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A major weakness of the current programming systems based on skeletons is that parallel seman-
tics is usually provided in an informal way, thus preventing any formal comparison about program
behavior. We describe a schema suitable for the description of both functional and parallel semantics
of skeletal languages which is aimed at filling this gap. The proposed schema of semantics represents
a handy framework to prove the correctness and validate different rewriting rules. These can be used
to transform a skeleton program into a functionally equivalent but possibly faster version.

1. Introduction

Skeletons have been originally conceived by Cole [8] and then used by different research groups to
design high-performance structured parallel programming environments [5,6,12]. A skeleton may be
modeled as an higher-order function taking one or more other skeletons or portions of sequential code
as parameters, and modeling a parallel computation out of them. A skeletal program is a composition
of skeletons. Skeletons can be provided to the programmer either as language constructs [5–7] or as
libraries [3,9,11].

The formal description of a parallel, skeletal language involves at least two key issues: 1) the
description of the input-output relationship of skeletons (functional semantics); 2) the description
of the parallel behavior of skeletons. The functional semantics enables the definition of semantics-
preserving program transformations [2,4,1,10]. These transformations can also be driven by some
kind of analytical performance models associated with skeletons [13], in such a way that only those
rewritings leading to efficient implementations of the skeleton code are considered [2,1].

Almost all frameworks previously cited have a formal functional semantics. But none of them
provide a complete and uniform description of the parallel semantics.

In this work we present a schema of operational semantics suitable for skeletal languages exploiting
both data and stream parallel skeletons. The operational semantics is defined in term of a labeled
transition system (LTS). It describes both functional and parallel behavior in a uniform and general
way. We use a subset of the Lithium language as a test-bed to describe the methodology [3].

2. Lithium formal definition

Lithium extends the Java language by providing the programmer with both task parallel and data
parallel skeletons [3] All the skeletons process a stream (finite or infinite) of input tasks to produce
a stream of results. All the skeletons are assumed to be stateless, static variables are forbidden in
Lithium code. No concept of “global state” is supported by the implementation, but the ones explic-
itly programmed by the user2. The Lithium skeletons are fully nestable. Each skeleton has one or
more parameters that model the computations encapsulated in the related parallelism exploitation
pattern. Lithium manages two new types in addition to Java types: streams and tuples that are
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2Such as RMI servers encapsulating shared data structures.
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1. seq f 〈x, τ〉� �−→ 〈f x〉� :: seq f 〈τ〉�
2. farm Δ 〈x, τ〉� �−→ Δ 〈x〉O(�,x) :: farm Δ 〈τ〉O(�,x)

3. pipe Δ1 Δ2 〈x, τ〉� �−→ Δ2 RO(�,x) Δ1 〈x〉� :: pipe Δ1 Δ2 〈τ〉�
4. comp Δ1 Δ2 〈x, τ〉� �−→ Δ2 Δ1 〈x〉� :: comp Δ1 Δ2 〈τ〉�
5. map fc Δ fd 〈x, τ〉� �−→ fc (α Δ) fd 〈x〉� :: map fc Δ fd 〈τ〉�
6. d&c ftc fc Δ fd 〈x, τ〉� �−→ d&c ftc fc Δ fd 〈x〉� :: d&c ftc fc Δ fd 〈τ〉�

d&c ftc fc Δ fd 〈y〉� =

j
Δ 〈y〉� iff (ftc y)
fc (α (d&c ftc fc Δ fd)) fd 〈y〉� otherwise

7. while ftc Δ 〈x, τ〉� �−→
j

while ftc Δ (Δ 〈x〉� :: 〈τ〉�) iff (ftc x)
〈x〉� :: while ftc Δ 〈τ〉� otherwise

〈σ〉�1 :: 〈τ〉�2 ⊥−→ 〈σ, τ〉⊥ join

〈ε〉⊥ :: 〈τ〉�2 ⊥−→ 〈τ〉�2 joinε

Δ 〈x〉�1 �2−→ 〈y〉�3
R� Δ〈x〉�1 �2−→ 〈y〉�

relabel
E1

�−→ E2

Δ E1
�−→ Δ E2

context

fd 〈x〉� �−→ 〈◦ 〈y1〉�, · · · 〈yn〉� ◦〉 Δ〈yi〉� �−→ 〈zi〉� fc 〈◦ 〈z1〉�, · · · 〈zn〉� ◦〉 �−→ 〈z〉�, i = 1..n

fc (αΔ) fd 〈x〉� �−→ 〈z〉�
dp

Ei
�i−→ E′

i ∀i 1 ≤ i ≤ n ∧ ∃i, j 1 ≤ i, j ≤ n, �i = �j ⇒ i = j

〈ν〉⊥ :: E1 :: · · ·En :: Γ
⊥−→ 〈σ〉⊥ :: E′

1 :: · · ·E′
n :: Γ

sp

Figure 1. Lithium operational semantics. x, y ∈ value; σ, τ ∈ values ; ν ∈ values ∪ {ε}; E ∈ exp; Γ ∈
exp∗; �, �i, . . . ∈ label ; O : label × value → label.

denoted by angled braces and “ 〈◦ ◦〉” braces respectively:

value ::= A Java value
values ::= value | value , values

stream ::= 〈 values 〉 | 〈ε〉
tuplek ::= 〈◦ stream1, · · · , streamk ◦〉

A stream represents a sequence (finite or infinite) of values of the same type, whereas the tuple is
a parametric type that represents a (finite, ordered) set of streams. Actually, streams appearing in
tuples are always singleton streams, i.e. streams holding a single value. The set of skeletons (Δ)
provided by Lithium are defined as follows:

Δ::= seq f | farm Δ | pipe Δ1 Δ2 | comp Δ1 Δ2 | map fd Δ fc | d&c ftc fd Δ fc | while ftc Δ

where sequential Java functions (f, g) with no index have type Object → Object, and indexed functions
(fc, fd, ftc) have the following types: fc :tuplek → stream; fd :stream → tuplek; ftc :value → boolean.
In particular, fc, fd represent families of functions that enable the splitting of a stream in k-tuples of
singleton streams and vice-versa.

Lithium skeletons can be considered as a pre-defined higher-order functions. Intuitively, seq skele-
ton just integrates sequential Java code chunks within the structured parallel framework; farm and
pipe skeletons model embarrassingly parallel and pipeline computations, respectively; comp models
pipelines with stages serialized on the same processing element (PE); map models data parallel com-
putations: fd decomposes the input data into a set of possibly overlapping data subsets, the inner
skeleton computes a result out of each subset and the fc function rebuilds a unique result out of these
results; d&c models Divide&Conquer computations: input data is divided into subsets by fd and each
subset is computed recursively and concurrently until the ftc condition does not hold true. At this
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point results of sub-computations are conquered via the fc function. while skeleton model indefinite
iteration. A skeleton applied to a stream is called a skeletal expression. Expressions are defined as
follows: exp ::= Δ stream | Δ exp | R� exp | fc (α Δ) fd stream. The execution of a Lithium program
consists in the evaluation of a Δ stream expression.

3. Lithium operational semantics

We describe Lithium semantics by means of a LTS. We define the label set as the string set aug-
mented with the special label “⊥”. We rely on labels to distinguish both streams and transitions.
Input streams have no label, output stream are ⊥ labeled. Labels on streams describe where data
items are mapped within the system, while labels on transitions describe where they are computed.
The Lithium operational semantics is described in Figure 1. The rules of the Lithium semantics may
be grouped in two main categories, corresponding to the two halves of the figure. Rules 1–7 describe
how skeletons behave with respect to a stream. These rules spring from the following common schema:

Skel params 〈x, τ〉�1 �1−→ F〈x〉�2 :: Skel params 〈τ〉�3
where Skel ∈ [seq, farm, pipe, comp, map, d&c, while], and the infix stream constructor 〈σ〉�i

:: 〈τ 〉�j
is a

non strict operator that sequences skeletal expressions. In general, F is a function appearing in the
params list. For each of these rules a couple of twin rules exists (not shown in Figure 1):

α) Skel params 〈x, τ〉 ⊥−→ 〈ε〉⊥ :: Skel params 〈x, τ〉⊥ ω) Skel params 〈x〉�1 �1−→ F〈x〉�2
these rules manage the first and the last element of the stream respectively. Each triple of rules
manages a stream as follows: the stream is first labeled by a rule of the kind α). Then the stream
is unfolded in a sequence of singleton streams and the nested skeleton is applied to each item in the
sequence. During the unfolding, singleton streams are labeled according to the particular rule policy,
while the transition is labeled with the label of the stream before the transition (in this case �1).
The last element of the stream is managed by a rule of the kind ω). Eventually resulting skeletal
expressions are joined back by means of the :: operator.

Let us show how rules 1–7 work with an example. We evaluate farm (seq f) on the input stream
〈x1, x2, x3〉. At the very beginning only the 2α can be applied. It marks the begin of stream by
introducing 〈ε〉⊥ (empty stream) and labels the input stream with ⊥. Then rule 2 can be applied:

〈ε〉⊥ :: farm (seq f) 〈x1, x2, x3〉⊥ ⊥−→ 〈ε〉⊥ :: seq f 〈x1〉0 :: farm (seq f) 〈x2, x3〉0

The head of the stream has been separated from the rest and has been re-labeled (from ⊥ to 0) ac-
cording to the O(⊥, x) function. Inner skeleton (seq) has been applied to this singleton stream, while
the initial skeleton has been applied to the rest of the stream in a recursive fashion. The re-labeling
function O : label × value → label (namely the oracle) is an external function with respect to the
LTS. It would represent the (user-defined) data mapping policy. Let us adopt a two-PEs round-robin
policy. An oracle function for this policy would cyclically return a label in a set of two labels. In this
case the repeated application of rule 1 proceeds as follows:

〈ε〉⊥ :: seq f 〈x1〉0 :: farm (seq f) 〈x2, x3〉0 0−→ 1−→ 〈ε〉⊥ :: seq f 〈x1〉0 :: seq f 〈x2〉1 :: seq f 〈x3〉0

The oracle may have an internal state, and it may implement several policies of label transformation.
As an example the oracle might always return a fresh label, or it might make decisions about the
label to return on the basis of the x value. As we shall see, in the former case the semantics models
the maximally parallel computation of the skeletal expression.

Observe that using only rules 1–7 (and their twins) the initial skeleton expression cannot be com-
pletely reduced (up to the output stream). Applied in all the possible ways, they lead to an aggregate
of expressions (exp) glued by the :: operator.

The rest of the work is carried out by the six rules in the bottom half of figure 1. There are two
main rules (sp and dp) and four auxiliary rules (context, relabel, joinε and join). Such rules define
the order of reduction along aggregates of skeletal expressions. Let us describe each rule:
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farm (pipe (seq f1) (seq f2)) 〈x1, x2, x3, x4, x5, x6, x7〉 (1)

〈ε〉⊥ :: farm (pipe (seq f1) (seq f2)) 〈x1, x2, x3, x4, x5, x6, x7〉⊥ (2)

〈ε〉⊥ :: pipe (seq f1)(seq f2)〈x1〉0 :: pipe (seq f1)(seq f2)〈x2〉1 :: pipe (seq f1)(seq f2)〈x3〉0 :: pipe (seq f1)(seq f2)〈x4〉1 ::
pipe (seq f1)(seq f2)〈x5〉0 :: pipe (seq f1)(seq f2)〈x6〉1 :: pipe (seq f1)(seq f2)〈x7〉0 (3)

〈ε〉⊥ :: seq f2 R02 seq f1 〈x1〉0 :: seq f2 R12 seq f1 〈x2〉1 :: seq f2 R02 seq f1 〈x3〉0 :: seq f2 R12 seq f1 〈x4〉1 ::
seq f2 R02 seq f1 〈x5〉0 :: seq f2 R12 seq f1 〈x6〉1 :: seq f2 R02 seq f1 〈x7〉0 (4)

〈ε〉⊥ :: seq f2 〈f1 x1〉02 :: seq f2 〈f1 x2〉12 :: seq f2 R02 seq f1 〈x3〉0 :: seq f2 R12 seq f1 〈x4〉1 ::
seq f2 R02 seq f1 〈x5〉0 :: seq f2 R12 seq f1 〈x6〉1 :: seq f2 R02 seq f1 〈x7〉0 (5)

〈ε〉⊥ :: 〈f2 (f1 x1) 〉02 :: 〈f2 (f1 x2) 〉12 :: 〈f2 (f1 x3) 〉02 :: 〈f2 (f1 x4) 〉12 :: 〈f2 (f1 x5) 〉02 :: 〈f2 (f1 x6) 〉12 :: 〈f2 (f1 x7) 〉02 (6)

〈f2 (f1 x1), f2 (f1 x2) f2 (f1 x3), f2 (f1 x4) f2 (f1 x5), f2 (f1 x6), f2 (f1 x7) 〉⊥ (7)

Figure 2. The semantic of a Lithium program: a complete example.

sp (stream parallel) rule describes evaluation order of skeletal expressions along sequences separated
by :: operator. The meaning of the rule is the following: suppose that each skeletal expression
in the sequence may be rewritten in another skeletal expression with a certain labeled transfor-
mation. Then all such skeletal expressions can be transformed in parallel, provided that they
are adjacent, that the first expression of the sequence is a stream of values, and that all the
transformation labels involved are pairwise different.

dp (data parallel) rule describes the evaluation order for the fc (α Δ) fd stream expression. Basically
the rule creates a tuple by means of the fd function, then requires the evaluation of all expressions
composed by applying Δ onto all elements of the tuple. All such expression are evaluated in one
step by the rule (apply-to-all). Finally, the fc gathers all the elements of the evaluated tuple in
a singleton stream. Labels are not an issue for this rule.

relabel rule provides a relabeling facility by evaluating the meta-skeleton R�. The rule does nothing
but changing the stream label. Pragmatically, the rule imposes to a PE to send the result of a
computation to another PE (along with the function to compute).

context rules establishes the evaluation order among nested expressions, in all other cases but the
ones treated by dp and relabel. The rule imposes a strict evaluation of nested expressions (i.e.
evaluated the arguments first). The rule leaves unchanged both transition and stream labels
with respect to the nested expression.

join rule does the housekeeping work, joining back all the singleton streams of values to a single
output stream of values. joinε does the same work on the first element of the stream.

Let us consider a more complex example. Consider the semantics of farm (pipe f1 f2) evaluated
on the input stream 〈x1, x2, x3, x4, x5, x6, x7〉. Let us suppose that the oracle function returns a label
chosen from a set of two labels. Pragmatically, since farm skeleton represent the replication paradigm
and pipe skeleton the pipeline paradigm, the nested form farm (pipe f1 f2) basically matches the idea
of a multiple pipeline (or a pipeline with multiple independent channels). The oracle function defines
the parallelism degree of each paradigm: in our case two pipes, each having two stages. As shown in
Figure 2, the initial expression is unfolded by rule 2α ((1) → (2)) then reduced by many applications
of rule 2 ((2) →∗ (3)). Afterward the term can be rewritten by rule 3 ((3) →∗ (4)). At this point, we
can reduce the formula using the sp rule. sp requires a sequence of adjacent expressions that can be
reduced with differently labeled transitions. In this case we can find just two different labels (0, 1),
thus we apply sp to the leftmost pair of the previuos expressions :
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〈ε〉⊥ :: seq f2 R02 seq f1 〈x1〉0 :: seq f2 R12 seq f1 〈x2〉1 :: seq f2 R02 seq f1 〈x3〉0 :: · · · ⊥−→
〈ε〉⊥ :: seq f2〈f1 x1〉02 :: seq f2 〈f1 x2〉12 :: seq f2 R02 seq f1 〈x3〉0 :: · · ·

Observe that due to the previous reduction ((4) → (5) in Figure 2) two new stream labels appear
(02 and 12). Now, we can repeat the application of sp rule as in the previous step. This time,
it is possible to find four adjacent expression that can be rewritten with (pairwise) different labels
(0, 1, 02, 12). Notice that even on a longer stream this oracle function never produces more than four
different labels, thus the maximum number of skeletal expressions reduced in one step by sp is four.
Repeating the reasoning the we can completely reduce the formula to a sequence of singleton streams
((5) →∗ (6)), that, in turn can be transformed by many application of the join rule ((6) →∗ (7)).

Let us analyze the whole reduction process: from the initial expression to the final stream of values
we applied three times the sp rule. In the first application of sp we transformed two skeletal expression
in one step; in the second application four skeletal expressions have been involved; while in the last
one just one expression has been reduced3.

The succession of sp applications in the transition system matches the expected behavior for the
double pipeline paradigm. The first and last applications match pipeline start-up and end-up phases.
As expected the parallelism exploited is reduced with respect to the steady state phase, that is matched
by the second application. A longer input stream would rise the number of sp applications, in fact
expanding the steady state phase of modeled system.

4. Parallelism and labels

The first relevant aspect of the proposed schema is that the functional semantics is independent of
the labeling function. Changing the oracle function (i.e. how data and computations are distributed
across the system) may change the number of transitions needed to reduce the input stream to the
output stream, but it cannot change the output stream itself.

The second aspect concerns parallel behavior. It can be completely understood looking at the
application of two rules: dp and sp that respectively control data and stream parallelism. We call the
evaluation of either dp or sp rule a par-step. dp rule acts as an apply-to-all on a tuple of data items.
Such data items are generated partitioning a single task of the stream by means of an user-defined
function. The parallelism comes from the reduction of all elements in a tuple (actually singleton
streams) in a single par-step. A single instance of the sp rule enable the parallel evolution of adjacent
terms with different labels (i.e. computations running on distinct PEs). The converse implication
also holds: many transitions of adjacent terms with different labels might be reduced with a single
sp application. However, notice that sp rule may be applied in many different ways even to the same
term. In particular the number of expressions reduced in a single par-step may vary from 1 to n (i.e.
the maximum number of adjacent terms exploiting different labels). These different applications lead
to both different proofs and parallel (but functional) semantics for the same term. This degree of
freedom enables the language designer to define a (functionally confluent) family of semantics for the
same language covering different aspects of the language. For example, it is possible to define the
semantics exploiting the maximum available parallelism or the one that never uses more than k PEs.

At any time, the effective parallelism degree in the evaluation of a given term in a par-step can be
counted by inducing in a structural way on the proof of the term. Parallelism degree in the conclusion
of a rule is the sum of parallelism degrees of the transitions appearing in the premise (assuming one
the parallelism degree in rules 1–7). The parallelism degree counting may be easily formalized in the
LTS by using an additional label on transitions.

The LTS proof machinery subsumes a generic skeleton implementation: the input of skeleton pro-
gram comes from a single entity (e.g. channel, cable, etc.) and at discrete time steps. To exploit
parallelism on different tasks of the stream, tasks are spread out in PEs following a given discipline.
Stream labels trace tasks in their journey, and sp establishes that tasks with the same label, i.e. on
the same PE, cannot be computed in parallel. Labels are assigned by the oracle function by rewriting
a label into another one using its own internal policy. The oracle abstracts the mapping of data onto
PEs, and it can be viewed as a parameter of the transition system used to model several policies in data

3Second and third sp application are not shown in the example.
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mapping. As an example a farm may take items from the stream and spread them in a round-robin
fashion to a pool of workers. Alternatively, the farm may manage the pool of workers by divination,
always mapping a data task to a free worker (such kind of policy may be used to establish an upper
bound in the parallelism exploited). The label set effectively used in a computation depends on the
oracle function. It can be a statically fixed set or it can change cardinality during the evaluation. On
this ground, a large class of implementations may be modeled. Labels on transformations are derived
from label on streams. Quite intuitively, a processing element must known a data item to elaborate it.
The re-labeling mechanism enables to describe a data item re-mapping. In a par-step, transformation
labels point out which are the PEs currently computing the task.

5. Conclusion

We propose an operational semantics schema that can be used to describe both functional and paral-
lel behavior of skeletal programs in a uniform way. This schema is basically a LTS, which is parametric
with respect to an oracle function. The oracle function provides the LTS with a configurable label
generator that establishes a mapping between data and computation and system resources.

We use the Lithium – a skeletal language exploiting both task and data parallelism – as a test-bed
for the semantics schema. We show how the semantics (built according to the schema) enables the
analysis of several facets of Lithium programs such as: the description of functional semantics, the
comparison in performance and resource usage between functionally equivalent programs, the analysis
of maximum parallelism achievable with infinite or finite resources. To our knowledge, there is no
other work discussing a semantics with the same features in parallel skeleton language framework
(and, in general, in the structured parallel programming world as well).
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