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Abstract. FastFlow is a structured parallel programming framework
targeting shared memory multi-core architectures. In this paper we intro-
duce a FastFlow extension aimed at supporting a network of multi-core
workstation as well. The extension supports the execution of FastFlow
programs by coordinating–in a structured way–the fine grain parallel ac-
tivities running on a single workstation. We discuss the design and the
implementation of this extension presenting preliminary experimental
results validating it on state-of-the-art networked multi-core nodes.
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1 Introduction

In a scenario with more and more cores per socket available to the application
programmer it is becoming increasingly urgent to provide programmers with
effective parallel programming tools. Programming tools and frameworks are
needed to efficiently target the architectures hosting inter networked, possibly
heterogeneous, multi-core devices, which appear to be “the” reference architec-
ture ferrying programmers from the mainly sequential to mainly parallel pro-
gramming era [1]. The urgency is even more crucial given that both grids and
clouds provide application programmers with the possibility to reserve collec-
tions of multi-core to support parallel applications eventually presented as, or
orchestrated by, web services.

Shared memory multi-core and clusters/networks of processing elements,
however, require quite different techniques and tools to support efficient par-
allelism exploitation. The de facto standard tools in the two cases are OpenMP
[2] and MPI [3] used either alone or in conjunction. Despite being very effi-
cient on some classes of applications, OpenMP and MPI share a common set of
problems: poor separation of concerns among application and system aspects,
a rather low level of abstraction presented to the application programmers and
poor support for really fine grained applications are all considerations hindering
easy use of MPI and OpenMP. Actually, it is not even clear yet if the mixed
MPI/OpenMP programming model always offers the most effective mechanisms
for programming clusters of SMP systems [4].
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The algorithmic skeleton community has proposed various programming frame-
works aimed at providing the application programmer with very high level ab-
stractions completely encapsulating parallelism exploitation patterns and solving
most of the problems mentioned above [5,6]. Initial skeleton based programming
frameworks targeted only cluster/network of workstations. More recently, some
of the existing frameworks have been extended in such a way clusters of multi-
core may also be exploited. SkeTo [7] provides data parallel skeletons as proper
C++ abstractions. It has been recently extended to target multi-core clusters
using a two-step dynamic task scheduling strategy, which enables balancing of
the load both between nodes of the cluster and cores of the single node [8].
The Muesli programming framework is provided as a C++ library offering both
data and stream parallel skeletons [9]. The original version of Muesli generated
code for MPI platforms. Recently, Muesli has been extended in such a way that
both multi-core architectures and distributed multi-core workstations may be
targeted by generating OpenMP code in addition to the MPI code [10]

The contribution of this paper is twofold. First, we discuss an extension of
FastFlow targeting clusters of multi-core workstations. The extended version sup-
ports a two tier parallel model with a lower tier exploiting fine grain parallelism
on single multi/many core workstation and the upper layer supporting struc-
tured coordination–across internetworked workstations–of medium/coarse grain
parallel activities. Second, we present experimental results validating the pro-
posed approach and showing: i) how real applications may be structured using
the proposed model, ii) how different interconnection networks may be seam-
lessly exploited depending on the communication bandwidth required by the
application, and iii) how our programming framework is able to fully exploit
state-of-the-art architectures.

2 The FastFlow programming framework

FastFlow4 is a structured parallel programming environment implemented in
C++ on top of Pthreads library and targeting shared memory multi-core. FastFlow
provides programmers with predefined and customizable task farms and pipelines
parallel patterns. It has been initially designed and implemented to be very ef-
ficient in the execution of fine grain parallel applications [11].

FastFlow design is layered (see Fig. 1). The lower layer implements a very
efficient, lock free and wait free single producer, single consumer queue [12].
On top of this mechanism, the second layer provides single producer multiple
consumer and multiple producer single consumer queues. Eventually, the third
layer provides the farm and pipeline parallel patterns as C++ classes [13].

The key concept in the implementation of FastFlow is the ff node class. It is
used to encapsulate sequential portions of code implementing functions as well
as higher level parallel patterns such as pipelines and farms. The ff node class
structure is outlined in Fig. 1. Each ff_node will be used to run a concurrent

4 Project site http://sourceforge.net/projects/mc-fastflow/
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1 class ff node {
2 protected:
3 virtual bool push(void∗ data) {

return qout−>push(data);}
4 virtual bool pop(void∗∗ data) {

return qin−>pop(data);}
5 public:
6 virtual void∗ svc(void ∗ task) = 0;
7 virtual int svc init () { return 0; };
8 virtual void svc end() {}
9 ...

10 private:
11 SPSC∗ qin;
12 SPSC∗ qout;
13 };

Fig. 1. Left: Layered FastFlow design. Right: FastFlow’s ff node class schema

activity in a thread, and it has associated two (shared memory) message queues:
one used to receive input data (pointers) to be processed and one to deliver the
(pointers to) computed results. The svc method encapsulates the computation
to be performed on each input datum to obtain the output result. svc_init and
svc_end methods are executed when the application is started end before it is
terminated. The three methods constitute the only thing the programmer has
to provide to instantiate an ff_node.

The predefined pattern provided by FastFlow may be customized in different
ways. For example default patterns may be arbitrarily nested and so we can
have pipelines with farm stages and vice versa. Using the customization features,
different patterns may be implemented in terms of the pipe and farm building
blocks, such as divide&conquer, map and MISD5 pattern.

FastFlow is being currently extended to also support data parallel patterns
and to offload data parallel computation to GPUs, where available.

3 From single to multiple nodes

FastFlow was originally designed to target efficiently shared-cache multi-core
platforms and only those platforms. The FastFlow stream semantics guarantees
correct sequencing of activation of the concurrent activities modeled through
ff_nodes and connected through streams. The stream implementation ensures
pure data flow semantics.

In order to scale to thousands of cores in terms of computational power, or
to be able to use huge amounts of memory, the only viable solution is to exploit
more and more multi-core workstations together. To this end, the streaming
network model provided by FastFlow to describe concurrent activities, turns out
to be suitable to be used also in loosely-coupled systems such as clusters, cloud
and grids. The idea has been therefore to extend the FastFlow framework to
provide the user with a two-tier programming model:

5 different computations on the same input, providing a vector result (each position
hosting the result of one computation)



1 template<typename CommImpl>
2 class ff dnode: public ff node {
3 protected:
4 bool
5 push(void∗ data){... return com.put(data);}
6 bool
7 pop(void∗∗ data){... return com.get(data);}
8 public:
9 int

10 init (std :: string& name,std::string& address,
11 int peers,CommImpl::TransportImpl∗ transp,
12 bool p,int nodeId,dnode cbk t cbk=0) {
13 ... return com.init(address,nodeId);
14 }

15 // serialization/deserialization methods
16 // used by the sender dnode
17 virtual void
18 prepare(svector<iovec>& v,void∗ ptr);

20 // used by the receiver dnode
21 virtual void
22 prepare(svector<msg t∗>∗& v,size t len);
23 virtual void
24 unmarshalling(svector<msg t∗>∗ v[],
25 int vlen,void∗& task);
26 private:
27 CommImpl com;
28 };

Fig. 2. Top)FastFlow’s node vs dnode(s). Bottom) FastFlow’s dnode class schema.

– at a lower tier, a shared-memory implementation of skeletons inside a single
multi-core workstation is supported;

– at an upper tier, structured coordination among a set of distributed nodes
executing the lower tier computations is supported, by providing all the
mechanisms needed to implement the low tier skeletons in the distributed
multi-core scenario.

More specifically, at the lower tier the user designs a typical FastFlow skele-
ton graph, employing stream parallelism and the shared memory skeletons of-
fered by the original FastFlow framework. Parallel patterns implement structured
synchronization among concurrent entities (graph’s nodes) via shared memory
pointers passed in a consumer-producer fashion. The FastFlow run time support
takes care of all synchronization needed and related to communication among
the different nodes resulting from the compilation of the high level FastFlow pat-
tern(s) used in an application. At this level, the entire FastFlow graph describing
the application is implemented using non-blocking concurrent threads inside a
single process abstraction. Then, multiple lower tier FastFlow graphs can be con-
nected together using the mechanisms of the second tier, that is, using a suitable
communication pattern which implements a network channel (i.e. point-to-point,
broadcast, scatter, etc.). At this level, the programming model exposed to the
programmer can be either SPMD or MPMD.

In order to send and receive tasks from and to other FastFlow graphs, the
edge-nodes of the FastFlow application have to be defined as ff_dnode.

A ff_dnode is actually a ff_node with an extra communication channel
(from now on we refer to it as external channel) which connects the edge-node
of the graph with one or more edge nodes of other FastFlow application graphs
running on the same or on a different host. At the second tier, no memory is



shared among processes, thus all iterations have to be implemented using explicit
communications, which are the responsibility of the FastFlow run-time support
and completely transparent to the user due to the careful design of the ff_dnode.

As shown at the top of Fig. 2, a FastFlow node is a concurrent activity with
an input and an output channel that is implemented using concurrent queues,
whereas a ff_dnode is a concurrent activity where one of the 2 channels (either
the input or the output one) is an external channel. A ff_dnode cannot have
both external input and output channels at the same time since the minimal pure
FastFlow application is composed of at least 2 nodes (a pipeline of two sequen-
tial nodes or a farm with an Emitter node and a sequential worker node). The
interface of the ff_dnode class is sketched at the bottom of Fig. 2. The template
parameter (CommImpl) represents the type of the communication pattern that the
programmer wishes to use to connect different ff_dnodes. The ff_dnode::init
method has to be called in order to initialize the external channel and it is
typically called within the ff_node::svc_init method in order to perform par-
allel initialization among multiple ff_dnode6. If the ff_dnode::init method
is not called the dnode behaves like a pure FastFlow node. The ff_dnode class
overwrites the pop and push methods of the ff_node class so that they work on
external input and output channels if activated by the ff_dnode::init method.

ZeroMQ as external transport layer. ZeroMQ is an LGPL open-source
communication library [14]. It provides the user with a socket layer that car-
ries whole messages across various transports: inter-thread communications,
inter-process communications, TCP/IP and multicast sockets. ZeroMQ offers
an asynchronous communication model, which allows construction of complex
asynchronous message-passing networks very quickly and with reasonable per-
formance. The message API offers the possibility to perform zero-copy sends and
and non-blocking calls to the socket layer.

In FastFlow, we used ZeroMQ as the external transport for the ff_dnode

concurrent entity. In particular, we built on top of ZeroMQ all the communica-
tion patterns using the DEALER and the ROUTER sockets offered by the library.
The ROUTER socket allows routing of messages to specific connections provided
that the peer identifier is known; the DEALER socket instead can be used for fair-
queuing on input and for performing load-balancing on output toward a pool of
connections. Within FastFlow we do not use the load-balancing feature; instead
we use it to connect a ff_dnode to a ROUTER socket of another ff_dnode. The
ease-of-use of ZeroMQ was the factor for choosing it for the implementation of
the distributed transport layer.

Communication patterns among ff dnode(s). A dnode’s external channel
can be specialized to provide different patterns of communication. The set of
communication collectives, allows exchange of messages among a set of dis-
tributed nodes using well-known predefined patterns. The semantics of each
communication pattern currently implemented, may be summarized as follows:

6 The svc init method is called once when the node thread has already started



Fig. 3. An example application schema that represents 3 FastFlow applications con-
nected through one onDemand and one fromAny communication pattern.

unicast unidirectional point-to-point communication between two peers

broadcast sends the same input data to all connected peers

scatter sends different parts of the input data (typically partitions) to all con-
nected peers

onDemand the input data is sent to one of the connected peers, the choice of which
is taken at run-time on the basis of the actual work-load (typically it is
implemented using a request-reply protocol)

fromAll (also known as all-gather) collects different parts of the data from all
connected peers combining them in a single data item

fromAny collects one data item from one of the connected peers

Each communication pattern has a unique identifier (the channel-name).
Each ff_dnode has an identifier (not necessarily unique) for the external chan-
nel in the range [0..num-peers[ so that the tag “channel-name:dnode-id”
is used as a unique identity for the peer connection. Fig. 3 sketches a possible
interaction among different FastFlow applications (one Pipeline on the HostA,
and two different Farm skeletons on the HostB and on the HostC) connected via
an onDemand communication pattern, whose channel name is “A”, used to feed
the 2 farms with input tasks, and a fromAny pattern, whose channel name is
“B”, used to collect back to the HostC the results in a non-deterministic order.

Marshalling and unmarshalling. The ff_dnode class provides the user with
suitable methods that can be overwritten in order to manage zero-copy mar-
shalling and unmarshalling of data. A prepare method allows to serialize non-
adjacent data on the sending side, while a prepare and a unmarshalling meth-
ods at the receiving side allow to deserialize the received data in properly cast-
able buffers. We do not give more details on this, due to space limitations.

4 Experiments

All experiments have been run on 2 workstations running Linux x86 64 (named
HostA and HostB) equipped with 2 CPUs Intel Sandy Bridge Xeon E5-2650
@2.0GHz. Each CPU has 8 cores double context, 20MB L3 shared cache and



size 8B 8KB 1MB

Latency (µs) Bandwidth (Gb/s)

Eth 69 0.93 0.95
Inf 27 5.1 14.7

(Latency measured using a torus of 2 FastFlow 2-
stage pipelines whose edge-nodes are connected
with a unicast channel)

Fig. 4. Latency and bandwidth of the unicast
channel for both 1Gb Ethernet and IP over IB
Infiniband networks.

Fig. 5. Parallel schema of the
benchmark test when executed on
a single host.

32 GBytes of memory. The two workstations are connected both with a Gigabit
Ethernet and an Infiniband Connectx-3 card (40 Gb/s ports) using a direct
cable. Since ZeroMQ does not have any native support for Infiniband, we used
the IP over IB driver. We used two workstations to be able to precisely evaluate
the latency and throughput of our FastFlow extension.

We firstly measured the raw performance of the new unicast channel (see
Fig. 4). The maximum bandwidth obtained running the iperf benchmark tool
(v.2.0.5)7 over the Infiniband network using TCP/IP is 4.8 Gb/s and 17.6 Gb/s
for 8KB and 1MB messages respectively. This means that the unicast channel
does not introduce any significant overhead and is able to saturate almost all
the available network bandwidth.
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Left: Completion time in seconds. Right: Number of tasks computed in the 2 hosts.

7 http://sourceforge.net/projects/iperf
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mat. size FF dFF-1 dFF-2-Eth dFF-2-Inf

256×256 24.4 18.9 16 14
512×512 203 158 83 64

img. size FF dFF-2-Eth dFF-2-Inf

small 2.4 3.4 1.4
medium 19.2 27.2 8.2

Table 1. Left: Benchmark test (see Fig. 5 for the dFF-1 schema). Right: Image filter
application (see Fig. 7 left for dFF-2 schema). Completion time in seconds obtained
running different implementation.

In order to test the impact of computation grain and communication band-
width and latency, we used a synthetic application computing the square of a
stream of input matrices. We ran two experiments: one using 256×256 and the
other using 512×512 matrices of doubles. We set the stream length to 8192
matrices for a total of 4GB and 16GB of input data, respectively. The paral-
lelization schema adopted is very similar to that sketched in Fig. 3, where 2
FastFlow farms (without the collector) and one 2-stage pipeline are used. The
first stage of the pipeline generates the input matrices and then waits for the
results from the workers of the two farms. The second stage schedules (using
the ondemand communication pattern) the matrices to the two farms. The se-
quential time to compute the square of all 8192 matrices is 333s for the 256×256
and 3260s for 512×512 matrices. As shown in Table 1 (left), the distributed
version of the application (dFF-1) running the FastFlow pipeline and just one
FastFlow farm on the same HostA (the parallel schema is sketched in Fig. 5),
obtains 17.6× speedup for 256×256 matrices and 20× speedup for 512×512 ma-
trices using 16 worker threads. The better result obtained with respect to the
shared memory FastFlow version of the same benchmark (FF in the table), is
justified by considering that pure FastFlow applications use only non-blocking
threads to implement skeletons in order to minimize overheads when executing
fine-grained tasks. However, when running medium to coarse-grained computa-
tions, non-blocking execution may increase contention and memory pressure not



allowing increase of the number of threads to a level greater than the number
of physical cores, in order to exploit multi-context platforms. In the distributed
version, the get operations on the external channel are blocking, thus contention
is reduced resulting in better performance. The distributed FastFlow version
running on a single host is able to saturate all the available memory bandwidth
of the tested platform (51.2 GB/s), reaching a maximum memory throughput
of 51.8 GB/s. Figure 6 (left) sketches the performance obtained when 2 farms
are used (dFF-2 in Table 1 right), one running on HostA (together with the
pipeline) and one on HostB. In this case the speedup is 23× for 256×256 matrix
and ∼ 51× for 512×512 when the Infiniband network is considered. The super-
linear speedup obtained is most likely due to the better L3 cache utilization on
both hosts which provides the farm skeletons with more memory bandwidth.
Figure 6 (right) shows the number of tasks computed by each farm. When the
Ethernet network is used, much more tasks are scheduled toward the HostA (the
one where the pipeline is mapped) because of the lower latency of the communi-
cation. As expected, the smaller the granularity, the bigger the number of task
computed on the HostA for both networks.

Finally, we ran another test using a simple streaming application: two image
filters (blur and emboss) have to be applied to a stream of input GIF images.
The stream can be of any length and images of any size. In our test we fixed
the number of images to 256, considering small size images (256KB) and coarser
size images (1.7MB) as two separate test cases. The application uses the Im-
ageMagick library8 to manipulate the images and to apply the filters. The times
reported in this paper do not consider the time spent to read and write the
images from/to disk. The sequential time to compute all images is 27.5s and
232s for small and medium images, respectively. In Table 1 (right) is reported
the minimum completion time obtained for the tested versions. The pure shared
memory FastFlow version (FF) obtains a 11× speedup and 12× speedup for the
two sizes. The distributed version uses a pipeline of 2 farms running on the 2
hosts (dFF-2). The first farm computes the blur and the second computes the
emboss filter. The workers of the 2 farms are directly connected using a uni-
cast channel (see the parallel schema in Fig. 7 right side). At the left side of
Fig. 7 it is shown the completion time of the distributed version. The maximum
speedup obtained is 8× and 8.5× speedup when using the Gigabit Ethernet,
and 19.6× and 28.3× when using the Infiniband network, which represent fairly
good results on a 2 × 16 core cluster.

5 Conclusions

We have proposed an extension of the FastFlow programming framework suitable
for targeting cluster of multi-core workstations. Using a small set of applica-
tions, we have demonstrated that the extended FastFlow succeeds in exploiting
resources in a cluster of workstations with different interconnection networks.
We are currently working to implement the higher tier “algorithmic skeletons”

8 http://www.imagemagick.org



in such a way that application programmers may seamlessly implement extended
FastFlow applications much in the same way that they use to implement “single
multi-core” applications with the original framework. The whole activity–along
with the activities aimed at supporting GPUs within FastFlow [15]–is aimed at
providing suitable means to implement the computing model designed within
ParaPhrase, an FP7 STREP project whose intent is to use parallel design pat-
terns and algorithmic skeletons to program heterogeneous–multi-core plus GPU–
collections of processing elements.

References

1. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Comm. of the ACM 52(10) (2009) 56–67

2. Park, I., Voss, M.J., Kim, S.W., Eigenmann, R.: Parallel programming environment
for OpenMP. Scientific Programming 9 (2001) 143–161

3. Pacheco, P.S.: Parallel programming with MPI. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1996)

4. Cappello, F., Etiemble, D.: Mpi versus mpi+openmp on ibm sp for the nas
benchmarks. In: Proc. of the 2000 ACM/IEEE conference on Supercomputing
(CDROM). Supercomputing ’00, IEEE Computer Society (2000)

5. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30(3) (2004) 389–406
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