optimization problem:

(7.6) Max
Λ∈V ∗

C

C\{0} min
x∈X C\{0} L(x; I`,Λ) ,

where L(x; I`,Λ) has been defined in (6.1).
Problem (7.6) is called the vector dual problem of (2.1). Observe

that, when ` = 1 and C = IR+, (7.6) collapses to the well–known
Lagrangian dual.

Theorem 9 states that the vector of the objectives of the pri-
mal (2.1) calculated at any feasible solution y is not less or equal,
with respect to C\{0}, to the vector of the objectives of the dual
(7.6) calculated at any Λ ∈ V ∗C ; hence Theorem 9 is a Weak Duality
Theorem, in the vector case.

Now, the aim is to establish a Strong Duality Theorem. To this
end, let us observe that, taking into account Definition 4, from (7.3)
we have:

(7.7) Min
Θ∈U∗

C\{0}
Λ∈V ∗

C

C\{0} max
(u,v)∈K

C\{0} w(u, v; Θ,Λ) 6≤C\{0} 0 .

Let Ω be the set of the optimal values of (7.7); Ω is called the image
gap. The following result holds.

Lemma 3. There exist Θ̄ ∈ U∗C\{0} and Λ̄ ∈ V ∗C , such that

(7.8) w(u, v; Θ̄, Λ̄) 6≥C\{0} 0 , ∀(u, v) ∈ K

14 Capital letters in Max or in Min denote that they deal with
a set–valued map. In this definition Φ plays the role of a generic
set–valued function.
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iff 0 ∈ Ω.

Proof. Suppose that (7.8) holds. Let us consider the pair (ū, v̄) =
(f(y) − f(y), g(y)) ∈ K; since g(y) ≥ 0, it results Λ̄g(y) ∈ C,
moreover by (7.8) we have Λ̄g(y) /∈ C\{0}. Hence Λ̄g(y) = 0 or,
equivalently, w(ū, v̄; Θ̄, Λ̄) = 0. This equality and (7.8) imply that
(ū, v̄) is a vector maximum point of w(u, v; Θ̄, Λ̄) and that the null
vector of IR` is the corresponding optimal value; recalling the def-
inition of Φ(Θ,Λ), this result can be expressed by the condition
z̄ = 0 ∈ Φ(Θ̄, Λ̄). Now, rewrite (7.3) as follows:

z̄ − max
(u,v)∈K

C\{0}w(u, v; Θ,Λ) 6≥C\{0} 0 ∀Θ ∈ U∗C\{0}, ∀Λ ∈ V ∗C ,

and observe that it is equivalent to

z̄ − z 6≥C\{0} 0 ∀z ∈ Φ(Θ,Λ), ∀(Θ,Λ) ∈ U∗C\{0} × V
∗
C .

This proves that z̄ = 0 is a Minimum value of Φ(Θ,Λ) and com-
pletes the first part of the proof. Vice versa suppose that 0 ∈ Ω.
Therefore there exists (Θ̄, Λ̄) ∈ U∗C\{0} × V

∗
C such that 0 ∈ Φ(Θ̄, Λ̄).

By definition of vector maximum we have that ∃(ū, v̄) ∈ K such
that w(ū, v̄; Θ̄, Λ̄) = 0 and w(u, v; Θ̄, Λ̄) − w(ū, v̄; Θ̄, Λ̄) 6≥C\{0} 0
∀(u, v) ∈ K, that is w(u, v; Θ̄, Λ̄) 6≥C\{0} 0 ∀(u, v) ∈ K. ut

Let ∆1 be the set of the optimal values of (2.1) and ∆2 the set
of the optimal values of (7.6). Define ∆ := ∆1 −∆2; ∆ is called the
duality gap.

Lemma 4. There exist y ∈ K and Λ̄ ∈ V ∗C such that

(7.9) [f(y)− f(x)] + Λ̄g(x) 6≥C\{0} 0 ∀x ∈ X

iff 0 ∈ ∆.

Proof. Suppose that (7.9) holds. This hypothesis is equivalent to
the existence of Θ̄ = I` and Λ̄ ∈ V ∗C such that (7.8) holds. Hence,
following the proof of Lemma 3, it results that z̄ = 0 ∈ Φ(I`,Λ) and
that z̄− z 6≥C\{0} 0 ∀z ∈ Φ(I`,Λ), ∀Λ ∈ V ∗C . Therefore we have the
following equivalences:

z̄ = 0 ∈ Min
Λ∈V ∗

C

C\{0} max
(u,v)∈K

C\{0} w(u, v; I`,Λ) ⇔
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0 ∈ Min
Λ∈V ∗

C

C\{0}max
x∈X C\{0}[f(y)− f(x) + Λg(x)] ⇔

0 ∈ f(y) + Min
Λ∈V ∗

C

C\{0}max
x∈X C\{0}[−f(x) + Λg(x)] ⇔

0 ∈ f(y)− Max
Λ∈V ∗

C

C\{0}min
x∈X C\{0}[f(x)− Λg(x)] .

Taking into account that, by Theorem 1, (7.9) implies the optimality
of y for (2.1), the thesis follows.
Vice versa, suppose that 0 ∈ ∆. If y is an element of the “set min” of
(2.1), by the previous equivalences it results that ∃Λ̄ ∈ V ∗C such that
0 ∈ max

x∈X C\{0}[f(y) − f(x) + Λ̄g(x)]. Hence, by definition of vector

maximum, we have f(y)− f(x) + Λ̄g(x) 6≥C\{0} 0, ∀x ∈ X. ut

Observe that, when ` = 1 and C = IR+, the condition 0 ∈ ∆
becomes ∆ = {0} or, equivalently,

min
x∈K

f(x) = max
λ∈IRm+

min
x∈X

[f(x)− 〈λ, g(x)〉]

which means that the duality gap is equal to 0 in the scalar case.

Now, in order to obtain a Strong Duality Theorem in the vector
case, we have to find classes of vector optimization problems for
which (7.9) is satisfied. This happens if the functions involved in
(2.1) fulfil a regularity condition and (2.1) is “image convex” (i.e.
H and K(y) are linearly separable in the image space, when y is a
v.m.p. of (2.1)).

Definition 5. Let Z be a nonempty set, A be a convex cone in IRk

with intA 6= ∅ and F : Z → IRk. F is said to be A–subconvexlike iff
∃a ∈ intA, such that ∀ε > 0 we have:

(1− α)F (Z) + αF (Z) + εa ⊆ F (Z) +A, ∀α ∈ [0, 1] .

If the condition “∃α ∈ intA” is replaced by “∀a ∈ A”, then the
above class collapses to that of A–convexlike functions.

In [33] (see Theorem 5.1) it is proved that, if (−f, g) is c`H–
subconvexlike, then (2.1) is image convex.
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The following theorem is a consequence of Lemma 4, Theorem 8
and of some results of [4] and [33].

Theorem 10 (Strong Duality Theorem). Consider problem (2.1)
with C = IR`

+; let y be a v.m.p. of (2.1). If (−f, g) is c`H–
subconvexlike and Condition 1 holds, then 0 ∈ ∆.

Proof. Since (−f, g) is c`H–subconvexlike and y is a v.m.p. of (2.1),
then H and K(y) admit linear separation. This fact and Condition 1
imply (see Theorem 2.1 and Proposition 3.1 of [33]) that θ̄ ∈ int IR`

+

and λ̄ ∈ IRm
+ exist such that (y, θ̄, λ̄) is a saddle point of the (scalar)

Lagrangian function L(x; θ, λ) (defined in Sect. 6). This implies (see
Theorem 3.1 of [4]) that Λ̄ ∈ V ∗C exists such that (y, Λ̄) is a vector
saddle point of the vector Lagrangian function L(x; I`,Λ). Finally,
Theorem 8 affirms that this is equivalent to the condition

w(u, v; I`, Λ̄) 6≥C\{0} 0 ∀(u, v) ∈ K(y) ,

that is (7.9). By means of Lemma 4 the proof is complete. ut

The next result is a straightforward consequence of Theorem 8
and of Lemma 4.

Corollary 2. 0 ∈ ∆ iff there exists Λ̄ ∈ V ∗C , such that (y; I`, Λ̄) is a
saddle point of L(x; I`,Λ) on X × V ∗C .

Example 3 (continuation). Consider again the problem of Exam-
ple 3. Since L(x; I`,Λ) admits a saddle point, taking into account
Corollary 2, we have that 0 ∈ ∆.

Example 4. Let f1(x) = − 1
x+1 , f2(x) = x, g(x) = x3, X = IR, C =

IR2
+. x = 0 is the unique v.m.p. since the components of (f1, f2) are

increasing. We will show that 6∃ Θ̄ ∈ U∗C\{0}, Λ̄ ∈ V
∗
C such that (0, Λ̄)

is a vector saddle point for L(x; Θ̄,Λ) on X × V ∗C . In this case, we
have:

L(x; Θ̄,Λ) =
(
θ̄11θ̄12

θ̄21θ̄22

)( −1
x+1
x

)
−
(
λ1

λ2

)
x3 =

= (−θ̄11
1

x+1 + θ̄12x− λ1x
3,−θ̄21

1
x+1 + θ̄22x− λ2x

3 ) ,
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∀i ∈ I = {1, 2} ∃j(i) ∈ I such that θ̄ij(i) 6= 0. If (0, Λ̄) were
a vector saddle point for L(x; Θ̄,Λ) on X × V ∗C , then there would
exist µ1, µ2 ∈ IR+, with (µ1, µ2) 6= (0, 0), s.t. ∇x[µ1L1(0; Θ̄, Λ̄) +
µ2L2(0, Θ̄, Λ̄)] = 0 or, equivalently, µ1(θ̄11 + θ̄12)+µ2(θ̄21 + θ̄22) = 0,
which implies that µ1 = µ2 = 0; therefore x = 0 is not a v.m.p. for
L(x; Θ,Λ), ∀(Θ,Λ) ∈ U∗C\{0}× V

∗
C . Hence from Corollary 2 we have

that 0 /∈ ∆.

8. SCALARIZATION OF VECTOR OPTIMIZATION

Now, let us consider one of the most analysed topics in Vector
Optimization: scalarization of (2.1), namely how to set up a scalar
minimization problem, which leads to detecting all the solutions to
(2.1) or at least one.

Assume that X be convex. Let us recall that f is called C–
function, iff ∀x′, x′′ ∈ X we have [18]:

(8.1) (1−α)f(x′) +αf(x′′)− f((1−α)x′+αx′′) ∈ C , ∀α ∈ [0, 1].

When C ⊇ IR`
+ or C ⊆ IR`

+, then f is called C–convex. At ` = 1 and
C = IR+ we find the classic definition of convexity. A C–function is
also C–convexlike (see Definition 5); the vice versa is not true as the
following example shows.

Example 5. Let X = IR, C = IR2
+, and f = (f1, f2) with f1(x) =

f2(x) = x3. We have f(X) = {(x1, x2) ∈ IR2 : x1 = x2}, so that
f(X) + C is a convex set. Recalling that, if f is a C–function, then
∀c∗ ∈ C∗ the function 〈c∗, f(x)〉 is convex (see Proposition 8), it is
immediate to see that f is not a C–function.
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Now, ∀y ∈ X, consider the sets15:

S(y) := {x ∈ X : f(x) ∈ f(y)− C} ,
Sp(y) := {x ∈ X : 〈p, f(x)〉 ≤ 〈p, f(y)〉} ,

where p ∈ C∗. When X = IRn and C = IR`
+, then the above sets are

the lower level sets of f and 〈p, f〉, respectively. If f is linear, then
S(y) is a cone with apex at y, and Sp(y) a supporting halfspace of
S(y) at its apex.

Proposition 7. If f is a C–function, then S(y) is convex ∀y ∈ X.

Proof. x′, x′′ ∈ S(y)⇒ ∃c′, c′′ ∈ C such that f(x′) = f(y)− c′ and
f(x′′) = f(y) − c′′. From these equalities, since the convexity of C
implies c̃ := (1− α)c′ + αc′′ ∈ C, ∀α ∈ [0, 1], we find:

(8.2) (1− α)f(x′) + αf(x′′) = f(y)− c̃ , ∀α ∈ [0, 1].

¿From (8.1) we have that ∃ĉ ∈ C, such that:

f((1−α)x′+αx′′) = (1−α)f(x′)+αf(x′′)−ĉ = f(y)−c̃−ĉ = f(y)−c,

where (1−α)x′+αx′′ ∈ X (since X is convex), c := c̃+ĉ ∈ C because
C is a convex cone, and the last but one equality comes from (8.2).
It follows that

(1− α)x′ + αx′′ ∈ S(y) , ∀α ∈ [0, 1], ∀x′, x′′ ∈ S(y).

ut

Now, consider any fixed p ∈ C∗, and introduce the (scalar)
Quasi–minimum Problem (in the unknown x):

(8.3) min 〈p, f(x)〉 , s.t. x ∈ K ∩ S(y),

15 In what follows, p will not play the role of a parameter and will
be consider fixed. Note that, now y is introduced as a parameter –
notwithstanding the fact that in the preceding sections it has always
denoted the unknown – since in subsequent development it will play
both roles.
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which depends on the parameter y.
Note that the feasible region of (8.3) is precisely K(y) defined

in (3.7a).

Remark 3. Under suitable assumptions the 1st order necessary
condition of (8.3) is

〈f ′(y), x− y〉 ≥ 0 , ∀x ∈ K(y) ,

which is a particular case of a Quasi–variational Inequality.

Proposition 8. Let X be convex. If f is a C–function, g is concave
and p ∈ C∗, then (8.3) is convex.

Proof. We have to show that 〈p, f〉 and K∩S(y) are convex. p ∈ C∗
and (8.1) imply, ∀x′, x′′ ∈ X,

〈p, (1− α)f(x′) + αf(x′′)− f((1− α)x′ + αx′′)〉 ≥ 0 , ∀α ∈ [0, 1],

or

〈p, f((1−α)x′+αx′′)〉 ≤ (1−α)〈p, f(x′)〉+α〈p, f(x′′)〉, ∀α ∈ [0, 1],

which expresses the convexity of 〈p, f(x)〉. The convexity of X and
the concavity of g give the convexity of K. Because of Proposition 7
we obtain the convexity of S(y) and hence that of K ∩ S(y). ut

Proposition 9. If p ∈ C∗, then

(8.4) S(y) ⊆ Sp(y) , y ∈ S(y) ∩ Sp(y) , ∀y ∈ X.

Proof. x ∈ S(y) ⇒ ∃c ∈ C such that f(x) = f(y) − c. From this
equality, taking into account that p ∈ C∗ and c ∈ C imply 〈p, c〉 ≥ 0,
we find:

〈p, f(x)〉 = 〈p, f(y)〉 − 〈p, c〉 ≤ 〈p, f(y)〉 , ∀y ∈ X.

The 1st of (8.4) follows. 0 ∈ C ⇔ y ∈ S(y); y ∈ Sp(y) is trivial;
hence the 2nd of (8.4) holds. ut
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Now, let us state some properties; they might be useful in defin-
ing a method for finding one or all the solutions to (2.1) by solving
(8.3).

Proposition 10. Let p ∈ intC∗ be fixed. Then, (2.5) is impossible
– and hence y is a solution to (1.1) – iff the system (in the unknown
x):

(8.5) 〈p, f(y)− f(x)〉 > 0 , f(y)− f(x) ∈ C , g(x) ≥ 0, x ∈ X

is impossible. Furthermore, the impossibility of (8.5) is a necessary
and sufficient condition for y to be a (scalar) minimum point of (8.3).

Proof. The 1st of (8.5)⇒ f(y) − f(x) 6= 0, so that the possibility
of (8.5) implies that of (2.5). The 1st of (2.5) and p ∈ intC∗ imply
the 1st of (8.5), so that the possibility of (2.5) implies that of (8.5).
By replacing the 1st of (8.5) equivalently with 〈p, f(x)〉 < 〈p, f(y)〉,
we immediately obtain the 2nd part of the statement. ut

Proposition 11. We have:

(8.6) x0 ∈ S(y0) ⇒ S(x0) ⊆ S(y0),

whatever y0 ∈ X may be.

Proof. x0 ∈ S(y0) ⇒ ∃c0 ∈ C such that f(x0) = f(y0) − c0.
x̂ ∈ S(x0) ⇒ ∃ĉ ∈ C such that f(x̂) = f(x0) − ĉ. Summing up
side by side the two equalities we obtain f(x̂) = f(y0) − c, where
c := c0 + ĉ ∈ C since C is a convex cone. It follows that x̂ ∈ S(y0)
and hence S(x0) ⊆ S(y0). ut

Proposition 12. If x0 is a (global) minimum point of (8.3) at
y = y0, then x0 is a (global) minimum point of (8.3) also at y = x0.

Proof. Ab absurdo, suppose that x0 be not a (global) minimum
point of (8.3) at y = x0. Then

(8.7) ∃x̂ ∈ K ∩ S(x0) s.t. 〈p, f(x̂)〉 < 〈p, f(x0)〉.
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Because of Proposition 11, x0 ∈ S(y0) ⇒ S(x0) ⊆ S(y0). This
inclusion and (8.7) imply

x̂ ∈ K ∩ S(y0) and 〈p, f(x̂)〉 < 〈p, f(x0)〉,

which contradict the assumption. ut

Proposition 12 suggests a method for finding a v.m.p. of (2.1).
Let us choose any p ∈ intC∗; p will remain fixed in the sequel. Then,
we choose any y0 ∈ K and solve the (scalar) problem (8.3) at y = y0.
We find a solution x0 (if any). According to Proposition 12, x0 is a
v.m.p. of (2.1). If we want to find all the solutions to (2.1) – this
happens, for instance, when a given function must be optimized over
the set of v.m.p. of (2.1) – , we must look at (8.3) as a parametric
problem with respect to y; Propositions 10 and 12 guarantee that all
the solutions to (2.1) will be reached. Note that such a scalarization
method does not require any assumption on (2.1).

To find x0 may not be, in the general case, an easy task. If
this is due to the presence, in K ∩ S(y0), of a difficult constraint,
then a penalization method [19] can be obviously adopted for (8.3).
Apart from computational aspects, such a penalization might be an
alternative approach to the one that will be outlined in Sect. 11.

In order to stress the differences between the classic scalarization
of a Vector Optimization Problem and the present one, let us consider
the following examples.

Example 6. Let us set ` = 2, m = 2, n = 1, X = IR, C = IR2
+, and

f1(x) = x, f2(x) = x2, g1(x) = x + 1 ≥ 0, g2(x) = −x. Obviously,
K = [−1, 0], and all the elements of K are v.m.p. of (2.1). Set y = 0.
Consider the classic scalarized problem

min
x∈K

(p1x+ p2x
2) with p1, p2 > 0 .

Note that x = 0 is not a (global) minimum point of the classic
scalarized problem whatever p1, p2 > 0 may be.

Example 7. Let us set ` = 2, m = 2, n = 1, X = IR, C = IR2
+, and

f1(x) = 2x− x2, f2(x) = 1− x2, g1(x) = x,
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g2(x) = 1− x, f = (f1, f2), g = (g1, g2).

We find S(y) = {y} ∀y ∈ [0, 1]. Hence, the unique solution of (8.3)
is y itself. By varying y, (8.3) gives, with its solutions, the interval
σ := [0, 1], which is the set of v.m.p. of (2.1), as is obvious to check.
Now, let us use the classic scalarization [12,15,41] outside the classic
assumption of convexity, i.e. the scalar parametric problem which,
here, becomes:

(8.8) min
x∈σ

[c1f1(x) + c2f2(x) = −(c1 + c2)x2 + 2c1x+ c2] ,

where (c1, c2) ∈ intC∗ = int IR2
+ are parameters. Every minimum

point of (8.8) is a v.m.p. of (2.1). In the present example it is easy
to see that the only solutions of (8.8) are x = 0, or x = 0 and x = 1,
or x = 1, according to respectively c2 < c1, or c2 = c1, or c2 > c1.
Hence, the scalarized problem (8.8) does not detect all the solutions
to (2.1) (the same happens obviously to (8.3), if S(y) is deleted).

Example 8. Let us set ` = 2,m = 1, n = 2, X = IR2, C = IR2
+,

x = (x1, x2), y = (y1, y2), and

f1(x) = x1 + 2x2 , f2(x) = 4x1 + 2x2 , g(x) = −|x1|+ x2.

Choose p = (1, 1) and y0 = (0, 1). Then (8.3) becomes:

(8.9) min(5x1+4x2) , s.t. −|x1|+x2 ≥ 0, x1+2x2 ≤ 2, 2x1+x2 ≤ 1.

The (unique) solution to (8.9) is easily found to be x0 = (−2, 2).
Because of Proposition 12, x0 is a v.m.p. of (2.1) in the present case.
Furthermore, we have K ∩ S(x0) = {x0}, namely the parametric
system (in the unknown x):

(8.10) −|x1|+ x2 ≥ 0 , x1 + 2x2 ≤ y1 + 2y2 , 2x1 + x2 ≤ 2y1 + y2

has the (unique) solution x0. In order to find all the v.m.p. of (2.1)
we have to search for all y ∈ K such that (8.10) has y itself as the
(unique) solution. (8.10) is equivalent to

(8.11)

 |x1| ≤x2 ≤ −
1
2
x1 +

1
2

(y1 + 2y2)

x2 ≤ −2x1 + 2y1 + y2.
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With x1 > 0, (8.11) cannot have y as (unique) solution. Hence, we
consider the case x1 ≤ 0; by using the Motzkin elimination method
and by requiring a unique solution, (8.11) becomes:

−1
2
x1 =

1
2

(y1 + 2y2) , x1 = 2y1 + y2 , x1 ≤ 0

and leads us to y1 + y2 = 0, y1 ≤ 0 or

y = (y1 = −t, y2 = t) , t ∈ [0,+∞[ ,

which gives us all the v.m.p. of (2.1). Now, let us use the classic
scalarization [12,15,41], i.e. the scalar parametric problem which,
here, becomes:

(8.12)
min[c1f1(x) + c2f2(x) = (c1 + 4c2)x1 + (2c1 + 2c2)x2],
subject to − |x1|+ x2 ≥ 0,

where (c1, c2) ∈ C∗\{0} = IR2
+ \{0} are parameters. Such a scalar-

ization detects all the v.m.p. of (2.1) by solving (8.12) with respect
to all possible pairs of parameters (c1, c2), even if, in general, it finds
more points than the ones desired. In the present example, it is ob-
vious to see that the minimum of (8.12) exists iff − 1

2c1 ≤ c2 ≤ 1
2c1,

and that the minimum points of (8.12) are all the v.m.p. of (2.1) at
0 ≤ c2 ≤ 1

2c1.

In classic scalarization – which works under convexity assump-
tions – the number of parameters is ` (as many as the objective
functions), while in the present one it is n (as many as the elements
of the unknown). Therefore, when we search for all the v.m.p., if
` < n, the former is, in the convex case, advantageous with respect
to the latter. However, the latter can be turned into a more suitable
form. Instead of (8.3), consider the parametric problem, say Pp(ξ),
defined by

(8.3a)′ min 〈p, f(x)〉 , s.t. x ∈ K, f(x) ∈ {ξ} − C ,

where ξ ∈ f(X) is a parameter. Moreover, consider the equality:

(8.3b)′ f(x) = ξ .
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In order to find all the v.m.p. of (2.1), a first v.m.p., say x0,
can be found by using (8.3) as previously described. To find all the
others, we should parametrically move y ∈ K, starting with y = x0

and mantaining y itself as a solution to (8.3). Alternatively, set ξ0 :=
f(x0) and parametrically move ξ ∈ f(X) in (8.3a)′, starting with ξ =
ξ0, mantaining a solution, say x0(ξ) to (8.3a)′, and guaranteeing that
x0(ξ) fulfils (8.3b)′ or f(x0(ξ)) = ξ. In this way, we have to handle
a parameter with ` components (instead of n) and the additional
condition (8.3b)′ (which makes up for the absence of assumptions).

If X, f and −g are convex, then the last constraint of (8.3a)′

and condition (8.3b)′ are superfluous, as Proposition 13 will show.
In such a case, in particular in the linear or quadratic ones, it would
be interesting to compare a method based on (8.3a)′ for finding all
the v.m.p. with those existing in the literature; see for instance
[12,15,41].

Proposition 13. (i) Let p ∈ intC∗. If y is a (scalar) minimum
point of problem:

(8.13) min 〈p, f(x)〉 , x ∈ K,

then y is a v.m.p. of (2.1) and hence also of (2.3). (ii) Let f be
C–convexlike. If y ∈ K is a v.m.p. of (2.1), then ∃py ∈ C∗\{0},
such that y is a solution of (8.13) at p = py.

Proof. (i) Ab absurdo, suppose that ∃x̂ ∈ K such that (2.4) be not
fulfilled or

f(y)− f(x̂) ∈ C\{0} .

This relation and p ∈ intC∗ imply 〈p, f(y)−f(x̂)〉 > 0, or 〈p, f(x̂)〉 <
〈p, f(y)〉 which contradicts the assumption. The last part of the
claim is obvious. (ii) The optimality of y means that (f(y)−f(K))∩
(C\{0}) = ∅. Since

[(f(y)− f(K)] ∩ (C\{0}) = (f(y)− f(K)) ∩ [C + (C\{0})] =
= (f(y)− [f(K) + C]) ∩ (C\{0}),

the previous condition is equivalent to the following:

[(f(y)− (f(K) + C)] ∩ (C\{0}) = ∅ .
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The assumption on f is equivalent to the convexity of f(K)+C [40],
so that f(y) − [f(K) + C] is convex too. Hence ∃py ∈ C∗\{0} such
that

〈py, f(y)− f(x) + c〉 ≤ 0, ∀x ∈ K, ∀c ∈ C .

At c = 0, we obtain:

〈py, f(y)− f(x)〉 ≤ 0, ∀x ∈ K,

which completes the proof. ut

Example 9. Let us set ` = 2, n = 2, X = IR2, K = {x ∈ IR2
+ :

x1 + x2 ≥ 2}, f = (f1, f2) with f1(x) = x1, f2(x) = x2, C = IR2
+.

We have intC∗ = int IR2
+. Choose p = (1, 0). A minimum point

of (8.13) is y = (0, 3) which, however, is not v.m.p. of (2.1). We
come to the conclusion that, if p ∈ C∗\{0} (instead of intC∗), then
a minimum point of (8.13) is not necessarily a v.m.p. of (2.1).

Now, let us discuss briefly another way of finding all the solu-
tions to (2.1) in the special case where C = IR`

+, X = IRn, f and −g
are convex and differentiable, and (8.3) satisfies a regularity condi-
tion [29]. In such a case, it is well–known that the so–called Karush–
Kuhn–Tucker condition is necessary and sufficient for a stationary
point to be also a minimum point. Hence, in the present case, y is a
minimum point of (8.3), iff ∃λ ∈ IRm and ∃µ ∈ IR`, such that

(8.14)
{

(p+ µ)T f ′(y)− λT g′(y) = 0 , 〈λ, g(y)〉 = 0 ,
g(y) ≥ 0 , λ ≥ 0 , µ ≥ 0 .

The set of solutions to this system equals the set of v.m.p. of (2.1)
under the above assumptions. This result can be extended to a wider
class of VOP; for instance, to invex ones.

Without the 1st equation and last inequality, (8.14) would be a
classic nonlinear complementarity system. It would be interesting to
investigate the properties of (8.14) (and of its special cases, in par-
ticular that of f linear and g affine) by exploiting the existing theory
of complementarity systems. Indeed, when we have to optimize a
given function over the set of v.m.p. of (2.1), then (8.14) becomes
the “feasible region” for such a problem.
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Example 8 (continuation). Same data as in Example 8, with the
sole exception of g, which is now splitted into g1(x) = x1 + x2 and
g2(x) = −x1 + x2. With p = (1, 1), (8.14) becomes:

λ1 − λ2 − µ1 − 4µ2 = 5 , y1 + y2 ≥ 0 ,
λ1 + λ2 − 2µ1 − 2µ2 = 4 ,−y1 + y2 ≥ 0 ,
λ1(y1 + y2) + λ2(−y1 + y2) = 0, λ1, λ2, µ1, µ2 ≥ 0 .

We deduce

µ1 = −1 +
1
3
λ1 + λ2 ≥ 0 , µ2 = −1 +

1
6
λ1 −

1
2
λ2 ≥ 0

which require λ1 > 0, (indeed, ≥ 6) and hence y1+y2 = 0. Therefore,
we find that the only solutions to the above system are the set of
(y1, y2) such that y1 + y2 = 0, y1 ≤ 0, as before.

Now, let us consider another particular case, where C is poly-
hedral and X = IRn, so that it is not restrictive to set C = {z ∈ IR` :
Az ≥ 0}, A being a k × ` matrix with real entries. (8.3) becomes:

(8.13)′′ min 〈p, f(x)〉 , s.t. A[f(y)− f(x)] ≥ 0 , g(x) ≥ 0 , x ∈ X .

Let f and −g be convex and differentiable, and (8.13)′′ be regular
[29]. A necessary and sufficient condition for y to be minimum point
of (8.13)′′ is that ∃λ ∈ IRm and ∃µ ∈ IRk, such that:

(8.15)
{

(pT + µTA)f ′(y)− λT g′(y) = 0 , 〈λ, g(y)〉 = 0 ,
g(y) ≥ 0 , λ ≥ 0 , µ ≥ 0 .

At k = ` and A = I, (8.15) is reduced to (8.14). The set of solutions
of (8.15) equals the set of v.m.p. of (2.1).

Assume that the equations of (8.15) define y as implicit function
of λ and µ, say y = y(λ, µ); this happens, for instance, if they fulfil
the assumption of Dini Implicit Function Theorem. Then, (8.15)
becomes:

(8.16) g(y(λ, µ)) ≥ 0 , λ ≥ 0 , µ ≥ 0 , 〈λ, g(y(λ, µ))〉 = 0 ,

which is, for any fixed µ, a standard nonlinear complementarity sys-
tem (see Example 10).
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When a VOP is the mathematical model of an optimal control
problem, then (8.16) can be considered as “restricted” feasible region
– in literature, named set of efficient or nondominated points – and
a scalar objective function can be defined on it and minimized or
maximized; (see [3] for the linear case). If the format (8.16) is kept,
such an objective function is expressed in terms of dual variables.

It would be interesting to find classes of problems for which
y(λ, µ) can be determined explicitly. This happens when f is a
quadratic form, g affine and X = IRn. In general, it is important to
detect properties of (8.16).

Example 10. Let us set ` = 2,m = 1, n = 2, X = IR2
+, C = IR2

+, x =
(x1, x2), y = (y1, y2), and

f(x) =
(

(x1 − 2)2 + (x2 + 1)2

(x1 + 1)2 + (x2 − 2)2

)
, g(x) = x1 + x2 − 2 .

Choose p = (1, 1). The first n = 2 equations in (8.15) become:

2(1 + µ1)(y1 − 2) + 2(1 + µ2)(y1 + 1)− λ = 0 ,

2(1 + µ1)(y2 + 1) + 2(1 + µ2)(y2 − 1)− λ = 0 ,

and allow us to explicitly obtain

(8.17)
y1(λ, µ) =

λ+ 4µ1 − 2µ2 + 2
2(µ1 + µ2) + 4

,

y2(λ, µ) =
λ− 2µ1 + 4µ2 + 2

2(µ1 + µ2) + 4
.

By means of (8.17), system (8.16) is obtained explicitly. However,
due to the particular case, we can simplify it. The 1st of (8.16)
becomes

1
µ1 + µ2 + 2

λ ≥ 1 ,

so that λ > 0 necessarily and, consequently, (8.16) becomes:

y1 + y2 = 2 , y1, y2 ≥ 0 .

Remark 4. The condition for complete efficiency established at
the end of Sect. 2 can be viewed also as an obvious consequence of
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Proposition 10. In fact, in such a circumstance, from Proposition 10
we get that, ∀y ∈ K

〈p, f(y)− f(x)〉 ≤ 0, ∀x ∈ K and s.t. f(y)− f(x) ∈ C

and then we are led to condition (2.15).

9. IMAGE SPACE AND SEPARATION FOR VVI

The approach described in Sects.2 and 3 with reference to (2.1),
and in Sect. 4 with reference to (2.3) can be adopted also in fields
other than Optimization. Indeed, the starting point is the impossi-
bility of a system; (2.5) is a special case. Now, let F : IRn → IR`×n

be a matrix–valued function, and consider the following VVI: find
y ∈ K, such that

(9.1) F (y)(x− y) 6≤C\{0} 0 , ∀x ∈ K ,

where C andK are as in Sect.2. At ` = 1 and C = IR+, (9.1) becomes
the classic Stampacchia Variational Inequality [25]. At ` ≥ 1 and
C = IR`

+, the study of (9.1) was proposed in [18]. Obviously, y is a
solution of (9.1) iff the system (in the unknown x):

(9.2) F (y)(y − x) ≥C\{0} 0 , g(x) ≥ 0 , ∀x ∈ X ,

is impossible. Consider the set16

K(y) := {(u, v) ∈ IR`× IRm : u = F (y)(y − x), g(x) ≥ 0, x ∈ X} ,

which replaces K(y) of Sect.2; while H is the same as in Sect.2. K(y)
is the image of (9.1). Unlike what happens for VOP, a change of y
does not necessarily imply a translation. To (9.1) we can associate
the following image problem:

(9.3) maxC\{0} u , s.t. (u, v) ∈ K(y) ∩ (IR`× IRm
+ ) ;

16 Without any fear of confusion, for the sake of simplicity, we use
here the same symbols as in Sect. 2.
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like in Sects. 2 and 7, maxC\{0} marks vector maximum with respect
to the cone C\{0}: (ũ, ṽ) ∈ K(y) ∩ (IR`× IRm

+ ) is a vector maximum
point of (9.3) iff

(9.4) u 6≥C\{0} ũ , ∀(u, v) ∈ K(y) ∩ (IR`× IRm
+ ) .

In the image space we define an extremum problem also when in the
initial space we are not given an extremum problem; this fact is not
surprising. Indeed, in all cases the starting point for introducing the
image space is a system: (2.5), (3.5), (4.1) and (9.2) in the above
cases.

Now, observe that system (9.2) is impossible iff

(9.5) H ∩K(y) = ∅ .

Hence, y is a solution of (9.1) iff (9.5) holds. Since (9.2) has the same
kind of inequalities as (2.5), and H is the same as in Sect. 2, then
the class of separation functions (2.10) works here too. Hence, with
obvious changes, Theorem 1 becomes here:

Corollary 3. Let y ∈ K. If there exist matrices Θ ∈ U∗C\{0} and
Λ ∈ V ∗C , such that

(9.6) ΘF (y)(y − x) + Λg(x) 6≥C\{0} 0 , ∀x ∈ X ,

then y is a solution of (9.1).

The comments made at the end of Sect. 2 extend to the present
case. Furthemore, note that here too the class of scalar separation
functions (3.1) can be adopted for finding a theorem quite analo-
gous to Theorem 2. Also the approach (3.5) can be followed; (3.5)
becomes:

(9.7) F (y)(y − x) ∈ C ,F (y)(y − x) 6= 0 , g(x) ≥ 0 , ∀x ∈ X .

When C = IR`
+, (3.6)′ is replaced by

(9.7)′
Fr(y)(y − x) > 0 , F (y)(y − x) ≥ 0 , g(x) ≥ 0 , ∀x ∈ X ,

r ∈ I .



200 Giannessi – Mastroeni – Pellegrini

From (9.7)′ we derive the analogous proposition of Corollary 1:

Corollary 4. Let y ∈ K. Assume that, ∀r ∈ I, there exist
θrs ≥ 0 s ∈ I\{r}, and λr ∈ IRm

+ , such that:

(9.8)
Fr(y)(y − x) +

∑
s∈I\{r}

θrsFs(y)(y − x) + 〈λr, g(x)〉 ≤ 0 ,

∀x ∈ X.

Then, y is a solution to (9.1).

In the same light as (2.3) is associated to (2.1), to the VVI (9.1)
we can associate the following weak VVI (for short, WVVI), which
consists in finding y ∈ K, such that

(9.9) F (y)(x− y) 6≤ intC 0 , ∀x ∈ K .

In this case, the sets U and H are as in Sect.4. This being done, then
the class of separation functions (4.2) works here too, and Theorem
4 becomes here:

Corollary 5. Let y ∈ K. If there exist matrices Θ ∈ U∗intC and
Λ ∈ V ∗c , such that

(9.10) ΘF (y)(y − x) + Λg(x) 6≥ intC 0 , ∀x ∈ X ,

then y is a solution to (9.9).

Even if (9.1) and (9.9) are distinct mathematical models, which
represent distinct real equilibrium problems, the solutions to (9.9)
are called weak solutions to (9.1), since they are strictly related to
those to (9.1).

The VVI (9.1) can be called Stampacchia VVI, since it is the
natural extension, to the vector case, of the simplest form of Stam-
pacchia (scalar) Variational Inequality in Euclidean spaces. Analo-
gously to what happens in the scalar case, to (9.1) we can associate
another inequality [21,25,26], which we call Minty VVI; it consists
in finding y ∈ K, such that

(9.11) F (x)(y − x) 6≥C\{0} 0 , ∀x ∈ K .
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Of course, to (9.11) we can associate the Minty WVVI, which consists
in finding y ∈ K, such that

(9.12) F (x)(y − x) 6≥ intC 0 , ∀x ∈ K .

In the scalar case the Minty Variational Inequality has been
shown to be important for studying the stability of a dynamical
system. It would be interesting to extend such a study to vector
dynamical systems.

Remark 5. Taking the line adopted for developing the study of
the Stampacchia VVI, it is possible to obtain, in the IS, analogous
results for the Minty VVI.

10. SCALARIZATION OF VVI

The development of Sect. 8 can be extended to VVI. Let us
start with (9.1) and set X = IRn. Consider the sets:

Σ(y) := {x ∈ IRn : F (y)x ∈ F (y)y − C} ,

Σp(y) := {x ∈ IRn : 〈pF (y), x〉 ≤ 〈pF (y), y〉},

where p ∈ C∗ is considered a row–vector. When C = IR`
+, then the

above sets are the lower level sets of the vector function F (y)x and
of the scalar function 〈pF (y), x〉, respectively. Σp(y) is a supporting
halfspace of Σ(y) at y, as Proposition 16 will show. If F (y) is a
constant matrix and C is polyhedral, then Σ(y) is a polyhedron.

Proposition 14. Σ(y) is convex ∀y ∈ IRn.

Proof. x′, x′′ ∈ Σ(y) ⇒ ∃c′, c′′ ∈ C such that F (y)x′ = F (y)y − c′,
F (y)x′′ = F (y)y − c′′. From these equalities, ∀α ∈ [0, 1] we have:

F (y)[(1− α)x′ + αx′′] = F (y)y − c(α),

where c(α) := (1 − α)c′ + αc′′ ∈ C since C is convex. Hence
(1− α)x′ + αx′′ ∈ Σ(y) ∀α ∈ [0, 1]. ut
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Now, let us introduce the (scalar) Quasi–Variational Inequality
which consists in finding17 y ∈ K(y) := K ∩ Σ(y), such that:

(10.1) 〈Fp(y), x− y〉 ≥ 0 , ∀x ∈ K(y),

where Fp(y) := pF (y) and p has to be considered fixed; (10.1) is a
scalarization of (10.1).

F will be called C–operator iff

(10.2) [F (x′)− F (x′′)](x′ − x′′) ∈ C , ∀x′, x′′ ∈ IRn .

When C ⊇ IR`
+ or C ⊆ IR`

+, then F will be called C–monotone;
when ` = 1, the notion of C–operator is reduced to classic ones: F
becomes monotone or antitone, according to C = IR+ or C = IR−,
respectively.

Proposition 15. If X is convex, F is a C–operator, g is concave,
and p ∈ C∗, then (10.1) is monotone.

Proof. We have to show that K(y) is convex and Fp monotone.
The assumptions on X and g imply the convexity of K. Because
of Proposition 14, Σ(y) is convex ∀y ∈ IRn. Hence K(y) is convex
∀y ∈ IRn. p ∈ C∗ and (10.2) imply

〈p, [F (x′)− F (x′′)](x′ − x′′)〉 ≥ 0 ∀x′, x′′ ∈ IRn,

or
〈Fp(x′)− Fp(x′′), x′ − x′′〉 ≥ 0 ∀x′, x′′ ∈ IRn .

ut

Proposition 16. If p ∈ C∗, then

(10.3) Σ(y) ⊆ Σp(y) , y ∈ Σ(y) ∩ Σp(y), ∀y ∈ IRn .

17 Without any fear of confusion, we use the same symbol K(y) as
in Sect. 8.
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Proof. x ∈ Σ(y)⇒ ∃c ∈ C such that F (y)x = F (y)y− c. From this
equality, having taken into account that p ∈ C∗ and c ∈ C imply
〈p, c〉 ≥ 0, we have:

〈pF (y), x〉 = 〈pF (y), y〉 − 〈p, c〉 ≤ 〈pF (y), y〉.

The 1st of (10.3) follows. The 2nd of (10.3) is a consequence of the
obvious relations y ∈ Σ(y) (due to the closure of C) and y ∈ Σp(y). ut

Now, let us state some preliminary properties, which might help
in finding methods for solving (9.1) through (10.1).

Proposition 17. Let p ∈ intC∗ be fixed. Then (9.7) is impossible
– and hence y is a solution of (9.1) – iff the system (in the unknown
x):

(10.4) 〈pF (y), y − x〉 > 0 , F (y)(y − x) ∈ C , g(x) ≥ 0 , x ∈ X

is impossible. Furthermore, the impossibility of (10.4) is a necessary
and sufficient condition for y to be a solution of (10.1).

Proof. The 1st of (10.4)⇒ F (y)(y − x) 6= 0, so that the possibility
of (10.4) implies that of (9.7). The 1st of (9.7) and p ∈ intC∗ imply
the 1st of (10.4). The last part of the statement is obvious. ut

Note that Proposition 17 shows that the VVI (9.1) can be equiv-
alently replaced by a scalar Quasi–Variational one, namely (10.1).

Consider, now, the function ϕ : IRn× IRn → IR, given by

ϕ(x; y) := 〈Fp(y), x− y〉,

and the problem (in the unknown x; y ∈ K(y) is a parameter):

(10.5) minϕ(x; y) , s.t. x ∈ K(y).

Since ϕ(y; y) = 0 for any y, the minimum in (10.5) is ≤ 0.

Proposition 18. y ∈ K is a solution of (9.1) iff it is a global
minimum point of (10.5).
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Proof. Let y be a global minimum point of (10.5), so that ϕ(y; y) = 0
and ϕ(x; y) ≥ 0 ∀x ∈ K(y). Hence, because of Proposition 17, y is
a solution of (9.1). Now, let y be a solution of (9.1). Because of
Proposition 17, system (10.4) is impossible, so that y is a solution of
(10.1); this implies ϕ(x; y) ≥ 0 ∀x ∈ K(y). Since ϕ(y; y) = 0, y is a
global minimum point of (10.5). ut

Example 11. Let us set ` = 2, m = 1, n = 2, C = IR2
+ = C∗, X =

IR2
+, y = (y1, y2), x = (x1, x2), g(x) = x1 + x2 − 2, and

F (y) =
(

2y1 − 2 2y2 + 2
2y1 + 2 2y2 − 2

)
.

We choose p = (p1, p2) = (1, 1), so that

ϕ(x; y) = 4(y1x1 + y2x2 − y2
1 − y2

2),

K(y) :


(1− y1)x1 − (1 + y2)x2 + y2

1 + y2
2 − y1 + y2 ≥ 0

− (1 + y1)x1 + (1− y2)x2 + y2
1 + y2

2 + y1 − y2 ≥ 0
x1 + x2 ≥ 2 , x1 ≥ 0 , x2 ≥ 0.

We observe that every element y0 of the segment ](2, 0), (0, 2)[⊂ IR2

is a solution to (10.5) at y = y0 and hence to (9.1). At y = ŷ = (2, 0),
problem (10.5) becomes:

min 8(x1 − 2) , s.t. x1 + x2 = 2, 3x1 − x2 ≤ 6, x1 ≥ 0, x2 ≥ 0,

whose unique global minimum point is x̂ = (0, 2) 6= ŷ. Hence, be-
cause of Proposition 18, ŷ is not a solution to (9.1). A quite analogous
conclusion can be drawn at y = (0, 2).

Note that in Example 10 the operator F (y) is the Jacobian
matrix of the vector function f : IR2 → IR2, given by

f(y) =
(
f1(y)
f2(y)

)
=
(

(y1 − 1)2 + (y2 + 1)2

(y1 + 1)2 + (y2 − 1)2

)
.

Consider (2.1) with the above function and with K as in Example
10, i.e. K = {x ∈ IR2

+ : x1 + x2 ≥ 2}. It is easy to check that all
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the v.m.p. of (2.1) are given by the segment [(2, 0), (0, 2)], whose
extrema are not solutions of the related VVI (9.1). Hence, such an
inequality is a sufficient (but not necessary) condition for y to be
v.m.p. of (2.1).

Now, let us consider Minty VVI (9.11). Instead of Σ(y) and
Σp(y), we introduce the sets:

Σut(y) := {x ∈ IRn : F (x)(y − x) ∈ C},
Σutp (y) := {x ∈ IRn : 〈pF (x), y − x〉 ≥ 0},

where again p ∈ C∗ is considered a row–vector. When C = IR`
+,

then the above sets are the upper level sets of the vector function
F (x)(y− x) and of the (scalar) function 〈pF (x), y− x〉, respectively.
If F (x) is a constant matrix and C is polyhedral, then Σut(y) is a
polyhedron and Σutp (y) a supporting halfspace of it.

Proposition 19. If X is convex and F a C–operator, then Σut(y)
is convex ∀y ∈ X.

Proof. Let x′, x′′ ∈ Σut(y), so that

(10.6) F (x′)(y − x′) ∈ C , F (x′′)(y − x′′) ∈ C .

From the assumption we have

F (x′)(y−x′)+F (y)(x′−y) ∈ −C , F (x′′)(y−x′′)+F (y)(x′′−y) ∈ −C .

These relations together with, respectively, (10.6) imply

F (y)(x′ − y) ∈ −C , F (y)(x′′ − y) ∈ −C ,

and hence (because of the convexity of C):

(10.7) F (y)[x(α)− y] ∈ −C , ∀α ∈ [0, 1] ,

where x(α) := (1 − α)x′ + αx′′. Exploiting again the assumption,
(10.7) implies

F (x(α))[y − x(α)] ∈ C , ∀α ∈ [0, 1] ,

or x(α) ∈ Σut(y), ∀α ∈ [0, 1], which completes the proof. ut
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Now, let us introduce the (scalar) Quasi–Variational Inequality
of Minty type, which consists in finding y ∈ Kut(y) := K ∩ Σut(y),
such that:

(10.8) 〈Futp (x), y − x〉 ≤ 0 , ∀x ∈ Kut(y) ,

where Futp (x) := pF (x) and p has to be considered fixed; (10.8) is a
scalarization of (9.11).

Proposition 20. If X is convex, F is a C–operator, g is concave,
and p ∈ C∗, then (10.8) is monotone and equivalent to (10.1).

Proof. First of all, we have to show that Kut(y) is convex and Futp
monotone. The assumptions on X and g imply the convexity of K.
Because of Proposition 19, Σut(y) is convex ∀y ∈ IRn. p ∈ C∗ and
(10.2) imply

〈p, [F (x′)− F (x′′)](x′ − x′′)〉 ≥ 0 ∀x′, x′′ ∈ IRn ,

or
〈p, F (x′)− pF (x′′), x′ − x′′〉 ≥ 0 .

The equivalence is a classic fact [25]. ut

Proposition 21. If p ∈ C∗, then

(10.9) Σut(y)⊆Σutp (y) , y ∈ Σut(y) ∩ Σutp (y), ∀y ∈ IRn .

Proof. x ∈ Σut(y) ⇒ ∃c ∈ C such that F (x)(y − x) = c. From this
equality, having taken into account that p ∈ C∗ and c ∈ C imply
〈p, c〉 ≥ 0, we have

〈pF (x), y − x〉 = 〈p, F (x)(y − x)〉 = 〈p, c〉 ≥ 0 .

The 1st of (10.9) follows. The 2nd is a consequence of the obvious
relations y ∈ Σut(y) (due to the closure of C) and y ∈ Σutp (y). ut
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Proposition 22. If p ∈ intC∗, then (9.7) is impossible – and hence
y is a solution to (9.11) – iff the system (in the unknown x):

(10.10) 〈pF (x), y − x〉 > 0 , F (x)(y − x) ∈ C , g(x) ≥ 0 , x ∈ X

is impossible. Furthermore, the impossibility of (10.10) is a necessary
and sufficient condition for y to be a solution to (10.8).

Proof. The 1st of (10.10)⇒ 〈F (x), y−x〉 6= 0, so that the possibility
of (10.10) implies that of (9.7). The 1st of (9.7) and p ∈ intC∗ imply
the 1st of (10.10). The last part of the statement is obvious. ut

Note that Proposition 22 shows that Minty VVI (9.11) can
be equivalently replaced by a scalar Quasi–Variational one, namely
(10.8).

Consider, now, the function ϕut : IRn× IRn → IR, defined by
ϕut(x; y) := 〈Futp (x), y − x〉 , and the problem (in the unknown x;
y ∈ Kut(y) is a parameter):

(10.11) maxϕut(x; y) , s.t. x ∈ Kut(y) .

Since ϕut(y; y) = 0 ∀y, the maximum in (10.11) is ≥ 0.

Proposition 23. y ∈ K is a solution to (9.11) iff it is a global
maximum point of (10.11).

Proof. Let y be a maximum point of (10.11), so that ϕut(y; y) = 0
and ϕut(x; y) ≤ 0 ∀x ∈ Kut(y). Hence, because of Proposition 22, y
is a solution to (9.11). Now, let y be a solution to (9.11). Because of
Proposition 22, system (10.10) is impossible, so that y is a solution
to (10.8); this implies ϕut(x; y) ≤ 0 ∀x ∈ Kut(y). Since ϕut(y; y) = 0,
y is a global maximum point of (10.11). ut

11. SOME REMARKS ON PENALIZATION

In Sects. 2,3 and 9 we adopted mainly linear or piece–wise linear
separation functions, but pointed out that any nonlinear one could
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be used equally well. In particular, if we had introduced a family of
separation functions, whose positive level sets were ordered (in the
sense of inclusion), then we might have hoped to define a penalization
approach. It would have consisted in replacing each of (2.1), (2.3),
(9.1), (9.9), (9.11), (9.12) with a sequence of VOP or VVI which had
merely X as feasible region or domain and whose sets of solutions
converge to that of above VOP or VVI. In this section we will outline
a way for investigating such a topic, making some remarks for (2.1)
and (9.1).

To this end, in place of (2.10), consider the class of functions

(11.1) w(u, v;α) = u− Λ(v;α),

where α > 0, Λ(v;α) = 0 ∀v ∈ IRm
+ , Λ(v;α) ∈ C\{0} ∀v /∈ IRm

+ .
Λ(v;α) must fulfil the conditions:

(11.2a) H =
⋂
α>0

WC\{0}(u, v;α) ,

(11.2b) α′ ≤ α′′ ⇒ WC\{0}(u, v;α′′)⊆WC\{0}(u, v;α′) .

where WC\{0}(u, v;α) := {(u, v) ∈ IR`× IRm : w(u, v;α) ≥C\{0} 0}.

Let us consider the special case, where C = IR`
+. A function of

type (11.1) is obtained by setting Λ̃(v;µ) = µΛ(v) where µ > 0 and

(11.3a) Λ(v) = (Λr(v), r ∈ I)T ,

with

(11.3b) Λr(v) :=


0 , if v ∈ IRm

+ ,
m∑
i=1

v2
i , if v /∈ IRm

+ .

Proposition 24. Let Λ(v) be defined by (11.3). The class of func-
tions

w(u, v;µ) := u− µΛ(v) , µ > 0 ,
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fulfils the conditions (11.2).

Proof. Let us prove (11.2a). Following the proof of Proposition 1
it is sufficient to prove that ∀(ũ, ṽ) /∈ H ∃ µ̃ > 0 such that (ũ, ṽ) /∈
WC\{0}(u, v; µ̃). Consider any (ũ, ṽ) /∈ H. If ṽ ∈ IRm

+ then ũ /∈

IR`
+ ⇒ w(ũ, ṽ;µ) = ũ /∈ IR`

+ \{0}. If ṽ /∈ IRm
+ then

m∑
i=1

ṽ2
i > 0.

∀r ∈ I we have:

wr(ũ, ṽ; µ̃r) = 0 if µ̃r :=
ũr
m∑
i=1

ṽ2
i

,

where wr is the r–th component of w. Hence, if µ > min{µ̃1, . . . , µ̃`},
then w(ũ, ṽ;µ) /∈ IR`

+. (11.2a) follows. Consider any µ′, µ′′ > 0 such
that µ′ ≤ µ′′; we have to prove that ∀(u, v) ∈ IR`× IRm w(u, v;µ′′) ∈
IR`

+ \{0} implies that w(u, v;µ′) ∈ IR`
+ \{0}. If v ∈ IRm

+ , this impli-
cation is trivial. If v /∈ IRm

+ , then w(u, v;µ′′) ∈ IR`
+ \{0} implies

w(u, v;µ′′) = u− µ′′
m∑
i=1

v2
i =

(
u− µ′

m∑
i=1

v2
i

)
−

(µ′′ − µ′)
m∑
i=1

v2
i ∈ IR`

+ \{0} ,

so that

w(u, v;µ′) = u− µ′
m∑
i=1

v2
i ∈ {(µ′′ − µ′)

m∑
i=1

v2
i + IR`

+ \{0}⊆ IR`
+ \{0} .

Thus, (11.2b) follows. ut

The properties (11.2) suggest the introduction of the following
VOP (in the unknown x):

(11.4) minC\{0}[f(x) + µΛ(g(x))] , s.t. x ∈ X .

Consider a sequence {µj}∞1 of positive reals with lim
j→+∞

µj = +∞.

Call Pj the problem (11.4) at µ = µj . We aim to solve (2.1) by
solving the sequence {Pj}∞1 .
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Example 12. Let us set ` = 2,m = 1, X = IR+, C = IR2
+, and

f1(x) = 2x− x2, f2(x) = 1− x2, g(x) = 1− x, f = (f1, f2) .

Problem (11.4) becomes:

minIR2
+ \{0}

(
f1(x) + µΛ(g(x)), f2(x) + µΛ(g(x))

)
, s.t. x ≥ 0 ,

where

f1(x) + µΛ(g(x)) =
{

2x− x2 , if 0 ≤ x ≤ 1,
(µ− 1)x2 + (2− 2µ)x+ µ , if x > 1,

f2(x) + µΛ(g(x)) =
{

1− x2 , if 0 ≤ x ≤ 1,
(µ− 1)x2 − 2µx+ 1 + µ , if x > 1.

It is easy to find that, if µ > 1, then the set of its v.m.p. is
[
0, µ

µ−1

]
,

which converges to [0, 1], the set of v.m.p. of (2.1), as µ→ +∞.

Of course, (11.3) is not the only possibility for satisfying (11.2).
Furthermore, we can start from the scalar separation (3.1) – instead
of (2.10) – and associate with (2.1) a sequence of scalar minimum
problems – instead of vector ones. Similar analysis can be done in
the weak case.

Taking the above line, considering nonlinear separation func-
tions, it is possible to extend the penalty methods also to a VVI.
Similarly to VOP we can define a sequence of VVI on X, whose sets
of solutions converge to that of (9.1). Consider the class of functions
(11.1):

ω = ω(u, v;α) = u− ϕ(v;α),

where ϕ(·, α) : IRm → IR`, ∀α > 0 and ϕ(v;α) = 0 ∀v ∈ IRm
+ ,

ϕ(v;α) ∈ C\{0} ∀v /∈ IRm
+ . Suppose that ω fulfils the conditions

(11.2). As shown by Proposition 24, a class of functions which fulfil
the previous conditions is obtained by defining ϕ(v;α) as in (11.3).
Because of the properties (11.2) we can replace (9.1) with the se-
quence of VVI defined by the following problems depending on the
parameter α > 0: find y ∈ X, such that

(11.4) F (y)(y − x)− ϕ(g(x);α) 6≥C\{0} 0, ∀x ∈ X .
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We observe that, if a solution y to (11.4) belongs to the feasible
set K, then it is also a solution to (9.1); in fact, by definition, it is
ϕ(g(x);α) = 0, ∀x ∈ K. If it were F (y)(y− x̄) ≥C\{0} 0 for x̄ ∈ K,
then

F (y)(y − x̄)− ϕ(g(x̄);α) ≥C\{0} 0 ,

which is against (11.4). In this case we have an exact penalization
for a VVI.
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