
John von Neumann Institute for Computing

Parallel Program/Component Adaptivity
Management
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Grid computing platforms require to handle dynamic behaviour of computing resources within complex
parallel applications. We introduce a formalization of adaptive behaviour that separates the abstract model
of the application from the implementation design. We exemplify the abstract adaptation schema on two
applications, and we show how two quite different approaches to adaptivity, the ASSIST environment and the
AFPAC framework, easily map to this common schema.

1. An Abstract Schema for Adaptation

With the advent of more and more complex and dynamic distributed architectures, such as
Computational Grids, growing attention has to be paid to the effects of dynamicity on running
programs. Even assuming a perfect initial mapping of an application over the computing
resources, choices made can be impaired by many factors: load of the used machines and
network available bandwidth may vary, nodes can disappear due to network problems, user
requirements may change.

To properly handle all these situations, as well as the implicitly dynamic behaviour of several
algorithms, adaptivity management code has to be built into the parallel/distributed applica-
tion. In so doing, a trade-off must be settled between the complexity of adding dynamicity-
handling code to the application and the gain in efficiency we obtain.

The need to handle adaptivity has been already addressed in several projects (AppLeS [5],
GrADS [10], PCL [8], ProActive [4]). These works focus on several aspects of reconfiguration,
e.g. adaptation techniques (GrADS, PCL, ProActive), strategies to decide reconfigurations
(GrADS), and how to modify the application configuration to optimize the running application
(AppLes, GrADS, PCL). In these projects concrete problems posed by adaptivity have been
faced, but little investigation has been done on common abstractions and methodology [9].
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Figure 1: Abstract schema of an adaptation manager.

In this work we discuss, at a very
high level of abstraction, a general
model of the activities we need to
perform to handle adaptivity in par-
allel and distributed programs.

Our model is abstract with re-
spect to the implemented adapta-
tion techniques, monitoring infras-
tructure and reconfiguration strat-
egy; in this way we can uncover
the common aspects that have to be
addressed when developing a pro-
gramming framework for reconfigurable applications, and we show that it can be applied
to two concrete examples: ASSIST [3] and AFPAC [6].
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The abstract model of dynamicity management we propose is shown in Fig. 1, where high-
level actions rely on lower-level actions and mechanisms. The model is based on the separation
of application-oriented abstractions and implementation mechanisms, and is deliberately spec-
ified in minimal way, in order not to introduce details that may constrain possible implemen-
tations. As an example, the schema does not impose a strict time ordering among its leaves.
In order to validate the proposed abstraction, we exemplify its application in two distinct,
significant case studies: message-passing SPMD programs, and component-based, high-level
parallel programs. In both cases, adaptive behaviour is derived by specializing the abstract
model introduced here. We get significant results on the performance side, thus showing that
the model maps to worthwhile and effective implementations [3].

The work is structured as follows. Sec. 2 introduces the abstract model. The various
phases required by the general schema are detailed with examples in Sec. 3.1 and Sec. 3.2
with respect to two example applications. Sec. 4 explains how the schema is mapped in the
AFPAC framework, where self-adapting code is obtained by semi automated restructuring of
existing code. Sec. 5 describes how the same schema is employed in the ASSIST program-
ming environment, exploiting explicit program structure to automatically generate autonomic
dynamicity-handling code.

2. Adaptivity

The process of adapting the behaviour of a parallel/distributed application to the dynamic
features of the target architecture is built of two distinct phases: a decision phase, and a commit
phase, as outlined in Fig. 1. The outcome of the decide phase is an abstract adaptation strategy
that the commit phase has to implement. We separate the decisions on the strategy to be
used to adapt the application behaviour from the way this strategy is actually performed. The
decide phase thus represents an abstraction related to the application structure and behaviour,
while commit phase concerns the abstraction of the run-time support needed to adapt. Both
phases are split into different items. The decide phase is composed of:

• trigger – It is essentially an interface towards the external world, assessing the need
to perform corrective actions. Triggering events can result from various monitoring
activities of the platform, from the user requesting a dynamic change at run-time, or
from the application itself reacting to some kind of algorithm-related load unbalance.

• policy – It is the part of the decision process where it is chosen how to deal with the
triggering event. The aim of the adaptation policy is to find out what behavioural
changes are needed, if any, based on the knowledge of the application structure and of its
issues. Policies can also differ in the objectives they pursue, e.g. increasing performance,
accuracy, fault tolerance, and thus in the triggering events they choose to react to.
Basic examples of policy are “increase parallelism degree if the application is too slow”,
or “reduce parallelism to save resources”. Choosing when to re-balance the load of
different parts of the application by redistributing data is a more significant and less
obvious policy.

In order to provide the decide phase with a policy, we must identify in the code a pattern of
parallel computation, and evaluate possible strategies to improve/adapt the pattern features
to the current target architecture. This will result in either specifying a user-defined policy or
picking one from a library of policies for common computation patterns. Ideally, the adaptation
policy should depend on the chosen pattern and not on its implementation details.
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In the commit phase, the decision previously taken is implemented. In order to do that,
some assessed plan of execution has to be adopted.

• plan – It states how the decision can be actually implemented, i.e. what list of steps
has to be performed to come to the new configuration of the running application, and
according to which control flow (total or partial order).

• execute – Once the detailed plan has been devised, the execute phase takes it in charge
relying on two kinds of functionalities of the support code

– the different mechanisms provided by the underlying target architecture, and
– a timing functionality to activate the elementary steps in the plan, taking into ac-

count their control flow and the needed synchronizations among processes/threads
in the application.

The actual adapting action depends on both the way the application has been implemented
(e.g. message passing or shared memory) and the mechanisms provided by the target archi-
tecture to interact with the running application (e.g. adding and removing processes to the
application, moving data between processing nodes and so on).

The general schema does not constrain the adaptation handling code to a specific form. It
can either consist in library calls, or be template-generated, it can result from instrumenting
the application or as a side effect of using explicit code structures/library primitives in writing
the application. The approaches clearly differ in the degree of user intervention required to
achieve dynamicity.

3. Examples of the Abstract Decomposition

In order to better explain the abstract adaptation model, we instantiate the model in two
different applications, and discuss the meaning that actions and phases in the model assume.

3.1. Task Farming
We exemplify the abstract adaptation schema on a task-parallel computation organized

around a centralized task scheduler, continuously dispatching works to be performed to the
set of available processing elements. For this kind of pattern, both a performance model and a
balancing policy are well known, and several different implementations are feasible (e.g. multi-
threaded on SMP machines, or processes in a cluster and/or on the Grid). At steady state,
maximum efficiency is achieved when the overall service time of the set of processing elements
is slightly less than the service time of the dispatcher element.

Triggers are activated, for instance, when (1) the average interarrival time of task incoming
is much lower/higher than the service time of the system, (2) on explicit user request to
satisfy a new performance contract/level of performance, (3) when built-in monitoring reports
increased load on some of the processing elements, even before service time increases too much.

Assuming we care first for computation performance and then resource utilization, the
adaptation policy would be like that in Fig. 2. Applying this policy, the decide phase will
eventually determine the increase/decrease of a certain magnitude in the allocated computing
power, independently of the kind of computing resources.

This decision is passed to the commit phase, where we must produce a detailed plan to
implement it (finding/choosing resources, devising a mapping of application processes where
appropriate).

Assuming we want to increase the parallelism degree, we will often come up with a simple
plan like that in Fig. 3. The given plan is the most usual one, but some steps can be skipped
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• when steady state is reached, no configuration
change is needed

• if the set of processing elements is slower than
the dispatcher, new processing elements should be
added to support the computation and reach the
steady state

• if the processing elements are much faster than the
dispatcher, reduce their number to increase effi-
ciency

Figure 2. A simple farm adaptive policy

1. find a set of available processing elements {Pi}
2. install code to be executed at the chosen {Pi} (i.e. appli-

cation code, code that interacts with the task scheduler
and for dynamicity handling)

3. register with the scheduler all the {Pi} for task dispatch-
ing

4. inform the monitoring system that new processing ele-
ment have joined the execution

Figure 3. Plan for increasing resources.

depending on the implementation. For example, a multithreaded program executing on a SMP
architecture does not require the code to be installed (step 2). The order may also be different,
e.g. swapping steps 3 and 4. Actions listed in the plan exploit mechanisms provided by the
implementation, for instance to either fork new threads, or stage and run new processes or even
ask for a larger processing time share (on a multiprogrammed system with QoS control at the
system level). The list of steps in the plan is also customized w.r.t. application implementation.
As an example, whenever computing resources are homogeneous, step 1 is quite simple, while
it will require a specific effort to select the best execution plan on heterogeneous resources.

Once the detailed plan has been devised, it has to be executed and its actions have to be
orchestrated, choosing proper timing in order that they do not to interfere with each other
and with the ongoing computation.

Abstract timing depends on the implementation of the mechanisms, and on the precedence
relationship that may be given in the plan. In the given example, steps 1 and 2 can be
executed in sequence, but without internal constraint on timing. Step 3 requires a form of
synchronization with the scheduler to update its data, or to suspend all the computing ele-
ments, depending on actual implementation of the scheduler/worker synchronization. For the
same reason, execution of step 4 also may/may not require a restart/update of the monitoring
subsystem to take into account the new resources.

3.2. Fast Fourier Transform
The Fast Fourier Transform can be implemented as a parallel SPMD code that distributes

the matrix by lines. It alternates local computation and global matrix transposition steps.
A performance model is known that predicts the optimal number of processors for such an
application, depending on their power and the cost of communications. The code can thus
be made adaptive, by spawning processes when new processors become available. Similarly,
when some allocated processors are reclaimed by the operating system, concerned processes
have to be safely terminated first. Thanks to the abstract model for dynamic adaptation, such
behaviour can be easily designed.

The policy is composed of the following two statements: when the trigger notifies of available
processors, and if the optimal number of processors is not overflowed, then the application de-
cides to start new processes; when the trigger notifies that some used processors are reclaimed,
some of the processes will be stopped. Given this decision, the commit phase produces a plan.
The plans for the two kinds of adaptation are given on Fig. 4 and 5.

This example shows that the implementation mechanisms may depend on several aspects of
the application. For example, redistributing a matrix is strongly dependent on the application
and its implementation. On the other hand, preparation of the environment may require
for example starting daemons (when using LAM-MPI communications), but it is not strictly
related to the application code.
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1. prepare the environment for the newly recruited pro-
cessors (start daemons, stage-in files, etc.)

2. spawn processes to be executed by the new processors
3. fix connections between processes such that the new

ones can communicate with the others
4. redistribute the matrix in order to balance the load

amongst the whole set of processes

Figure 4. Plan for spawning processes.

1. redistribute the matrix in such a way that the terminating
processes do not hold any part of the matrix anymore

2. fix connections between processes in order to exclude the
processes that are terminating

3. effectively terminate the concerned processes
4. clean everything that has been previously installed specif-

ically for the application

Figure 5. Plan for removing processes.

The mechanisms also impose various constraints on the timing phase of the abstract model,
depending on their implementation. This is the case for action 2 of the plan for spawning
processes (Fig. 4) that creates the processes. For an MPI application this action can be im-
plemented either the standard way, with the MPI_Comm_spawn, or in an ad-hoc way if the
developer requires finer control over process creation. The former approach requires synchro-
nization of already running processes, whereas the latter may not.

4. AFPAC: A Generic Framework for Developers to Manage Adaptation

The AFPAC framework [6] focuses at present on adaptability of parallel components. Its
approach consists in defining the modifications that should be applied to an existing component
in order to make it able to adapt itself. Its concrete architecture (Fig.6) can be seen as a
specialization of the abstract model of Fig. 1 as follows. Indeed, policy, planner and actions
entities implement respectively the policy, plan and mechanisms phases of the abstract model;
the timing phase of the abstract model is split over both the executor for handling the control
flow and the coordinator for the synchronization with the application. AFPAC does not make
appear explicitly the trigger phase as it is considered as an interface, whereas the service entity,
modelling the application, has no counter-part in the abstract model. As shown in Fig.6, the
decider glues the policy to the external probes in the same way that the decide phase aggregates
the trigger and policy phases in the abstract model. The same kind of matching applies between
the executor entity and the execute phase.

Figure 6: AFPAC Framework.

In the case of a parallel compo-
nent, the service is implemented by
a parallel algorithm. At runtime, it
contains several execution threads
distributed over a collection of pro-
cesses. The AFPAC framework
does not impose any constraint on
communications between threads.

At the current state, the AFPAC
framework includes two coordina-
tors. The first one executes sequen-
tial actions and does not impose any synchronization constraint with the service. It is some-
what an empty coordinator. The other coordinator aims at executing parallel actions in the
context of the execution threads of the service. To do so, it requires to suspend the execution
threads at a state from which such actions are allowed to be executed. Such a state is called an
adaptation point. In the case of parallel codes, adaptation points must be related in order to
build a global state that satisfies some consistency model. For example, in the case of SPMD
codes, such a consistency model may state that all threads should execute the action from
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the same adaptation point. This problem has been further discussed in [6]; an algorithm has
been proposed in [7] for implementing such a coordinator that looks for adaptation points in
the future of the execution of the service. It is especially suitable for SPMD codes such as the
ones using MPI (e.g. the Fast Fourier Transform example given in Sec.3.2).

The AFPAC framework gives full control over dynamic adaptation to the developer. Conse-
quently, the developer is responsible for designing and implementing the policy, plan template
and action entities. In the same way, he/she has to place manually adaptation points within
the source code of the service as additional statements. Nevertheless, extra preparation of the
component (such as generation of annotations required by the coordinator) is done automat-
ically thanks to aspect-oriented programming. Thanks to this semi-automated modification
and to the separation of concerns, AFPAC can be used to make adaptable existing legacy
codes at a low development cost.

5. ASSIST: Managing Dynamicity Using Language and Compilation Approaches

ASSIST applications are described by means of a coordination language, which can express
arbitrary graphs of (possibly) parallel modules, interconnected by typed streams of data. A
parallel module (parmod) coordinates a set of concurrent activities, which are performed by
Virtual Processes (VPs). VPs execute a set of sequential activities on their input data and in-
ternal state, activities that are selected on item arrival from the input streams. The sequential
functions can be programmed using standard sequential languages (C, C++, Fortran).

Overall, a parmod may behave in a data-parallel (e.g. SPMD/for-all/apply-to-all) or task-
parallel way (e.g. farm, pipeline), and it can nondeterministically accept from one or more
input streams a number of input items, which may be decomposed in parts and used as
function parameters to activate VPs. A parmod may also exploit a distributed shared state,
which survives between VP activations related to different stream items. More details on the
ASSIST environment can be found in [11,2].

An ASSIST module (or a graph of modules) can be declared as a component, which is
characterized by provide and use ports (both one-way and RPC-like), and by Non-Functional
ports. Among the non-functional interfaces there are those related to QoS control.

Grid middleware
(ASSIST Grid 

Abstract Machine)

Managed Elements
(component network of 

processes)

QoS
data

execute
next

config

broken
contracts

policy

plantrigger Manager

Launch

Reconf. commands
Monitor data

Queries of 
new resources

New QoS
contract arrival

Figure 7: ASSIST framework.

At any moment during an ASSIST application run,
components can be assigned a new QoS contract, e.g.
specifying a performance requirement. In order to fulfil
the contracts, the component framework continuously
adapts component configurations, in terms of paral-
lelism degree, and process mapping [3]. The adapta-
tion mechanism relies on automatic user code instru-
mentation, and on a hierarchy of Application Managers
[1].

Each component has a Component Adaptation Man-
ager (CAM) entity coordinating its adaptation. An
Application Manager (AM), possibly distributed, en-

forces QoS of the application in the whole, by coordinating and leveraging on CAMs. As
sketched in Fig. 7, ASSIST implements the abstract adaptation schema by organizing its
leaves, left to right (compare with Fig. 1) in an autonomic control loop. CAM managed enti-
ties are processes within a component, while the AM applies the abstract model to application
components. In the following we describe the CAM case.
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The trigger functionality has to (1) collect a stream of monitoring data from the running
program, as a feedback to the autonomic behaviour of AMs, and (2) to react to QoS contract
changes when they trigger the need for adaptation.

The policy phase in Fig. 7 evaluates a component performance model over the monitoring
data, to find out the amount/allocation of resources that can match the assigned QoS contract.
In the case the QoS contract is broken, the decide phase will set a target for the commit phase,
e.g. the additional amount of required computing power. The ASSIST compiler synthesizes the
performance model from static information on the parallel pattern exploited by the component.
Application programmers can also override standard performance models with custom ones.

The plan phase in Fig. 7 re-conveys component performance within its contractually specified
values by exploiting the set of actions available as mechanisms. Plan templates are instantiated
as partially ordered sets of actions, which are performed according to the schedule provided
by timing. ASSIST implements two layers of adaptation mechanisms: parallelism degree man-
agement (add or remove resource to/from computation), and computation (VP) remapping,
with associated data migration and global state consolidation.

The timing functionality, not shown in Fig. 7, involves a distributed agreement among a
set of VPs on the point where the reconfiguration must happen. In ASSIST the migration
process can be performed in so-called reconf-safe points [3], i.e. points in the application code
where the distributed computation and state are known to be consistent, and can be efficiently
synchronized. Placement and use of reconf-safe points are automated, so that different mech-
anisms available to the execute phase (reconfiguration commands in Fig.7) automatically get
the appropriate kind of synchronization.

The execute functionality thus exploits support code built within the VPs, and coordinates
it with services provided by the component framework to interface to Grid middleware (e.g.
for resource recruiting).

Observe that all the code needed to perform the timing and execute phases is automatically
generated by the ASSIST compiler, which instruments the application code in a fully transpar-
ent manner for the application developer. ASSIST reconf-safe points are designed to exploit
synchronization points already needed to ensure the correctness of the parallel application
code. Moreover, the ASSIST high-level structured nature enables the compiler to automat-
ically select the optimal implementation of mechanisms for each application and reconf-safe
point. For instance, no state migration code is inserted for stateless computations, and de-
pending on the parallelism pattern (e.g. stream versus data parallel), VPs involved in the
synchronisation can be a subset of those within the component being reconfigured.

In this way ASSIST adaptive components run with no overhead with respect to non-adaptive
versions of the same code, when no configuration change is performed [3].

6. Conclusions

We have described a general model to provide adaptive behaviour in Grid-oriented component-
based applications. The general schema we have shown is independent of implementation
choices, such as the responsibility for inserting the adaptatation code (either left to the pro-
grammer, as it happens in the AFPAC framework, or performed by exploiting knowledge of
the high level program structure, as it happens in the ASSIST context). The model also
encompasses user-driven as well as autonomic adaptation.

The abstract model helps in separating application and run-time programming concerns of
adaptation, exposing adaptive behaviour as an aspect of application programming, formalizing
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the concerns to be addressed, and encouraging an abstract view of the run-time mechanisms
for dynamic reconfiguration.

This formalization gives the basis for defining a methodology. The given case studies provide
with valuable clues about how to solve different concerns, and how to identify common parts
of the adaptation that can be generalized in support frameworks. The model can be thus also
usefully applied within other programming frameworks, like GrADS, which do not enforce a
strong separation of adaptivity issues into design and implementation.

We expect that such a methodology will lead to more portable and understandable adaptive
applications and components, and it will promote layered software architectures for adaptation,
simplifying implementation of both the programming framework and the applications.
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CoreGRID funded by the European Commission (Contract IST-2002-004265), and it was
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