
ADAPTABLE PARALLEL COMPONENTS
FOR GRID PROGRAMMING

Jan Dünnweber and Sergei Gorlatch
University of Münster, Department of Mathematics and Computer Science
Einsteinstrasse 62, 48149 Münster, Germany

duennweb@uni-muenster.de

gorlatch@uni-muenster.de

Marco Aldinucci, Sonia Campa and Marco Danelutto
Università di Pisa, Department of Computer Science
Largo B. Pontecorvo 3, 56127 Pisa, Italy

aldinuc@di.unipi.it

campa@di.unipi.it

marcod@di.unipi.it

Abstract We suggest that parallel software components used for grid computing should be
adaptable to application-specific requirements, instead of developing new com-
ponents from scratch for each particular application. As anexample, we take a
parallel farm component which is “embarrassingly parallel”, i. e. , free of depen-
dencies, and adapt it to the wavefront processing pattern with dependencies that
impact its behavior. We describe our approach in the contextof Higher-Order
Components (HOCs), with the Java-based system Lithium as our implementa-
tion framework. The adaptation process relies on HOCs’ mobile code parame-
ters that are shipped over the network of the grid. We describe our implementa-
tion of the proposed component adaptation method and reportfirst experimental
results for a particular grid application – the alignment ofDNA sequence pairs,
a popular, time-critical problem in computational molecular biology.

Keywords: Grid Components, Adaptable Code, Wavefront Parallelism, Java, Web Services

2

1. Introduction

Grids are a promising platform for distributed computing with high demand
on data throughput and computing power, but they are still difficult to pro-
gram due to their highly heterogeneous and dynamic nature. Popular technolo-
gies for programming grids are Java, since it enables portabilty for executable
code, and Web services, which facilitate the exchange of application data in a
portable a format. Thus, multiple Java-based components, distributed across
the Internet, can work together using Web services.

Besides interoperability, grid applications require fromtheir runtime envi-
ronments support for the sharing of data among multiple services and a possi-
bility for issuing non-blocking service requests. The contemporary grid mid-
dleware systems, e. g. , the Globus Toolkit [6] and Unicore [15] address such
recurring issues, thus freeing users from dealing with the same problems again
and again. Middleware abstracts over the complex infrastructure of a grid:
application code developed by middleware users (which still consists in Java-
based Web services in most cases) is not so heavily concernedwith the low-
level details of network communication and the maintenanceof distributed
data.

While providing an infrastructure-level abstraction, middleware introduces
numerous non-trivial configuration requirements on the system-level, which
complicates the development of applications. Therefore, recent approaches to
simplifying the programming of grid applications often introduce an additional
layer of software components abstracting over the middleware used in the grid.

Software components for the grid aim to be easier to handle than raw mid-
dleware. In [14], components are defined as software building-blocks with
no implicit dependencies regarding the runtime environment; i. e. , compo-
nents for grid programming are readily integrated with the underlying mid-
dleware, hiding it from the grid users. An example for grid programming com-
ponents is given by the CoreGRIDGrid Component Model(GCM), a spec-
ification which emerged from the component models Fractal [2], HOCs [7],
ASSIST [12] and other experimental studies, conducted within the CoreGRID
community. While the GCM predecessors are accompanied by framework im-
plementations, providing the users with an API, there is yetno GCM frame-
work. Anyway, there are multiple implementations of Fractal, the HOC-SA [5]
for programming with HOCs, the ASSIST framework for data-flow program-
ming and its Java-based variant Lithium [4]. These frameworks allow to ex-
periment with many GCM features and to preliminarily analyse limitations of
the model.

This paper addresses grid application programming using a component frame-
work, where applications are built byselecting, customizingand combining
components. Selecting means choosing appropriate components from the frame-

Adaptable Parallel Components for Grid Programming 3

work, which may contain several ready-made implementations of commonly
used parallel computing schemata (farm, divide-and-conquer, etc. [3]).

By customization, we mean specifying application-specificoperations to be
executed within the processing schema of a component, e. g. ,parallel farming
of application-specific tasks. Combining various parallelcomponents together
for accomplishing one task, can be done, e. g. , via Web services.

As our main contribution, we introduceadaptationsof software compo-
nents, which extends the traditional notion ofcustomization: while customiza-
tion applies a component’s computing schema in a particularcontext, adapta-
tion modifies the very schema of a component, with the purposeof incorporat-
ing new capabilities. Our thrust to use adaptable components is motivated by
the fact that a fixed framework is hardly able to cover every potentially useful
type of component. The behavior of adaptable components canbe altered, thus
allowing to apply them in use cases for which they have not been originally de-
signed. We demonstrate that both, traditional customization and adaptation of
components can be realized in a grid-aware manner (i. e. , also in the context
of an upcoming GCM-framework). We use two kinds of components’ param-
eters that are shipped over the network with the purpose of adaptation: these
parameters may be either data or executable codes.

As a case study, we take a component that was originally designed for
dependency-freetask farming. By means of an additional code parameter,
we adapt this component for the parallel processing of tasksexhibiting data
dependencies with awavefrontstructure.

In Section 2, we explain ourHigher-Order Components(HOCs) and how
they can be made adaptable. Section 3 describes our application case study
used throughout the paper: the alignment of sequence pairs,which is a wavefront-
type, time-critical problem in computational molecular biology. In Section 4,
we show how the HOC-framework enables the use of mobile code,as it is re-
quired to apply a component adaptation in the grid context. Section 5 shows
our first experimental results for applying the adapted farmcomponent to the
alignment problem in different, grid-like infrastructures. Section 6 summarizes
the contributions of this paper in the context of related work.

2. Components and Adaptation

When an application requires a component, which is not provided by the
employed framework, there are two possibilities: either tocode the required
component anew or to try and derive it from another availablecomponent. The
former possibility is more direct, but it has to be done repeatedly for each new
application. The latter possibility, which we call adaptation, provides more
flexibility and potential for reuse of components. However,it requires from
the employed framework to have a special adaptation mechanism.

4

2.1 Higher-Order Components (HOCs)

Higher-Order Components (HOCs) [7] are called so because they can be
parameterized not only with data but also with code, in analogy to higher-
order functions that may use other functions as arguments. We illustrate the
HOC concept using a particular component, the Farm-HOC, which will be our
example throughout the paper. We first present how the Farm-HOC is used
in the context of Java and then explain the particular features of HOCs which
make them well-suited for adaptation. While many differentoptions (e. g. , C +
MPI or Pthreads) are available for implementing HOCs, in this paper, our focus
is on Java, where multithreading and the concurrency API arestandardized
parts of the language.

2.2 Example: The Farm-HOC

The farm pattern is only one of many possible patterns of parallelism, ar-
guably one of the simplest, as all its parallel tasks are supposed to be inde-
pendent from each other. There may be different implementations of the farm,
depending on the target computer platform; all these implementations have,
however, in common that the input data are partitioned usinga code unit called
the Master and the tasks on the data parts are processed in parallel using a
code unit called theWorker. Our Farm-HOC, has therefore two so-calledcus-
tomization code parameters, theMaster-parameter and theWorker-parameter,
defining the corresponding code units in the farm implementation.

The code parameters specify how the Farm-HOC should be applied in a
particular situation. TheMaster parameter must contain asplit method for
partitioning data and a correspondingjoin method for recombining it, while
the Worker parameter must contain acompute method for task processing.
Farm-HOC users declare these parameters by implementing the following two
interfaces:

1: public interface Master<E> {
2: public E[][] split(E[] input, int grain);
3: public E[] join(E[][] results); }
4: public interface Worker<E> {
5: public E[] compute(E[] input); }

TheMaster (line 1–3) determines how an input array of some typeE is split
into independent subsets, and theWorker (line 4–5) describes how a single
subset is processed as a task in the farm. While theWorker-parameter differs
in most applications, programmers typically pick the default implementation of
theMaster from our framework. ThisMaster splits the input regularly, i. e. ,
into equally sized partations. A specificMaster-implementation must only be
provided, if a regular splitting is undesireable, e. g. , forpreserving certain data
correlations.

Adaptable Parallel Components for Grid Programming 5

Unless an adaptation is applied to it, the processing schemaof the Farm-
HOC is very general, which is a common property of all HOCs. Inthe case
of the Farm-HOC, after the splitting phase, the schema consists in the parallel
execution of the tasks described by the implementation of the aboveWorker-
interface. To allow the execution on multiple servers, the internal implementa-
tion of the Farm-HOC adheres to the widely used scheduler/worker-pattern of
distributed computing: A single scheduler machine runs theMaster-code (the
first server given in the call to theconfigureGrid method, shown below) and
the other servers each run a pool of threads, wherein each thread waits for tasks
from the scheduler and then processes them using theWorker code parameter,
passed during the farm initialization.

The following code shows how the Farm-HOC is invoked on the grid as a
Web service via its remote interfacefarmHOC:

1: farmHOC.configureGrid("masterHost",
2: "workerHost1",... ,
3: "workerHostN");
4: farmHOC.process(input, LITHIUM, JAVA5);

The programmer can pick the servers to be employed for running theWorker-
code via theconfigureGrid-method (line 1–3), which accepts either host
names or IP addresses as parameters. Moreover, the programmer can select,
among various implementations, the most adequate version for a particular
network topology and for particular server architectures (in the above code,
the version based on the grid programming library Lithium [4] is chosen). The
JAVA5-constant, passed in the invocation (line 4), specifies thatthe format of
the code parameters to be employed in the execution is Java bytecode compli-
ant to Java virtual machine versions 1.5 or higher.

2.3 The Implementation of Adaptable HOCs

The need for adaptation arises if an application requires a processing schema
which is not provided by the available components. Adaptation is used to
derive a new component with a different behavior from the original HOC. Our
approach is that a particular adaptation is also specified via a code parameter,
similar to the customization shown in the preceding section. In contrast to
a customizing code parameter, which is applied within the execution of the
HOC’s schema, a code parameter specifying an adaptation runs in parallel to
the execution of the HOC. There is no fixed position for the adaptation code
in the HOC implementation; rather the HOC exchanges messages with it in
a publish/subscribe-manner. This way, a code parameter can, e. g. , block the
execution of the HOC’s standard processing schema at any time, until some
condition is fulfilled.

6

Our implementation design can be viewed as a general method for mak-
ing components adaptable. The two most notable, advantageous properties of
our implementation are as follows: 1) Using HOCs, adaptation code is placed
within one or multiple threads of its own, while the originalframework code
remains unchanged, and 2) An adaptation code parameter is connected to the
HOC using only message exchange, leading to high flexibilty.
This design has the following advantageous properties:

we clearly separate the adaptation code not only from the component
implementation code, but also from the obligatory, customizing code
parameters. When a new algorithm with new dependencies is imple-
mented, the customization parameters can still be written as if this algo-
rithm introduced no new data dependencies. This feature is especially
obvious in case of the Farm-HOC, as there are no dependenciesat all in a
farm. Accordingly, theMaster andWorker parameters of a component
derived from the Farm-HOC are written dependency-free.

we decouple the adaptation thread from the remaining component struc-
ture. There can be an arbitrary number of adaptations. Due toour mes-
saging model, adaptation parameters can easily be changed.Our model
promotes better code reusability as compared to passing information be-
tween the component implementations and the adaptation code directly
via the parameters and return values of the adaptation codes’ methods.
Any thread can publish messages for delivery to other that provides the
publisher with an appropriate interface for receiving messages. Thus,
adaptations can also adapt other adaptations and so on.

Our implementation offers a high degree of location independence: In
the Farm-HOC, the data to be processed can be placed locally on the
machine running the scheduler or they can be distributed among several
remote servers. In contrast to coupling the adaptation codeto theWorker
code, which would be a consequence of placing it inside the same class,
our adaptations are not restricted to affecting only the remote hosts, but
can also have an impact on the scheduler host. In our case study, we use
this feature to efficiently optimize the scheduling behavior with respect
to exploiting data locality: processing a certain amount ofdata locally in
the scheduler significantly increases the efficiency of the computations.

3. Case Study: Sequence Alignment

Our case study in this paper is one of the fundamental algorithms in bioin-
formatics – the computation ofdistancesbetween DNA sequences, i. e. , find-
ing the minimum number of operations needed to transform onesequence into
another. Sequences are encoded using the nucleotide alphabet {A,C,G,T}.

Adaptable Parallel Components for Grid Programming 7

The distance, which is the total number of the required transformations,
quantifies the similarity of sequences [11] and is often calledglobal alignment.
Mathematically, global alignment can be expressed using a so-calledsimilarity
matrix S, whose elementssi, j are defined as follows:

si,j := max
(

si,j−1+plt,si−1,j−1+δ(i, j),si−1,j+plt
)

(1)

wherein

δ(i, j) :=

{

+1 , if ε1(i) = ε2(j)
−1 , otherwise

(2)

Here,εk(b) denotes theb-th element of sequencek, and plt is a constant
that weighs the costs for inserting a space into one of the sequences (typically,
plt = −2, the “double price” of a mismatch).

The data dependencies imposed by definition (1) imply a particular order
of computation of the matrix: elements which can be computedindependently
of each other, i. e. , in parallel, are located on a so-calledwavefrontwhich
“moves” across the matrix as computations proceed. The wavefront is degen-
erated into a straight line when it is drawn along the single independent ele-
ments, but its ”wavy” structure becomes apparent when it spans multi-element
blocks. In higher-dimensional cases (3 or more input sequences), the wave-
front becomes a hyperplane [9].

The wavefront pattern of parallel computation is not specific only to the
sequence alignment problem, but is used also in other popular applications:
searching in graphs represented via their adjacency matrices, system solvers,
character stream conversion problems, motion planning algorithms in robotics
etc. Therefore, programmers would benefit if a standard component would
capture the wavefront pattern. Our approach is to take the Farm-HOC, as in-
troduced in Section 2, adapt it to the wavefront structure ofparallelism and
then customize it to the sequence alignment application. Fig. 2 schematically
shows this two-step procedure. First, the workspace, holding the partitioned
tasks for farming, is sorted according to the wavefront pattern, whereby a new
processing order is fixed, which is optimal with respect to the degree of paral-
lelism. Then, the alignment definitions (1) and (2) are employed for processing
the sequence alignment application.

4. Adaptations with Globus & WSRF

The Globus middleware and the enclosed implementation of the Web Ser-
vices Resource Framework(WSRF) form the middleware platform used for
running HOCs (http://www.oasis-open.org/committees/wsrf).

The WSRF allows to set up stateful resources and connect themto Web ser-
vices. Such resources can represent application state dataand thereby make
Web services and their XML-based communication protocol (SOAP) more

8

suitable for grid computing: while usual Web services offeronly self-contained
operations, which are decoupled from each other and from thecaller, Web ser-
vices hosted with Globus include the notion of context: multiple operations
can affect the same data, and changes within this data can trigger callbacks to
the service consumer, thus avoiding blocking invocations.

Globus requires from the programmer to manually write a configuration
consisting in multiple XML files which must be placed properly within the
grid servers’ installation directories. These files must explicitly declare all re-
sources, the services used to connect to them, their interfaces and bindings to
the employed protocol, in order to make Globus applicationsaccessible in a
platform- and programming language-independent manner.

4.1 Enabling Mobile Code

Users of the HOC-framework are freed from the complicated WSRF-setup
described above, as all the required files, which are specificfor each HOC but
independent from applications, are provided for all HOCs inadvance.

We provide a special class-loading mechanism allowing class definitions to
be exchanged among distributed servers. The code pieces being exchanged
among the grid nodes hosting our HOCs are stored as properties of resources
that have been configured according to the HOC-requirements; e. g. , the Farm-
HOC is connected with a resource for holding an implementation of oneMaster
and oneWorker code parameter.

Client

code parameter

in
te

rf
ac

e
W

S
D

L

web service

Farm−HOC

code service

W
S

D
L

in
te

rf
ac

e

farm implementation

in
te

rf
ac

e
Ja

va

code

code

code

local
filesystem

remote
class loader

scheduler

worker 1

worker 2

local code

mobile codeID

ID

Master

Worker

Worker

Figure 1. Transfer of code parameters

Fig. 1 illustrates the transfer of mobile code in the HOC-framework. The
bold lines around the Farm-HOC, theremote class loaderand thecode-service
indicate that these entities are parts of our framework implementation. The
Farm-HOC, shown in the right part of the figure, contains an implementation
of the farm schema with a scheduler that dispatches tasks to workers (two in
the figure). The HOC implementation includes one Web serviceproviding
the publicly available interface to this HOC. Application programmers only

Adaptable Parallel Components for Grid Programming 9

GTTCTAAT

GGACTAAT
{ −1

+1
δ(i, j) :=

otherwise

if ǫ1(i) = ǫ2(j)

si,j := max(si,j−1 + penalty,

si−1,j−1 + δ(i, j),
si−1,j + penalty)

workerworker

workerworker

scheduler

sequence alignmentfarm distance definitionwavefront

component selection application executionfarm adaptation farm customization

Figure 2. Two-step process: adaptation and customization

provide the code parameters. System programmers, who buildHOCs, must
assure that these parameters can be interpreted on the target nodes, which may
be particularly difficult for heterogeneous grid nodes.

HOCs transfer each code unit as a record holding an identifier(ID) plus the a
combination of the code itself and declaration of requirements for running the
code. A requirement may, e. g. , be the availability of a certain Java virtual ma-
chine version. As the format for declaring such requirements, we use string lit-
erals, which must coincide with those used in the invocationof the HOC (e. g. ,
JAVA5, as shown in Section 2.2). This requirement-matching mechanism is
necessary to bypass the problem that executable code is usually platform-
specific, and therefore not mobile: not any code can be executed by an arbitrary
host. Before we ship a code parameter, we guide it through thecode-service
– a Web service connected to a database, where the code parameters are filed
as Java bytecode or in a scripting-language format. This design facilitates the
reuse of code parameters and their mobility, at least acrossall nodes that run
a compatible Java virtual machine or a portable scripting-language interpreter
(e. g. , Apache BSF:http://jakarta.apache.org/bsf). The remote class
loader in Fig. 1 loads class definitions from the code-service, if they are not
available on the local filesystem.

In the following, we illustrate the two-step process of adaptation and cus-
tomization shown in Fig. 2. For the sake of explanation, we start with the
second step (HOC customization), and then consider the farmadaptation.

4.2 Customizing the Farm-HOC
for Sequence Alignment

Our HOC framework includes several helper classes that simplify the pro-
cessing of matrices. It is therefore, e. g. , not necessary towrite anyMaster
code, which splits matrices into equally sized submatrices, but we can fetch a

10

standard framework procedure from the code service. The only code param-
eter we must write anew for computing the similarity matrix in our sequence
alignment application is theWorker code. In our case study this parameter
implements, instead of the generalWorker-interface shown in Section 2.2, the
alternativeBinder-interface, which describes, specifically for matrix applica-
tions, how an element is computed depending on its indices:

1: public interface Binder<E> {
2: public E bind(int i, int j); }

Before the HOC computes the matrix elements, it assigns an empty workspace
matrix to the code parameter; i. e. , amatrix reference is passed to the param-
eter object and, thus, made available to the customizing parameter code for
accessing the matrix elements.

Our code parameter implementation for calculating matrix elements, ac-
cordingly to definition (1) from section 3, reads as follows:

1: new Binder<Integer>() {
2: public Integer bind(int i, int j) {
3: return max(matrix.get(i, j - 1) + penalty,
4: matrix.get(i - 1, j - 1) + delta(i, j),
5: matrix.get(i - 1, j) + penalty); } }

The helper methoddelta, used in line 4 of the above code, implements
definition (2).

The specialMatrix-type used by the above code for representing the dis-
tributed matrix is also provided by our framework and it facilitates full lo-
cation transparency, i. e. , it allows to use the same interface for accessing
remote elements and local elements. Actually,Matrix is an abstract class,
and our framework includes two concrete implementations:LocalMatrix and
RemoteMatrix. These classes allow to access elements in adjacent subma-
trices (using negative indices), which further simplifies the programming of
distributed matrix algorithms. Obviously, these framework-specific utilities
are quite helpful in the presented case study, but they are not necessary for
adaptable components and therefore beyond the scope of thispaper.

Farming the tasks described by the aboveBinder, i. e. , the matrix element
computations, does not allow data dependencies between theelements. There-
fore any farm implementation, including the one in the Lithium library used in
our case, would compute the alignment result as a single task, without paral-
lelization, which is unsatisfactory and will be addressed by means of adapta-
tion.

Adaptable Parallel Components for Grid Programming 11

4.3 Adapting the Farm-HOC
to the Wavefront Pattern

For the parallel processing of submatrices, the adapted component must,
initially, fix the “wavefront order” for processing individual tasks, which is
done by sorting the partitions of the workspace matrix arranged by theMaster
from the HOC-framework, such that independent submatricesare grouped in
one wavefront. We compute this sorted partitioning, while iterating over the
matrix-antidiagonals as a preliminary step of the adapted farm, similar to the
loop-skewing algorithm described in [16]. The central rolein our adaptation
approach is played by the specialsteering threadthat is installed by the user
and runs the wavefront-sorting procedure in its initialization method.

After the initialization is finished, the steering thread keeps running con-
currently to the original farm scheduler and periodically creates new tasks by
executing the following loop:

1: for (List<Task> waveFront : data) {
2: if (waveFront.size() < localLimit)
3: scheduler.dispatch(wave, true);
4: else {
5: remoteTasks = waveFront.size() / 2;
6: if ((surplus = remoteTasks % machines) != 0)
7: remoteTasks -= surplus;
8: localTasks = waveFront.size() - remoteTasks;
9: scheduler.dispatch(
10: waveFront.subList(0, remoteTasks), false);
11: scheduler.dispatch(
12: waveFront.subList(remoteTasks,
13: remoteTasks + localTasks), true); }
14: scheduler.assignAll(); }

Here, the steering thread iterates over all wavefronts, i. e. , the submatrices
positioned along the anti-diagonals of the similarity matrix being computed.

TheassignAll and thedispatch are not part of the standard Java API, but
we implemented them ourselves to improve the efficiency of the scheduling
as follows: TheassignAll-method waits until the tasks to be processed have
been assigned to workers. Methoddispatch, in its first parameter, expects a
list of new tasks to be processed. Via the second boolean parameter, the method
allows the caller to decide whether these tasks should be processed locally by
the scheduler (see lines 2–3 of the code above): the steeringthread checks if
the number of tasks is less than a limit set by the client. If so, then all tasks
of such a “small” wavefront are marked for local processing,thus avoiding
that communication costs exceed the time savings gained by employing remote
servers. For wavefront sizes above the given limit, the balance of tasks for local
and remote processing is computed in lines 5–8: half of the submatrices are

12

70

60

50

40

30

20

10

T
im

e
 [

s
e

c
]

multiprocessor server

U280 U450 U68K U880 SF12K

standard farm
adapted farm

adapted, optimized farm

180

160

140

120

100

80

60

40

20

9M4M1M0.5M

T
im

e
 [

s
e

c
]

similarity matrix size

standard farm
adapted farm 60

50

40

30

20

10

8M6M4M2M0.5M

T
im

e
 [

s
e

c
]

similarity matrix size

8 processors
32 processors 60

50

40

30

20

10

8M6M4M2M0.5M

T
im

e
 [

s
e

c
]

similarity matrix size

8 processors
32 processors

Figure 3. Experiments, from left to right: single multiprocessor servers; employing two
servers; multiple multiprocessor servers; same input, zipped transmission

processed locally and the remaining submatrices are evenlydistributed among
the remote servers. If there is no even distribution, the surplus matrices are
assigned for local processing. Then, all submatrices are dispatched, either for
local or remote processing (lines 9—13) and theassignAll-method is called
(line 14). The submatrices are processed asynchronously, as assignAll only
waits until all tasks have beenassigned, not until they are finished.

Without theassignAll and dispatch-method, the adaptation parameter
can implement the same behavior using aCondition from the standard con-
currency API for thread coordination, which is a more low-level solution.

5. Experimental Results

We investigated the run time of the application for processing the genome
data of various fungi, as archived athttp://www.ncbi.nlm.nih.gov. The
scalability was measured in two dimensions: (1) with increasing number of
processors in a single server, and (2) with increasing number of servers.

Server Architecture Processors Clock Speed

SMP U280 Sparc II 2 750 Mhz
SMP U450 Sparc II 4 900 Mhz
SMP U880 Sparc II 8 900 Mhz
SMP U68K UltraSparc III+ 2 900 Mhz
SMP SF12K UltraSparc III+ 8 1200 Mhz

Table 1. The servers in our grid testbed

The first plot in Fig. 3 shows the results for computing a similarity matrix
of 1 MB size using the SunFire machines listed above. We have deliberately
chosen heterogeneous multiprocessor servers, in order to study a realistic, grid-
like scenario.

A standard, non-adapted farm can carry out computations on asingle pair
of DNA sequences only sequentially, due to the wavefront-structured data de-
pendencies. Using our Farm-HOC, we imitated this behavior by omitting the

Adaptable Parallel Components for Grid Programming 13

adaptation parameter and by specifying a partitioning grain equal to the size of
an overall similarity matrix. This version was the slowest in our tests. Runtime
measurements with thelocalLimit in the steeringThread set to a value
>= 0 are labeled asadapted, optimized farm. The locality optimization, ex-
plained in Section 4.3, has an extra impact on the first plot inFig. 3, since
it avoids the use of sockets for local communication. To makethe compari-
son with the standard farm version fairer, thelocalLimit was set to zero in
a second series of measurements, which are labeled asadapted farmin Fig. 3.
Both plots in Fig. 3 show the average results of three measurements. To obtain
a measure for the spread, we always computed the variation coefficient; this
turned to be less than 5% for all test series.

To investigate the scalability we ran the same application using two Pen-
tium III servers under Linux. While the standard farm can only use one of
the servers at a time, the adapted farm sends a part of the loadto the sec-
ond server, which improves the overall performance when theinput sequence
length increases (see the second plot). For more than two servers the perfor-
mance was leveled off. We assume that this is due to the increase of com-
munication, for distributing theBinder-tasks (shown in Section 4.2) over the
network. The right plots in Fig. 3 support this assumption. We investigated
the scalability using the U880 plus a second SunFire 6800 with 24 1350 MHz
UltraSPARC-IV processors. As can be seen, the performance of our appli-
cations is significantly increased for the 32 processor configuration, since the
SMP-machine-interconnection does not require the transmission of all tasks
over the network. Curves for the standard farm are not shown in these dia-
grams, since they lie far above the shown curves and coincidefor 8 and 32
processors, which only proves again that this version does not allow for par-
allelism within the processing of a single sequence pair. The outer right plot
shows the effect of another interesting modification: When we compress the
submatrices using the Javautil.zip Deflater-class before we transmit them
over the network, the curves do not grow so fast for small-sized input, but the
absolute times for larger matrices are improved.

To estimate the overhead introduced by the adaptation and remote communi-
cation in our system, we compared our implementation to theJAligner-system,
available from thesourceforge.netWeb-site. LocallyJAlignerwas about twice
as fast as our system. On the distributed multiprocessor servers, the time for
processing 9 MB usingJAlignerwas about 1 min., while we measured execu-
tion times below 40 seconds for processing the same input using our system.
This time advantage is explained by the fact that JAligner only benefits from
the big caches of the grid servers, but it cannot make use of more than a sin-
gle processor at a time. Thus, our adapted farm component outperforms the
hand-tuned JAligner implementation, once the size of the processed genome
data exceeds 10 MB.

14

6. Conclusion and Related Work

We adapted a farm component to wavefront computations. Although wave-
front exhibits a different parallel behavior than farm, theremote interface, the
resource configuration and most parts of a farm component’s implementation
could be reused due to the presented adaptation technique. Adaptations require
that scheduling actions, crucial to the application progress, such as the load-
ing of task data, can be extended by parameter code, which is provided to the
component at runtime, as it is possible, e. g. , in the upcoming GCM, which in-
cludes the HOC code mobility mechanisms. A helpful analytical basis, which
allows to derive new component adaptations from any application dependency
graph, is given by thePolytope-model [10]. Polytope is also a possible starting
point for future work on adaptable components, as it allows to automate the
creation of adaptation code parameters.

Farm is a popular higher-order construct (i. e. , a componentparameterized
with code) that is available in several parallel programming systems. However,
there is typically no wavefront component available. One ofthe reasons is that
there are simply too many different parallel structures encountered in applica-
tions, so that it is practically impossible to every particular structure in a single,
general component framework like, e. g. , CCA (http://www.cca-forum.org).

Of course, component adaptation is not restricted neither to farm compo-
nents nor to wavefront algorithms. In an adaptation of otherHOCs like the
Divide-and-Conquer-HOC, our technique can take effect analogously: If, e. g. ,
an application of a divide-and-conquer algorithm allowed to conduct the join-
phase in advance to the final data partitioning under certaincircumstances, we
could apply this optimization using an adaptation without any impact on the
standard division-predicate of the algorithm.

Our case study shows that adaptable components allow for run-time rear-
rangements of software running on a distributed computer infrastructure, in
the same flexible way as aspect-oriented programming simplifies code modifi-
cations at compile-time.

The use of the wavefront schema for parallel sequence alignment has been
analyzed before in [1], where it is classified as a design pattern. While in the
CO2P3Ssystem the wavefront behavior is a fixed part of the pattern implemen-
tation, in our approach, it is only one of many possible adaptations that can
be applied to a HOC. We used our adapted Farm-HOC for solving the DNA
sequence pair alignment problem. In comparison with the extensive previous
work on this challenging application [8, 13], we developed ahigh-level solu-
tion with competitive performance.

Adaptable Parallel Components for Grid Programming 15

Acknowledgments

This research was conducted within the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265).

References
[1] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Generating

parallel programs from the wavefront design pattern. In7th Workshop on High-Level
Parallel Programming Models. IEEE Computer Society Press, 2002.

[2] F. Baude, D. Caromel, and M. Morel. From distributed objects to hierarchical grid com-
ponents. InInternational Symposium on Distributed Objects and Applications (DOA).
Springer LNCS, Catania, Sicily, 2003.

[3] M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel
Computation. Pitman, 1989.

[4] M. Danelutto and P. Teti. Lithium: A structured parallelprogramming enviroment in
Java. InProceedings of Computational Science - ICCS, number 2330 in Lecture Notes
in Computer Science, pages 844–853. Springer-Verlag, Apr.2002.

[5] J. Dünnweber and S. Gorlatch. HOC-SA: A grid service architecture for higher-order
components. InIEEE International Conference on Services Computing, Shanghai,
China, pages 288–294. IEEE Computer Society Press, Sept. 2004.

[6] Globus Alliance. http://www.globus.org, 1996.

[7] S. Gorlatch and J. Dünnweber. From Grid Middleware to Grid Applications: Bridging
the Gap with HOCs. InFuture Generation Grids. Springer Verlag, 2005.

[8] J. Kleinjung, N. Douglas, and J. Heringa. Parallelized multiple alignment. InBioinfor-
matics 18. Oxford University Press, 2002.

[9] L. Lamport. The parallel execution of do loops. InCommun. ACM, volume 17, 2, pages
83–93. ACM Press, 1974.

[10] C. Lengauer. Loop parallelization in the polytope model. In International Conference on
Concurrency Theory, pages 398–416, 1993.

[11] V. I. Levenshtein. Binary codes capable of correcting insertions and reversals. InSoviet
Physics Dokl. Volume 10, pages 707–710, 1966.

[12] M. Aldinucci, S. Campa et al. The implementation ofASSIST, an environment for par-
allel and distributed programming. In H. Kosch, L. Böszörményi, and H. Hellwagner,
editors,Proc. of the Euro-Par 2003, number 2790 in lncs, pages 712–721. Springer, Aug.
2003.

[13] M. Schmollinger, K. Nieselt, M. Kaufmann, and B. Morgenstern. Dialign p: Fast pair-
wise and multiple sequence alignment using parallel processors. InBMC Bioinformatics
5. BioMed Central, 2004.

[14] C. Szyperski.Component software: Beyond object-oriented programming. Addison Wes-
ley, 1998.

[15] Unicore Forum e.V. UNICORE-Grid, http://www.unicore.org, 1997.

[16] M. Wolfe. Loop skewing: the wavefront method revisited. In Journal of Parallel Pro-
gramming, Volume 15, pages 279–293, 1986.

