ADAPTABLE PARALLEL COMPONENTS
FOR GRID PROGRAMMING

Jan Dunnweber and Sergei Gorlatch

University of Munster, Department of Mathematics and CotepScience
Einsteinstrasse 62, 48149 Munster, Germany
duennweb@uni-muenster.de

gorlatch@uni-muenster.de

Marco Aldinucci, Sonia Campa and Marco Danelutto
Universita di Pisa, Department of Computer Science

Largo B. Pontecorvo 3, 56127 Pisa, Italy

aldinuc@di.unipi.it

campa@di.unipi.it

marcod@di.unipi.it

Abstract We suggest that parallel software components used for grigpating should be
adaptable to application-specific requirements, instéatweloping new com-
ponents from scratch for each particular application. Asxample, we take a
parallel farm component which is “embarrassingly parsliet. , free of depen-
dencies, and adapt it to the wavefront processing patteindependencies that
impact its behavior. We describe our approach in the corektigher-Order
Components (HOCs), with the Java-based system Lithium agrgqiementa-
tion framework. The adaptation process relies on HOCs’ tealmde parame-
ters that are shipped over the network of the grid. We desaily implementa-
tion of the proposed component adaptation method and régsirexperimental
results for a particular grid application — the alignmenDA sequence pairs,
a popular, time-critical problem in computational molesubiology.

Keywords: Grid Components, Adaptable Code, Wavefront Parallelistve JWeb Services

1. Introduction

Grids are a promising platform for distributed computinghaigh demand
on data throughput and computing power, but they are sffiicdit to pro-
gram due to their highly heterogeneous and dynamic natagul&r technolo-
gies for programming grids are Java, since it enables ptiytdbr executable
code, and Web services, which facilitate the exchange dicapion data in a
portable a format. Thus, multiple Java-based componeigsijbdited across
the Internet, can work together using Web services.

Besides interoperability, grid applications require frimeir runtime envi-
ronments support for the sharing of data among multipleisesvand a possi-
bility for issuing non-blocking service requests. The eonporary grid mid-
dleware systems, e.g., the Globus Toolkit [6] and Unicofg Hddress such
recurring issues, thus freeing users from dealing with #meesproblems again
and again. Middleware abstracts over the complex infrastra of a grid:
application code developed by middleware users (whichcstiisists in Java-
based Web services in most cases) is not so heavily conceiittedhe low-
level details of network communication and the maintenamicdistributed
data.

While providing an infrastructure-level abstraction, diglvare introduces
numerous non-trivial configuration requirements on thaesgdevel, which
complicates the development of applications. Theref@egmt approaches to
simplifying the programming of grid applications oftenroduce an additional
layer of software components abstracting over the middiewsed in the grid.

Software components for the grid aim to be easier to handie taw mid-
dleware. In [14], components are defined as software bgHbincks with
no implicit dependencies regarding the runtime envirortner., compo-
nents for grid programming are readily integrated with timelerlying mid-
dleware, hiding it from the grid users. An example for gridgmamming com-
ponents is given by the CoreGRIGrid Component Mode(GCM), a spec-
ification which emerged from the component models FractalH®DCs [7],
ASSIST [12] and other experimental studies, conductedimvitie CoreGRID
community. While the GCM predecessors are accompaniedabysivork im-
plementations, providing the users with an API, there isngeGCM frame-
work. Anyway, there are multiple implementations of Fradtee HOC-SA [5]
for programming with HOCs, the ASSIST framework for dataaflorogram-
ming and its Java-based variant Lithium [4]. These framé&wa@ilow to ex-
periment with many GCM features and to preliminarily anallimitations of
the model.

This paper addresses grid application programming usioggonent frame-
work, where applications are built Iselecting customizingand combining
components. Selecting means choosing appropriate comgsdinem the frame-

Adaptable Parallel Components for Grid Programming 3

work, which may contain several ready-made implementatmihcommonly
used parallel computing schemata (farm, divide-and-cenaic. [3]).

By customization, we mean specifying application-spedferations to be
executed within the processing schema of a component, pacallel farming
of application-specific tasks. Combining various parai@hponents together
for accomplishing one task, can be done, e. g., via Web ssvic

As our main contribution, we introducadaptationsof software compo-
nents, which extends the traditional notioncoktomizationwhile customiza-
tion applies a component’s computing schema in a partiadatext, adapta-
tion modifies the very schema of a component, with the purpbseorporat-
ing new capabilities. Our thrust to use adaptable compsrismhotivated by
the fact that a fixed framework is hardly able to cover evergpially useful
type of component. The behavior of adaptable componentbeatiered, thus
allowing to apply them in use cases for which they have not loeiginally de-
signed. We demonstrate that both, traditional custonumedind adaptation of
components can be realized in a grid-aware manner (i. e ,iralhe context
of an upcoming GCM-framework). We use two kinds of compogeparam-
eters that are shipped over the network with the purpose ayftation: these
parameters may be either data or executable codes.

As a case study, we take a component that was originally wegidor
dependency-fre¢ask farming By means of an additional code parameter,
we adapt this component for the parallel processing of tagkéiting data
dependencies withwaavefrontstructure.

In Section 2, we explain oudigher-Order ComponenttHOCs) and how
they can be made adaptable. Section 3 describes our applicatse study
used throughout the paper: the alignment of sequence péii is a wavefront-
type, time-critical problem in computational moleculaolbgy. In Section 4,
we show how the HOC-framework enables the use of mobile csl#,is re-
quired to apply a component adaptation in the grid contegttiSn 5 shows
our first experimental results for applying the adapted faomponent to the
alignment problem in different, grid-like infrastructsreSection 6 summarizes
the contributions of this paper in the context of relatedkvor

2. Componentsand Adaptation

When an application requires a component, which is not gemliby the
employed framework, there are two possibilities: eithecade the required
component anew or to try and derive it from another availablaponent. The
former possibility is more direct, but it has to be done répaig for each new
application. The latter possibility, which we call adajat provides more
flexibility and potential for reuse of components. Howevergquires from
the employed framework to have a special adaptation mestmani

4

2.1 Higher-Order Components (HOCYS)

Higher-Order Components (HOCs) [7] are called so becausg ¢hn be
parameterized not only with data but also with code, in apalm higher-
order functions that may use other functions as argumentsillMgtrate the
HOC concept using a particular component, the Farm-HOG;hwhill be our
example throughout the paper. We first present how the Fab@-k$ used
in the context of Java and then explain the particular featof HOCs which
make them well-suited for adaptation. While many differgpiions (e.g., C +
MPI or Pthreads) are available for implementing HOCs, ia gdaper, our focus
is on Java, where multithreading and the concurrency APlstedardized
parts of the language.

2.2 Example: TheFarm-HOC

The farm pattern is only one of many possible patterns ofliedisan, ar-
guably one of the simplest, as all its parallel tasks are csgh to be inde-
pendent from each other. There may be different implemientabf the farm,
depending on the target computer platform; all these implgations have,
however, in common that the input data are partitioned usiogde unit called
the Mast er and the tasks on the data parts are processed in parallgl asin
code unit called th&ér ker . Our Farm-HOC, has therefore two so-calt®ds-
tomization code parametertheMst er -parameter and thér ker -parameter,
defining the corresponding code units in the farm impleméanmta

The code parameters specify how the Farm-HOC should beeapipli a
particular situation. Th&hst er parameter must containsgl i t method for
partitioning data and a correspondijpgi n method for recombining it, while
the Wor ker parameter must contain @nput e method for task processing.
Farm-HOC users declare these parameters by implemengrfgltowing two
interfaces:
public interface Master<e> {

public E[]1[] split(E[] input, int grain);
public E[] join(E[][] results); }

public interface Wrker<E> {
public E[] compute(E[] input); }

TheMst er (line 1-3) determines how an input array of some ts split
into independent subsets, and the ker (line 4-5) describes how a single
subset is processed as a task in the farm. Whil&\h&er -parameter differs
in most applications, programmers typically pick the défeplementation of
the Mast er from our framework. Thidvast er splits the input regularly, i. e.,
into equally sized partations. A specilast er -implementation must only be
provided, if a regular splitting is undesireable, e. g. [dmserving certain data
correlations.

Adaptable Parallel Components for Grid Programming 5

Unless an adaptation is applied to it, the processing scludrttae Farm-
HOC is very general, which is a common property of all HOCsthie case
of the Farm-HOC, after the splitting phase, the schema st the parallel
execution of the tasks described by the implementation eobthovehér ker -
interface. To allow the execution on multiple servers, tiiernal implementa-
tion of the Farm-HOC adheres to the widely used schedulekbrgattern of
distributed computing: A single scheduler machine runss er -code (the
first server given in the call to theonf i gureG i d method, shown below) and
the other servers each run a pool of threads, wherein eagdutiwvaits for tasks
from the scheduler and then processes them usingbtbeer code parameter,
passed during the farm initialization.

The following code shows how the Farm-HOC is invoked on thd gs a
Web service via its remote interfatar nHCC:

1. farmHOC. configureGid("masterHost",

2: "wor ker Host 1", ... ,
3 "wor ker Host N') ;

4: farmHOC. process(input, LITH UM JAVA5);

The programmer can pick the servers to be employed for rgrthieVér ker -
code via theconfi gureG i d-method (line 1-3), which accepts either host
names or IP addresses as parameters. Moreover, the prograzamselect,
among various implementations, the most adequate versioa particular
network topology and for particular server architecturiestiije above code,
the version based on the grid programming library Lithiufig4&hosen). The
JAVA5-constant, passed in the invocation (line 4), specifiesttr@aformat of
the code parameters to be employed in the execution is Jawedoe compli-
ant to Java virtual machine versions 1.5 or higher.

2.3 Thelmplementation of Adaptable HOCs

The need for adaptation arises if an application requiregs@gssing schema
which is not provided by the available components. Adaptais used to
derive a new component with a different behavior from thgiagl HOC. Our
approach is that a particular adaptation is also specified \dode parameter,
similar to the customization shown in the preceding sectibn contrast to
a customizing code parameter, which is applied within thecekon of the
HOC's schema, a code parameter specifying an adaptatianimyparallel to
the execution of the HOC. There is no fixed position for theptat#on code
in the HOC implementation; rather the HOC exchanges messaighb it in
a publish/subscribe-manner. This way, a code parameterecgn, block the
execution of the HOC's standard processing schema at ary tintil some
condition is fulfilled.

Our implementation design can be viewed as a general metroehdk-
ing components adaptable. The two most notable, advantagwoperties of
our implementation are as follows: 1) Using HOCs, adaptatiode is placed
within one or multiple threads of its own, while the origirfedmework code
remains unchanged, and 2) An adaptation code parametenneced to the
HOC using only message exchange, leading to high flexibilty.

This design has the following advantageous properties:

= we clearly separate the adaptation code not only from thepooent
implementation code, but also from the obligatory, cuskingi code
parameters. When a new algorithm with new dependenciespgkim
mented, the customization parameters can still be writsdhthis algo-
rithm introduced no new data dependencies. This featurspscally
obvious in case of the Farm-HOC, as there are no dependextcitbin a
farm. Accordingly, thevhst er andWr ker parameters of a component
derived from the Farm-HOC are written dependency-free.

= we decouple the adaptation thread from the remaining coemiairuc-
ture. There can be an arbitrary number of adaptations. Doartones-
saging model, adaptation parameters can easily be cha@gednodel
promotes better code reusability as compared to passiogniation be-
tween the component implementations and the adaptatios dioelctly
via the parameters and return values of the adaptation ‘coskods.
Any thread can publish messages for delivery to other thatiges the
publisher with an appropriate interface for receiving rages. Thus,
adaptations can also adapt other adaptations and so on.

= Our implementation offers a high degree of location indejgeice: In
the Farm-HOC, the data to be processed can be placed localiyeo
machine running the scheduler or they can be distributechgreeveral
remote servers. In contrast to coupling the adaptation tothe\V\or ker
code, which would be a consequence of placing it inside theesdass,
our adaptations are not restricted to affecting only theaterhosts, but
can also have an impact on the scheduler host. In our casg stedise
this feature to efficiently optimize the scheduling behaviith respect
to exploiting data locality: processing a certain amourdaif locally in
the scheduler significantly increases the efficiency of ttrajmutations.

3. Case Study: Sequence Alignment

Our case study in this paper is one of the fundamental algositin bioin-
formatics — the computation alistanceshetween DNA sequences, i. e., find-
ing the minimum number of operations needed to transformseqgeence into
another. Sequences are encoded using the nucleotide etghaB, G, T }.

Adaptable Parallel Components for Grid Programming 7

The distance, which is the total humber of the required foansations,
guantifies the similarity of sequences [11] and is ofterecidlobal alignment
Mathematically, global alignment can be expressed usimgaabedsimilarity
matrix § whose elements j are defined as follows:

s :=max(sj_1-+plt,s_1j-1+8(i,j),s5-1j+plt) (1)
wherein
o[+ ifea(i) = €2())
o(i, J) '_{ —1 , otherwise @

Here, gx(b) denotes thd-th element of sequende and plt is a constant
that weighs the costs for inserting a space into one of theesexps (typically,
plt = —2, the “double price” of a mismatch).

The data dependencies imposed by definition (1) imply aqdati order
of computation of the matrix: elements which can be compirnddpendently
of each other, i.e., in parallel, are located on a so-caledefrontwhich
“moves” across the matrix as computations proceed. Thefvantds degen-
erated into a straight line when it is drawn along the singtéependent ele-
ments, but its "wavy” structure becomes apparent when ispaulti-element
blocks. In higher-dimensional cases (3 or more input secgpsn the wave-
front becomes a hyperplane [9].

The wavefront pattern of parallel computation is not spedaifily to the
sequence alignment problem, but is used also in other poppjalications:
searching in graphs represented via their adjacency reatrgystem solvers,
character stream conversion problems, motion planningritihgns in robotics
etc. Therefore, programmers would benefit if a standard oot would
capture the wavefront pattern. Our approach is to take the{#0C, as in-
troduced in Section 2, adapt it to the wavefront structur@arhllelism and
then customize it to the sequence alignment applicatiog. Zschematically
shows this two-step procedure. First, the workspace, hglthie partitioned
tasks for farming, is sorted according to the wavefrontguattwhereby a new
processing order is fixed, which is optimal with respect ®dkgree of paral-
lelism. Then, the alignment definitions (1) and (2) are erygdifor processing
the sequence alignment application.

4. Adaptationswith Globus & WSRF

The Globus middleware and the enclosed implementationeoi\bb Ser-
vices Resource Framewo(MVSRF) form the middleware platform used for
running HOCsIft t p: / / www. oasi s- open. or g/ conmi tt ees/ wsrf).

The WSRF allows to set up stateful resources and connecttthévieb ser-
vices. Such resources can represent application stateaddtthereby make
Web services and their XML-based communication protoc@AB) more

8

suitable for grid computing: while usual Web services offely self-contained
operations, which are decoupled from each other and froroather, Web ser-
vices hosted with Globus include the notion of context: mpldtoperations
can affect the same data, and changes within this data cmetrcallbacks to
the service consumer, thus avoiding blocking invocations.

Globus requires from the programmer to manually write a goméition
consisting in multiple XML files which must be placed progewithin the
grid servers’ installation directories. These files mugtliekly declare all re-
sources, the services used to connect to them, their inésrfand bindings to
the employed protocol, in order to make Globus applicat@csessible in a
platform- and programming language-independent manner.

4.1 Enabling Mobile Code

Users of the HOC-framework are freed from the complicatedRNSetup
described above, as all the required files, which are spédoifieach HOC but
independent from applications, are provided for all HOCadmance.

We provide a special class-loading mechanism allowingsai@ginitions to
be exchanged among distributed servers. The code pieceg ðanged
among the grid nodes hosting our HOCs are stored as prapefti@sources
that have been configured according to the HOC-requiremengs, the Farm-
HOC is connected with a resource for holding an implemeortadf oneMast er
and onéMr ker code parameter.

farm implementation
scheduler

Mast er code

worker 1 i
Vorker code |

|

Figure 1. Transfer of code parameters

Fig. 1 illustrates the transfer of mobile code in the HOG¥feavork. The
bold lines around the Farm-HOC, themote class loadesind thecode-service
indicate that these entities are parts of our framework émgntation. The
Farm-HOC, shown in the right part of the figure, contains aplémentation
of the farm schema with a scheduler that dispatches taskeiicevs (two in
the figure). The HOC implementation includes one Web serpiowiding
the publicly available interface to this HOC. Applicationogrammers only

Adaptable Parallel Components for Grid Programming 9

component selection farm adaptation farm customization application executiol

51 = max(s; ;-1 + penalty,

iy | GGACTAAT
M o =ao T LTI
\

GTTCTAAT
farm wavefront distance definition sequence alignme

P

v

scheduler

Figure 2. Two-step process: adaptation and customization

provide the code parameters. System programmers, who H@I@s, must
assure that these parameters can be interpreted on thertadgs, which may
be particularly difficult for heterogeneous grid nodes.

HOCs transfer each code unit as a record holding an ider{tii®@plus the a
combination of the code itself and declaration of requinetsiéor running the
code. A requirement may, e. g., be the availability of a ¢erdava virtual ma-
chine version. As the format for declaring such requirement use string lit-
erals, which must coincide with those used in the invocabicthe HOC (e. g.,
JAVAS5, as shown in Section 2.2). This requirement-matching mashais
necessary to bypass the problem that executable code iyuplaform-
specific, and therefore not mobile: not any code can be exédiytan arbitrary
host. Before we ship a code parameter, we guide it througledte-service
— a Web service connected to a database, where the code persare filed
as Java bytecode or in a scripting-language format. Thigdéscilitates the
reuse of code parameters and their mobility, at least aabs®des that run
a compatible Java virtual machine or a portable scriptamgrliage interpreter
(e.qg., Apache BSFittp://jakarta. apache. org/ bsf). The remote class
loader in Fig. 1 loads class definitions from the code-sefvitcthey are not
available on the local filesystem.

In the following, we illustrate the two-step process of adépn and cus-
tomization shown in Fig. 2. For the sake of explanation, vestswith the
second step (HOC customization), and then consider theddaptation.

4.2 Customizingthe Farm-HOC
for Sequence Alignment

Our HOC framework includes several helper classes thatljntpe pro-
cessing of matrices. It is therefore, e.g., not necessavyrite any Mast er
code, which splits matrices into equally sized submatribaswe can fetch a

10

standard framework procedure from the code service. Theande param-
eter we must write anew for computing the similarity matnxour sequence
alignment application is th@ér ker code. In our case study this parameter
implements, instead of the genevar ker -interface shown in Section 2.2, the
alternativeBi nder -interface, which describes, specifically for matrix apgt
tions, how an element is computed depending on its indices:

1: public interface Binder<e> {
2. public Ebind(int i, int j); 1}

Before the HOC computes the matrix elements, it assigns atyenorkspace
matrix to the code parameter; i.e.y@ ri x reference is passed to the param-
eter object and, thus, made available to the customizingnpeter code for

accessing the matrix elements.
Our code parameter implementation for calculating matfements, ac-
cordingly to definition (1) from section 3, reads as follows:

1. new Binder<integer>() {

2. public Integer bind(int i, int j) {

3: return max(matrix.get(i, j - 1) + penalty,
4 matrix.get(i - 1, j - 1) + delta(i, j),

5 matrix.get(i - 1, j) + penalty); } }

The helper methodel t a, used in line 4 of the above code, implements
definition (2).

The speciaMat ri x-type used by the above code for representing the dis-
tributed matrix is also provided by our framework and it fikaies full lo-
cation transparency, i.e., it allows to use the same irderfar accessing
remote elements and local elements. Actuaditri x is an abstract class,
and our framework includes two concrete implementaticosal Mat ri x and
Renmot eMat ri x. These classes allow to access elements in adjacent subma-
trices (using negative indices), which further simplifieg fprogramming of
distributed matrix algorithms. Obviously, these framekvspecific utilities
are quite helpful in the presented case study, but they ar@eeuwessary for
adaptable components and therefore beyond the scope piibes.

Farming the tasks described by the abBvader, i. e., the matrix element
computations, does not allow data dependencies betweetetiments. There-
fore any farm implementation, including the one in the Lithilibrary used in
our case, would compute the alignment result as a single téghout paral-
lelization, which is unsatisfactory and will be addressgdrteans of adapta-
tion.

Adaptable Parallel Components for Grid Programming 11

4.3 Adapting the Farm-HOC
to the Wavefront Pattern

For the parallel processing of submatrices, the adapteceoemt must,
initially, fix the “wavefront order” for processing indivichl tasks, which is
done by sorting the partitions of the workspace matrix ayeahby thevast er
from the HOC-framework, such that independent submatacesgrouped in
one wavefront. We compute this sorted partitioning, whieating over the
matrix-antidiagonals as a preliminary step of the adapaeoch f similar to the
loop-skewing algorithm described in [16]. The central rl@ur adaptation
approach is played by the specgkering threadhat is installed by the user
and runs the wavefront-sorting procedure in its initiai@ma method.

After the initialization is finished, the steering threacege running con-
currently to the original farm scheduler and periodicallgates new tasks by
executing the following loop:

1: for (List<Task> waveFront : data) ({

2. if (waveFront.size() < localLimt)

3: schedul er. di spat ch(wave, true);

4: else {

5: remot eTasks = waveFront.size() / 2;

6: if ((surplus = renmoteTasks % machines) != 0)
7 renot eTasks -= surplus

8: | ocal Tasks = waveFront.size() - renoteTasks
9: schedul er. di spat ch(

10: waveFront. subLi st (0, renoteTasks), false)
11: schedul er. di spat ch(

12: waveFront . subLi st (renot eTasks

13: renot eTasks + | ocal Tasks), true); }

14. scheduler.assignAll(); }

Here, the steering thread iterates over all wavefronts,, itlee submatrices
positioned along the anti-diagonals of the similarity rixabeing computed.
Theassi gnAl | and thedi spat ch are not part of the standard Java API, but
we implemented them ourselves to improve the efficiency efdtheduling
as follows: Theassi gnAl | -method waits until the tasks to be processed have
been assigned to workers. Methdicspat ch, in its first parameter, expects a
list of new tasks to be processed. Via the second booleamp#eg the method
allows the caller to decide whether these tasks should hmegsed locally by
the scheduler (see lines 2—3 of the code above): the steibriegd checks if
the number of tasks is less than a limit set by the client. |ftsen all tasks
of such a “small” wavefront are marked for local processitigis avoiding
that communication costs exceed the time savings gainethploging remote
servers. For wavefront sizes above the given limit, thertzadaf tasks for local
and remote processing is computed in lines 5-8: half of thenstrices are

standard farm - —~;v‘!
adapted farm 4 60

standard farm I 180
70 adapted farm [N 160
adapted, optimized farm [

8 processors ——
32 processors -4 60

8 processors ——
32 processors =

@ &
&

Time [sec]
8

U280 U450 UBBK UBBD SF12K 05M M M M

multiprocessor server

05M 2M M 6M am
similarity matrix size

05M 2M am 6M am

similarity matrix size similarity matrix size

Figure 3. Experiments, from left to right: single multiprocessor\&es; employing two
servers; multiple multiprocessor servers; same inpupeggransmission

processed locally and the remaining submatrices are edésthijbuted among
the remote servers. If there is no even distribution, th@lsarmatrices are
assigned for local processing. Then, all submatrices apmttihed, either for
local or remote processing (lines 9—13) and dkei gnAl | -method is called
(line 14). The submatrices are processed asynchronowsdgsagnAl | only
waits until all tasks have beerssignednot until they are finished.

Without theassi gnAl | anddi spat ch-method, the adaptation parameter
can implement the same behavior usinQoadi t i on from the standard con-
currency API for thread coordination, which is a more lowelesolution.

5. Experimental Results

We investigated the run time of the application for proaagshe genome
data of various fungi, as archived ftt p: / / www. ncbi . nl m ni h. gov. The
scalability was measured in two dimensions: (1) with insieg number of
processors in a single server, and (2) with increasing nuwitservers.

Server Architecture Processors Clock Speed
SMP U280 Sparc I 2 750 Mhz
SMP U450 Sparc I 4 900 Mhz
SMP U880 Sparc I 8 900 Mhz
SMP U68K UltraSparc 1+ 2 900 Mhz
SMP SF12K UltraSparc Il1+ 8 1200 Mhz

Table 1. The servers in our grid testbed

The first plot in Fig. 3 shows the results for computing a sinity matrix
of 1 MB size using the SunFire machines listed above. We haliballately
chosen heterogeneous multiprocessor servers, in ordeidparealistic, grid-
like scenario.

A standard, non-adapted farm can carry out computations singée pair
of DNA sequences only sequentially, due to the wavefranietired data de-
pendencies. Using our Farm-HOC, we imitated this behawaorhitting the

Adaptable Parallel Components for Grid Programming 13

adaptation parameter and by specifying a partitioningngegiual to the size of
an overall similarity matrix. This version was the slowesbur tests. Runtime
measurements with thieocal Li mit in the st eeringThread set to a value
>= 0 are labeled aadapted, optimized farmThe locality optimization, ex-
plained in Section 4.3, has an extra impact on the first pldtigqn 3, since
it avoids the use of sockets for local communication. To mialeecompari-
son with the standard farm version fairer, theeal Li mit was set to zero in
a second series of measurements, which are labeladaged farmin Fig. 3.
Both plots in Fig. 3 show the average results of three measemes. To obtain
a measure for the spread, we always computed the variatieffiaent; this
turned to be less than 5% for all test series.

To investigate the scalability we ran the same applicatisngutwo Pen-
tium 1l servers under Linux. While the standard farm canyomée one of
the servers at a time, the adapted farm sends a part of thetdote sec-
ond server, which improves the overall performance wheriripgt sequence
length increases (see the second plot). For more than twersehe perfor-
mance was leveled off. We assume that this is due to the isereficom-
munication, for distributing th& nder -tasks (shown in Section 4.2) over the
network. The right plots in Fig. 3 support this assumptione Mbestigated
the scalability using the U880 plus a second SunFire 6800 24t1350 MHz
UltraSPARC-IV processors. As can be seen, the performahoaroappli-
cations is significantly increased for the 32 processor gardiion, since the
SMP-machine-interconnection does not require the tressor of all tasks
over the network. Curves for the standard farm are not showthdse dia-
grams, since they lie far above the shown curves and coirford8 and 32
processors, which only proves again that this version doesliow for par-
allelism within the processing of a single sequence paie dliter right plot
shows the effect of another interesting modification: Whenocempress the
submatrices using the Jawti | . zi p Def | at er -class before we transmit them
over the network, the curves do not grow so fast for smaéleésinput, but the
absolute times for larger matrices are improved.

To estimate the overhead introduced by the adaptation amotescommuni-
cation in our system, we compared our implementation tdglignersystem,
available from thesourceforge.neiVeb-site. LocallyJAlignerwas about twice
as fast as our system. On the distributed multiprocesswerserthe time for
processing 9 MB usingAlignerwas about 1 min., while we measured execu-
tion times below 40 seconds for processing the same inpog wsir system.
This time advantage is explained by the fact that JAligndy benefits from
the big caches of the grid servers, but it cannot make use of than a sin-
gle processor at a time. Thus, our adapted farm componepéedotms the
hand-tuned JAligner implementation, once the size of thiegssed genome
data exceeds 10 MB.

14
6. Conclusion and Related Wor k

We adapted a farm component to wavefront computations.oagh wave-
front exhibits a different parallel behavior than farm, teenote interface, the
resource configuration and most parts of a farm componeani¥eimentation
could be reused due to the presented adaptation technigiagtations require
that scheduling actions, crucial to the application pregresuch as the load-
ing of task data, can be extended by parameter code, whigovglpd to the
component at runtime, as it is possible, e. g., in the upcgr@@M, which in-
cludes the HOC code mobility mechanisms. A helpful anadytimsis, which
allows to derive new component adaptations from any appicalependency
graph, is given by th@olytopemodel [10]. Polytope is also a possible starting
point for future work on adaptable components, as it allogvautomate the
creation of adaptation code parameters.

Farm is a popular higher-order construct (i. e., a compoparameterized
with code) that is available in several parallel prograngsgstems. However,
there is typically no wavefront component available. Onthefreasons is that
there are simply too many different parallel structuresoentered in applica-
tions, so that it is practically impossible to every pati@éeistructure in a single,
general component framework like, e. g., COAt(p: / / www. cca- f or um or g).

Of course, component adaptation is not restricted neithéarin compo-
nents nor to wavefront algorithms. In an adaptation of oth&Cs like the
Divide-and-Conquer-HOC, our technique can take effedoguasly: If, e.g.,
an application of a divide-and-conquer algorithm alloweddnduct the join-
phase in advance to the final data partitioning under ceciesamstances, we
could apply this optimization using an adaptation withooy anpact on the
standard division-predicate of the algorithm.

Our case study shows that adaptable components allow fetimgnrear-
rangements of software running on a distributed computeastructure, in
the same flexible way as aspect-oriented programming diegptode modifi-
cations at compile-time.

The use of the wavefront schema for parallel sequence alighimas been
analyzed before in [1], where it is classified as a desigrepattWhile in the
CO,P;Ssystem the wavefront behavior is a fixed part of the pattepiemen-
tation, in our approach, it is only one of many possible aakamts that can
be applied to a HOC. We used our adapted Farm-HOC for solviadoiNA
sequence pair alignment problem. In comparison with therskte previous
work on this challenging application [8, 13], we developeligh-level solu-
tion with competitive performance.

Adaptable Parallel Components for Grid Programming 15

Acknowledgments

This research was conducted within the FP6 Network of Eenet## Core-
GRID funded by the European Commission (Contract IST-2002265).

References

(1]

(2]

(3]
[4]

5]

(14]

(19]
(16]

J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bliog) and K. Tan. Generating
parallel programs from the wavefront design pattern.7tim Workshop on High-Level
Parallel Programming ModeldEEE Computer Society Press, 2002.

F. Baude, D. Caromel, and M. Morel. From distributed ageto hierarchical grid com-
ponents. Ininternational Symposium on Distributed Objects and Amgians (DOA)
Springer LNCS, Catania, Sicily, 2003.

M. 1. Cole. Algorithmic Skeletons: A Structured Approach to the Managet of Parallel
Computation Pitman, 1989.

M. Danelutto and P. Teti. Lithium: A structured parall@logramming enviroment in
Java. InProceedings of Computational Science - IC@8mber 2330 in Lecture Notes
in Computer Science, pages 844-853. Springer-Verlag,2902.

J. Dunnweber and S. Gorlatch. HOC-SA: A grid serviceh@ecture for higher-order
components. INEEE International Conference on Services Computing, §hai
China pages 288-294. IEEE Computer Society Press, Sept. 2004.

Globus Alliance. http://www.globus.org, 1996.

S. Gorlatch and J. Dunnweber. From Grid Middleware tadGxpplications: Bridging
the Gap with HOCs. Ifruture Generation GridsSpringer Verlag, 2005.

J. Kleinjung, N. Douglas, and J. Heringa. Parallelizedtiple alignment. InBioinfor-
matics 18 Oxford University Press, 2002.

L. Lamport. The parallel execution of do loops. @ommun. ACMvolume 17, 2, pages
83-93. ACM Press, 1974.

C. Lengauer. Loop parallelization in the polytope miodie International Conference on
Concurrency Theorypages 398-416, 1993.

V. I. Levenshtein. Binary codes capable of correctinggirtions and reversals. Boviet
Physics Dokl. Volume 1@ages 707-710, 1966.

M. Aldinucci, S. Campa et al. The implementationA8SIST, an environment for par-
allel and distributed programming. In H. Kosch, L. Boseényi, and H. Hellwagner,
editors,Proc. of the Euro-Par 200humber 2790 in Incs, pages 712—721. Springer, Aug.
2003.

M. Schmollinger, K. Nieselt, M. Kaufmann, and B. Morggern. Dialign p: Fast pair-
wise and multiple sequence alignment using parallel psmrss InBMC Bioinformatics
5. BioMed Central, 2004.

C. SzyperskiComponent software: Beyond object-oriented programmAalglison Wes-
ley, 1998.

Unicore Forum e.V. UNICORE-Grid, http://www.unicooeg, 1997.

M. Wolfe. Loop skewing: the wavefront method revisiteth Journal of Parallel Pro-
gramming, Volume 1%ages 279-293, 1986.

