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Abstract. We present hoc: a fast, scalable object repository providing
programmers with a general storage module. hoc may be used to imple-
ment DSMs as well as distributed cache subsystems. hoc is composed of
a set of hot-pluggable cooperating processes that may sustain a close to
optimal network traffic rate. We designed an hoc-based Web cache that
extends the Apache Web server and remarkably improves Apache farms
performances with no modification to the Apache core code.
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1 Introduction

The demand for performance, propelled by both challenging scientific and indus-
trial problems, has been steadily increasing in past decades. In addition, broad-
band networks growing availability has boosted Web traffic and therefore the
demand for high-performance Web servers. Distributed memory Beowulf clus-
ters are gaining more and more interest as low cost parallel architectures meeting
such performance demand. This is especially true for industrial applications that
require a very aggressive development and deployment time for both hardware
solutions and applications, e.g. software reuse, integration and interoperability
of parallel applications with the already developed standard tools.

We present hoc (Herd of Object Caches), a distributed object repository
specifically thought for Beowulf class clusters. hoc provides applications with a
distributed storage manager that virtualize processing elements (PEs) primary
memories into an unique common memory. As we shall see, hoc is not yet
another Distributed Shared Memory (DSM), it rather implements a more basic
facility. It can be used as a DSM building block as well as for other purposes.
Indeed, in this paper we present the design of a cooperative cache built on top
of hoc for farms of the Apache Web server [1]. hoc provides Apache farms
with a hot-pluggable, scalable cache that considerably improves Apache farms
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Fig. 1. Typical architectural schemes of applications based on hoc. a) With data access
protocol within the application. b) Extending hoc external operations.

performance with no modification to the standard Apache 2.x core code, thus
meeting key industrial requirements.

In Sec. 2 we present hoc design principles, hoc implementation and its
raw performance. In Sec. 3 we discuss Web server test-bed peculiarities and
hoc+Apache architecture. Experiments on such architecture are discussed in
Sec. 4. The paper is completed by some conclusion.

2 HOC Design Principles

The hoc underlying design principle consists in clearly decoupling the manage-
ment of computation and storage in distributed applications. The development of
a parallel/distributed application is often legitimated by the need of processing
large bunches of data. Therefore data storages are required to be fast, dynami-
cally scalable and enough reliable to survive to some hardware/software failures.
Decoupling helps in providing a broad class of parallel applications with these
features while achieving very good performances.

hoc, like a DSM, virtualizes PEs primary memories in a common distributed
repository. As a matter of fact, it realizes an additional layer of memory hier-
archy that lays upon O.S. virtual memory, but that should be used instead of
– or together with – disk-based virtual memory. The hoc implements an exter-
nal storage facility, i.e. a repository for arbitrary length, contiguous segments of
data (namely objects). Objects are identified by a configurable length key and
have a home node, i.e. the reference node for the object (that is currently stati-
cally assigned to objects). It enables applications to fully utilize the underlying
strength of a cluster, such as fast network communications and huge aggregated
memory space. Current and near future network technologies clearly indicates
that such a net-based virtual memory may perform much better than disk-based
ones. Literature reports very good results both for general DSMs [2, 3] and for
specific Web applications [4–6]. A large and fast data repository may be used
as a cache facility to improve performance of I/O bound applications, and as
a primary storage facility for CPU bound applications running out-of-core on a
single PE memory.

hoc, unlike some DSMs, is quite robust and simple. It does not natively
implement any consistency mechanism for data copies and does not force al-
ready developed applications to be rewritten. As shown in Fig. 1, the hoc-based
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Fig. 2. hoc architecture. a) Functional view. b) Implementation layers.

architecture distinguishes the raw data access layer from the protocol each ap-
plication requires to access data. In many cases, for example in the context of
Web caching, a sophisticated data consistency mechanism is not really needed
and may introduce unnecessary overheads. However, hoc may be enriched with
locking and consistency mechanisms at the protocol level (as shown in Fig. 1 a).

2.1 HOC Implementation

A hoc server is implemented as a C++ single thread process; it relies on non-
blocking I/O to manage concurrent TCP connections [7, 8]. The hoc core con-
sists of an executor of a dynamic set of finite state machines, namely services,
each of them realized as a C++ object. Each service reacts to socket-related
events raised by O.S. kernel (i.e. connections become writable/readable, new
connection arrivals, connection closures, etc.). In the case one service must wait
on an event, it consolidates its state and yelds the control to another one. The
hoc core never blocks on I/O network operations: neither on read()/write()
system calls nor on hoc protocol primitives like remote node memory accesses.
The event triggering layer is derived from the Poller interface [9], and may be
configured to use several posix connections multiplexing mechanisms, such as:
select, poll, and Real-Time signals.

hoc architecture is sketched in Fig. 2. A hoc may serve many clients, each
of them exploiting many connections. A server may cooperate with other hocs
through a configurable number of connections. Connections both with clients and
other servers may be established or detached at any time during hoc lifespan.

A connection is exclusively managed by a service. Services rely on an alloca-
tor in order to store objects into both a object storage and a write-back cache
facilities. They may be both managed as a cache of a configurable but fixed
amount of objects and used to store server home objects and to cache remote
home objects respectively. As shown in Fig. 2 b) each of them may be managed
by using a replacing policy chosen at configuration time. Currently hoc comes
with RND (random) and LFU (Least Frequently Used) policies, however it is
designed to be easily extended with other policies. hoc offers three basic object-
related services (external operations): get, put, and remove. Assuming to have
a set of nodes each of them running an hoc, and hoci receive:
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– get(x). If home(x) = i, a local object storage get(x) is issued. If other-
wise home(x) = j, j �= i a local cache get(x) and, in case of miss, a re-
mote get(x, j) is issued. In the latter case the object(x) is stored in the i
local cache. Anyway, depending on the get results, either the object(x) or a
miss message is sent to the client.

– put(x). If home(x) = i, object(x) is put in the node i storage. Otherwise
object(x) is stored in the node i local cache. A capacity miss can occur in
both cases. In the former case the victim object is simply deleted1, in the
latter the write-back reconciling protocol is started.

– remove(x). The object(x) is purged from both object storages and caches of
all nodes.

Overall, hoc implements a Multiple Reader Single Writer protocol. Observe that
hoc does not natively implement any memory consistency and does not provide
any locking facility. These features are supposed to be realized at the protocol
level as shown in Fig. 1 a).

2.2 HOC Performances

hoc performances has been extensively tested on several homogeneous clus-
ters. We report here tests performed on a 21 PEs RLX Blade; each PE runs
Linux (2.4.18 kernel) and is equipped with an Intel P3@800MHz, 1GB RAM, a
4200rpm disk and three 100Mbit/s switched Eth devices. As shown in Fig. 3,
hoc scales very well up to the maximum number of PEs available in our testing
environment (10 hocs and 10 clients). In the tests two different Ethernets are
used for client-server and server-server connections. As shown in Fig. 3 b), hoc
can deliver an aggregate throughput that is quite close to the 100Mbit/s per PE
asymptotic network bandwidth. We experienced a little impact of local cache
size on performances. Cache mainly acts as a network buffer.

Other tests performed on a Linux (2.4.22 kernel) cluster of 8 PEs P4@2GHz,
512MB RAM, connected through a 1Gbit/s Eth have confirmed for a single hoc
and many clients an aggregate throughput of ∼91MB/s (∼96% of the measured
95MB/s maximum bandwidth) with 2048 concurrent stable connections for a
test of 50,000 requests of 1MB objects. We also experienced more than 20,000
replies/s with 3,072 concurrent stable connections for a test of 200,000 requests
of 512B objects. Actually, hoc has sustained a throughput close to the network
bandwidth in any tested case.

3 Web Caching Test-Bed

Web caches have became the standard method to ensure high-quality throughput
for Web access. Web caching can be adopted at different levels: 1) Web browser
storing Web objects in its local memory or disk. 2) proxy server sitting some-
where between the clients and the Web server (typically at ISP level) serving a

1 If configured as a cache, otherwise a storage full message is sent to the client.
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Fig. 3. a) hoc scalability of served requests. b) Aggregate throughput. Experiments
are referred to 200,000 get operations w.r.t. a data set of 40,000 objects (8K and 16K
average sizes) having cyclically distributed homes among hocs. Each hoc serves a
partition of requests referred to keys which are uniformly distributed and randomly
chosen in the whole data set. Each hoc have a local cache of 1,000 objects.

large community of clients. 3) server accelerator (reverse proxy) sitting in front
of one or more Web servers [10, 11].

Reverse proxies have been demonstrated to be the best solution among them.
Differently from 1 and 2, they are under the site manager control and typically
enable dynamic pages management through an API which allows application
programs to explicitly add, delete, and update cached data [12, 13]. However, a
reverse proxy may introduce unnecessary latencies due to the additional parsing
and filtering of requests, including those leading to not cacheable replies. To
mitigate these problems we adopt a different solution: we place a cache on back
of the Web server in order to improve server performances. The cache cope with
cacheable replies only and does not make any additional parsing on them. As we
shall see in the next section, we implemented the solution by using a hoc-based
architecture. Our approach is similar to others appeared in literature [14, 4, 6, 5].
Differently from other approaches, we did not designed another Web server, we
are rather proposing a decoupled architecture which is composed of the standard
Apache Web server and a hoc-based storage subsystem. Apache Web server is
unmodified in core functionalities, we just modified the allocation policy of one
optional Apache module. Therefore the architecture may benefit from Apache
popularity, correctness and people expertise.

In a cache implemented on a single node (single or even multi-processor),
the throughput is limited by the network interface. With cluster based Web
cache the throughput can be increased simply adding more nodes. Since many
hocs may cooperate with each other, the cache throughput is not limited by the
network interface, but by the aggregate cluster throughput.

3.1 HOC+Apache Architecture

The hoc+Apache architecture is compliant to Fig. 1 a). In this case the app is the
Apache Web server, the protocol is a modified version of mod mem cache Apache
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Table 1. Experimental environment summary. a) Raw data set characteristics. b) Ac-
cess log characteristics. c) Apache Web server configuration.

a) Raw data set

Total size 4 GB
N. of files 100,000
N. of requests 250,000
N. of files < 256 KB 96209 (2 GB)
Static pages 100%

b) Accesses log

Data transfered ∼9 GB
N. of distinct files requests 74226 (2.8 GB)
Avg. file size 36.8 KB
N. of distinct files < 256 KB 71449 (1.5 GB)
Avg. size of distinct files < 256 KB 8 KB

c) Apache 2.0.47 MPM worker configuration (hybrid multi-threaded multi-process) [1]

StartServers 4 MaxClients 512 ThreadPerChild 64 Log level Notice
ServerLimit 8 MinSpareThreads 32 MaxRequestsPerChild 0 Access log None

module [1] (compliant to RFC2616), and dashed lines are not present. In particu-
lar, mod mem cache has been modified by only substituting local memory alloca-
tion, read and write with hoc primitives. The work-flow of the mod mem cache
modified to inter-operate with hoc is sketched in Fig. 4 a). No other function-
alities have been modified. Both original and modified caches are able to cache
static and dynamic pages. Note that the original version of mod mem cache im-
plements a per process cache, thus different Apache processes never share the
cache even if they are running on the same PE.

We used as objects key the MD5 digest of the mod mem cache native key. In
order to enforce correctness and consistency we include in the object to be stored
into hoc original HTTP request and reply headers. Protocol does not need any
additional consistency mechanism but the ones ensured by mod mem cache.

Observe that hoc+Apache architecture is designed to improve Apache per-
formance whether the performance bottleneck is memory size, typically in the
case the data set does not fit the main memory. In all other cases (e.g. in-core
data sets), the hoc+Apache architecture does not introduce performance penal-
ties w.r.t. the stand-alone Apache equipped with the native cache.

4 Web Caching Experiments

We measured the performance of Apaches+hoc architecture on the RLX Blade
described in Sec. 2.2. The main characteristics of the data set and accesses log
are summarized in Table 1 a) and b). The data set is generated according to [15]
by using a Zipf-like request distribution with α = 0.7. 90% of files have small
size (min. 2KB, max. 100KB, avg. ∼13KB) and 10% of files have medium-large
size (min. 101KB, max. 1MB, avg. ∼280KB). In all tests we used the Apache
2.0.47 Web server in the MPM Worker configuration shown in Table 1 c). Files
greater than 256KB are not cached. HTTP requests are issued by means of the
httperf program [16] configured to count replies only within 1 second timeout.
Each httperf is directly connected to an Apache with no switch/balancer in the
middle. The whole site is replicated on all PEs running Apache.

In Fig. 4 b) we compare Apache against Apache+hoc performances. The
test takes in to account three basic classes of configurations:
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Fig. 4. a) High-level work-flow of mod mem cache changes needed to inter-operate
with hoc. b) Replies rate for stand-alone Apache in the Multi-Process Multi-Threaded
(MPMT) and Single-Process Multi-Threaded (SPMT) configurations and hoc+Apache
architecture. Apache is tested with 900MB and 150MB native cache per process and
without cache. hoc+Apache is tested with 450MB and 900MB devoted to hoc (1PE).
hoc+Apache is also tested with Apache and hoc (900MB) on different PEs (2PEs).

i) a stand-alone multi-process multi-threaded Apache with no cache (➄), with
the mod mem cache (Apache native cache) exploiting both 900MB (➀) and
150MB cache (➁) per process. A stand-alone Apache configured as one server
process exploiting 512 threads sharing the same 900MB cache (➂);

ii) an Apache+hoc running on the same PE, hoc exploiting both 450MB (➅)
and 900MB (➃) of total memory accessed by all Apache processes;

iii) an Apache+hoc running on different PEs, hoc exploiting 900MB of total
memory accessed by all Apache processes (➆).

The three cache sizes 150MB, 450MB, 900MB have an hit rate of 29%, 45%,
60% respectively when tested on a single Apache native cache. As clear from
Fig. 4 b), in all cases the hoc+Apache architecture overwhelms the stand-alone
Apache with or without the native cache, including the case the native cache is
shared among all running threads.

i) We have observed that the Apache with the original cache lose its stability
when the requests rate grows. This is mostly due to the lack of a common cache
storage for all processes on the same PE, which leads to the replication of the
same objects in several caches, and therefore to the harmful memory usage (➀,
➁). This rapidly leads the O.S. to the swap border resulting in a huge increase of
reply latency. Indeed, Apache configured as SPMT thus exploiting a single shared
native cache (➂) perform better than MPMT configurations. Quite surprisingly
the Apache with no cache performs even better (➄). In reality this behavior
is due to the File System buffer that acts as a shared cache for all Apache
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Fig. 5. One hoc supporting many Apaches. a) Experiment schema. b) Replies per
second speedup. hoc is configured with 900MB of objects storage. Dataset and Apache
configuration are summarized in Table 1.

processes coping with object replication problem. Actually, the FS buffer rise
up to ∼700MB during test ➄. In this case the performance also depends on
site organization on disks. In general FS cache is unsuitable for Web objects
since requests do not exploit spatial and temporal locality w.r.t. disk-blocks
[15]. Moreover, FS cache is totally useless for dynamic Web pages, for which we
experienced the effectiveness of the Apache native cache module [12].

ii) The Apache+hoc architecture performs better than stand alone Apache,
even if Apache and hoc are mapped on the same PE (➃, ➅). Apache processes
share a common memory through hoc. Since the accessed set of files does not
fit in memory, performance may be influenced by replacing policies. Here, two
different caching mechanism and three policies are active at the same time: 1) the
FS buffer and hoc allocates memory in different bulks from the same physical
memory; 2) the FS buffer replacing policy is active on the first bulk, the Apache
GreadyDual-Size and the hoc LFU replacing policies are active in cascade on the
second bulk. The knotty scenario prevents a fine analysis of system bottlenecks.
Indeed, the decoupling approach we followed sought to simplify the design in
order to make effective the system tuning.

iii) As a matter of fact, the 2PEs figures (➆) confirm that mapping Apache
and hoc on different PEs significantly improves performances. The same tests
have been performed using as hoc replacing policy the random function instead
of LFU. The performance degradation is just 8.7% (from 74.4 to 67 avg. replies).
The replacing policy have a little impact on performances in this case, whereas
the decoupling of cache management from the server activity significantly im-
proves architecture stability and performance. In fact decoupling distributes the
memory pressure due to the Apache server and its cache on different PEs.

Figure 5 highlights that hoc may support many Apaches with a very good,
over linear scalability due to the partition of requests among several Apaches
(which induces a lower disk load). Note that hoc+8Apaches sustain an aggregate
of 637 hits/s with an average file size of 8KB on the Apache-hoc link (see Table
1 b). In this case hoc works at ∼45% of maximum reply rate since hoc reaches
1430 hit/s with N=1 and the same message payload, see Fig. 1.
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fastest tested configuration, see Fig. 4). Dashed line sketch the hoc-based architecture
gain. The hoc local cache is fixed to 5,000 objects.

Figure 6 shows the scalability of nApache+nhoc. Also in this case we expe-
rienced a very good scalability up to our testing environment limit reaching a
312% gain w.r.t. an Apache farm (8hocs+8Apaches vs 16Apaches). If compared
with Apache with the original cache module the gain reaches the 406%. Observe
that the big gap occurs from 1hoc+1Apache and 2hoc+2Apaches, where the
whole set of all cacheable objects begins to fit in the aggregate memory.

5 Conclusion

We introduced hoc, a fast and scalable “storage component” for homogeneous
cluster architectures. hoc implements a distributed storage service relying on
state-of-the-art server technologies. As described in Sec. 2.2, these enable hoc
to cope with a large number of concurrent connections and to sustain a very
high throughput in both single and parallel configurations. We developed and
tested a hoc-based Apache plug-in module which greatly improves Apache Web
server farms performances. To the best of our knowledge, no other works target
the problem with no modification to a preexisting centralized Web server.

We are currently improving hoc in two directions. First, by introducing mul-
tithreading to make it scalable also on SMP boxes. Second, by integrating hoc
within the ASSIST parallel programming environment [17]. Overall, we envision
a complex application made up of decoupled components, each delivering a very
specific service. Actually, hoc provides the programmer with a data sharing
service [18]. In this scenario, the application or the programming environment
run-time support is supposed to provide the correct protocol to consistently use
hoc external operations. At this end we are developing a protocol which offers
standard hooks to implement several DSM consistency models [3, 2].
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