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Abstract—We propose a data flow based run time system as
an efficient tool for supporting execution of parallel code on
heterogeneous architectures hosting both multicore CPUs and
GPUs. We discuss how the proposed run time system may be the
target of both structured parallel applications developed using
algorithmic skeletons/parallel design patterns and also more
“domain specific” programming models. Experimental results
demonstrating the feasibility of our approach are presented.
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I. INTRODUCTION

Several technological developments have directed computer
manufacturers–previously seeking ever more powerful single
core CPUs–toward the development of increasing numbers of
parallel processing elements. As a consequence, heterogeneous
systems composed of one or more processing nodes, each
hosting one or more multicore CPUs and one or more GPUs
are becoming a de facto standard in a wide range of systems,
from mobile phones and tablets to workstations, and on to
high end parallel computer systems.

Such heterogeneous systems raise new challenges related to
the programming models. While multicore programming may
make better use of multi-threading technology and GPUs may
be mastered with relatively low level tools such as OpenCL
or equivalent proprietary frameworks such as Nvidia CUDA,
no uniform, high level programming model exists suitable
for exploiting both components of these common heteroge-
neous systems. As a result, programmers writing applications
for heterogeneous systems must be able to master radically
different programming techniques to develop efficient parallel
computations on both parts of these systems: CPUs and GPUs.

The main reason for the lack of uniformity lies in the essen-
tially different nature of the two components of these systems:
CPUs are general purpose devices, suitable for supporting with
similar efficiencies both data parallel and stream/control par-
allel computations, while GPUs only provide efficient support
for data parallel computations. Also, while relatively high level
parallel programming models and tools exist for CPUs, the
programming models provided by GPU vendors and those
developed for platform independent GPU general purpose
computing notably present a lower level of abstraction. In

0This work has been partially supported by the EU STREP ParaPhrase

particular, memory allocation and management is completely
the responsibility of the GPU application programmer and
quite profound knowledge of the hardware features of the
GPU (e.g. number of cores per controller, dimensions of the
different kinds of memory present, etc.) is needed in order to
design and implement efficient GPU programs.

In this work, we propose a different approach to the devel-
opment of efficient applications for heterogeneous systems.
The approach is hierarchical. At the lowest level, we propose
to virtualize the peculiarities of the different heterogeneous
components by developing suitable “task executor” run times
on both GPUs and CPUs. While CPU executors support
efficient execution of any kind of task, including sequential
tasks, the GPU executors will support only efficient execution
of data parallel tasks. At the higher level, we propose ways
of compiling design pattern [17] (algorithmic skeleton [12])
based parallel applications as well as more domain specific
kinds of application–such as those typical of the numerical
mathematical community–to macro data flow graphs. These
graphs are subsequently processed by a macro data flow
interpreter scheduling tasks to the run time executors running
on the available cores and GPUs.

This two step process presents several advantages: i) it
raises the level of abstraction presented to the application
programmer by the programming framework ii) it provides
suitable points at which to implement well-known optimization
techniques both at compile time (macro data flow graph
compiler) and at run time (macro data flow interpreter/task
scheduler) iii) it seamlessly integrates CPUs and GPUs within
the same programming model; and iv) it relieves the applica-
tion programmer of the necessity to deal with hardware related
features when programming GPUs.

The rest of the paper is structured as follows: Sec. II intro-
duces the macro data flow model. Sec. III and IV explain how
macro data flow is compiled from high level languages and
eventually efficiently executed on heterogeneous architectures.
Sec. V discusses the results of our experiments aimed at
validating the proposed approach. Sec. VI discusses related
work and Sec. VII concludes the paper.

II. MACRO DATA FLOW

Data flow is the well-know computing [15] model where the
“control flow” of a program is determined only by the data
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Fig. 1. Macro Data Flow program/graph (left) and snapshots of its execution (right, fireable instructions outlined)
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Fig. 2. Compiling skeletons to MDF: pipe(f1, f2, f3) (left), map(f) (mid) and reduce(⊕) (right)

precedences among functions transforming input into output.
In the past, ad hoc architectures have been designed aimed
at implementing in hardware the data flow model [9], [13].
Mainly as a result of the typical grain of computation executed
in parallel on these architectures (basically ILP) and of the
technology used, they never succeeded in replacing classical
Von Neumann architectures.

“Macro” data flow (MDF, [8], [6], [3], [14]) builds on
the plain data flow model by augmenting the grain of the
computations scheduled for execution according to their data
dependencies. Full portions of sequential code are considered
as macro data flow “instructions”, provided they implement
pure functions mapping input to output data. A MDF program
is therefore represented as a MDF graph whose nodes repre-
sent functions implemented by means of sequential portions
of code wrapped in functions/procedures/methods while arcs
represent data flow dependencies.

The execution of a MDF program starts with the assignment
of the input data (“tokens” in data flow jargon) to the input
arcs of the first instruction in the MDF graph and proceeds
with a loop. The loop body looks for “fireable” instructions in
the MDF graph–instructions with all the input data available
(all input arcs with a token present)–and executes these
instructions, possibly in parallel. The results of the fireable
instructions executed are then directed to the destination MDF
instructions identified by the output arcs of the instruction, and
the loop is restarted. The program terminates when there are
no more fireable instructions or data tokens on arcs directed
to other instructions. Fig. 1 shows a typical MDF graph (left)
and two different configurations of the same graph during its
execution.

Stream parallelism and data parallelism are modeled using

MDF in two different ways. Stream parallelism is managed
by creating a new “fresh” copy of the MDF graph derived
from the compilation of the program onto the single stream
item for each item appearing on the input stream and passing
that item as the input token of the graph. Therefore stream
parallelism derives from the execution of fireable instructions
from different graph instances. This requires labeling of the
graph instructions with an additional graph tag, of course. Data
parallelism is managed by inserting into the graph instructions
which “decompose” their input data structure(s) into multiple
data sets and direct these data sets to a number of independent
instructions computing partial results which are eventually
directed to another instruction “rebuilding” the final result out
of the multitude of partial results (see Fig. 2).

III. COMPILING HLL TO MDF

We consider two classes of high level programming frame-
works: one based on parallel design patterns/algorithmic skele-
tons and another based on high level numerical algorithms.

a) Algorithmic skeletons: We consider a quite clas-
sic skeleton framework providing stream parallel skeletons
(pipeline, farm) and data parallel skeletons (map, reduce,
stencil) supporting a two-tier nesting model such as that
introduced by P3L [] and adopted by Muesli []: data parallel
skeletons should have either data parallel or sequential nested
skeletons; stream parallel skeletons may have stream parallel,
data parallel or sequential nested skeletons. Fig. 2 shows the
compilation schemes for pipeline and data parallel skeletons.
Farm is eliminated (substituted by stream parallelism imple-
mented with multiple instances of the MDF graph). Nesting
is naturally handled by composing MDF graphs under the
assumption that graphs deriving from compilation of a single
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FOR k = 0..TILES-1

FOR n = 0..k-1

A[k][k] := DSYRK(A[k][n], A[k][k])

A[k][k] := DPOTRF(A[k][k])

FOR m = k+1..TILES-1

FOR n = 0..k-1

A[m][k] :=

DGEMM(A[k][n], A[m][n], A[m][k])

A[m][k] := DTRSM(A[k][k], A[m][k])

DPOTRF

DTRSM DTRSM

DSYRK DGEMM DSYRK

DPOTRF DTRSM DSYRK DPOTRF

Fig. 3. Cholesky factorization: high level code and MDF graph (3× 3 tiles)

skeleton always have a unique input arc and output arc.
Referring to Fig. 2, nesting is implemented by allowing the
different pipeline stage instructions or map/reduce workers to
be substituted by entire MDF sub-graphs deriving from the
compilation of the inner parameter skeletons.

b) High level numerical algorithms: We consider appli-
cations computing high level numerical algorithms (HLNA)
expressed as sequences and/or nestings of loops with calls
to functions of numerical libraries (e.g. BLAS)1. In this case
the MDF graph is derived by using the same algorithms used
to implement data flow analysis in sequential compilers. The
kind of graphs derived from high level numerical algorithms
are those discussed in [16]. Fig. 3 shows the graph derived
from classic Cholesky factorization.
A more detailed description of how MDF graphs are generated
from HLL and/or libraries may be found in [1].

IV. TARGETING HETEROGENEOUS ARCHITECTURES

In order to target heterogeneous architectures, we designed
a distributed MDF interpreter as follows (see Fig. 4):
• a logically centralized task pool hosts all the instances of

the MDF graph submitted for execution. One instance of
the compiled MDF graph is inserted in the task pool by
the Input Manager upon the availability of an input data
set (input token). The task pool is logically centralized.
However, on highly parallel machines, it will be imple-
mented in a distributed way to avoid bottlenecks. We have
preliminary experiments demonstrating the feasibility of
the implementation of the task pool as a distributed task
pool tree, with leaves distributed on the nodes of the
NUMA architecture serving the local cores/GP-GPUs

1we assume to have programs written in C/C++ code in this case, although
our methodology does not actually rely upon a particular sequential host
language

Source (skeleton) Source (HLNA)
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MDF graphInputs

Input
manager

Task pool

Parallel MDF
interpreter

mdfi1 mdfi2 mdfii−1... mdfii mdfin...
core1 core2 corei−1 gpu1 gpuk

Fig. 4. HLL to MDF workflow

and inner nodes contributing to ensure load balancing
(e.g. implementing fireable instructions stealing). The
preliminary results show that the performance penalty is
negligible and that removal of the bootleneck implied by
the logical centralized task pool may be achieved.

• each (GP-)core in the architecture runs an interpreter
instance (mdfi) performing as the interpreter loop de-
scribed in Sec. II: fetch a fireable MDF instruction,
execute, store back results.

• for each GP-GPU, a further thread is run, performing
a slightly different interpreter loop: the loop begins by
looking for data parallel only fireable instructions in
the task pool, and then continues by off-loading to the
associated GPU the execution of these data parallel MDF
instructions. All the details relative to data movement
to and from GPU as well as to memory allocation and
to thread scheduling on the GPU are managed by this
modified interpreter loop. It is worth pointing out that
the thread managing the GP-GPU has full control over
the computations (and associated data) scheduled to the
GP-GPU. Therefore, efficient caching policies may be
implemented to avoid unnecessary traffic on the PCIe
bus moving data to and from GPU memory. In particular,
all those data potentially reused during different phases
(MDF instruction execution) of the computation may be
kept on the GP-GPU memory up to the point when
memory is needed for other data structures. If the thread
managing the GP-GPU realizes that (part of) the data
needed to schedule the next data parallel MDF instruction
to the GP-GPU are already on the GP-GPU memory, it
will simply schedule the MDF data parallel instruction
without re-sending data through the PCIe bus.
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The key point here is the scheduling of “data parallel only”
instructions to the GPU nodes. We consider two kinds of
data parallel instruction: i) single MDF instructions for which
a GPU implementation exists (this is the case for BLAS
routines, for example), or ii) MDF subgraphs deriving from
the compilation of map-like patterns (map, reduce, stencil,
...), i.e. those subgraphs made of a decompose instruction,
a recompose instruction and of n “worker” instructions. In
the latter case we implement the full decomp/compute/recomp
subgraph on the GPU–possibly scheduling computation of
different partitions of workers in kernels of a GPU stream,
thus overlapping (part of) the data transfer cost.

Compile options are provided to choose between CPU-
only, GPU-only or mixed CPU-GPU execution of data parallel
MDF sub-graphs. The code used to feed GP-GPUs is ideally
derived from the high level source code provided by the
user without actually requiring the application programmer to
write any specific GP-GPU (e.g. CUDA or OpenCL) code.
This is possible because the high level code exposes all the
functional parameters needed to generate efficient GP-GPU
code at compile time. Furthermore, we are currently refining
several autonomic strategies to devise on-the-fly the most
suitable execution strategy (CPU, GPU or mixed) without
programmer intervention. These strategies schedule different
partitions of the data parallel sub-graphs on both CPU and
GPU, monitor execution times and eventually decide where
subsequent partitions are scheduled for execution. Monitoring
continues during the full data parallel computation with a
minimal overhead to ensure decisions taken in the initial phase
are verified and possibly changed if need be.

V. EXPERIMENTS

We performed some preliminary experiments to validate the
effectiveness of the MDF approach to target heterogeneous
architectures. The experiments have been run on a single
heterogeneous machine with two AMD Magny cours Opteron
12 core CPUs and a single C2050 Nvidia GPU. In all the
experiments we used a synthetic skeleton application whose
parallel structure is basically a map skeleton, that is with
the same parallel structure as that appearing in a matrix
multiplication algorithm, when using the naive algorithm

forall i do Ci = Ai ×B

First we verified that when enabled to target both CPU and
GPU, the MDF interpreter succeeds in exploiting both kinds
of core. Fig. 5 shows the average number of tasks computed
by CPU core(s) and by the GPU. The “non-optimized” version
implements the naive algorithm: for each MDF instruction
×(Ai, B), parameters are copied to and from the GPU. That
is, each ×(Ai, B) instruction involves the copying of both
row Ai and matrix B to GPU and of the result Ci row
from the GPU. The “optimized” version, recognizes that B
is a common parameter and thus implements the execution of
all the instructions ×(Ai, B) as follows: the first instruction
copies B to GPU memory. All the others assume that B is
already on the GPU and therefore only copy Ai to and Ci

from the GPU. As expected, the number of tasks executed on
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Fig. 6. Grouping map “worker” MDF instructions on CPU cores

the GPU become smaller and smaller as more and more CPU
cores are used. Initially, the GPU executes about 90% of the
tasks, but when a larger number of cores is used, a smaller
percentage of tasks are executed on the GPU. Moreover, when
GPU copies are optimized, and thus the GPU execution of the
MDF instructions becomes faster than the execution of the
same instructions on the CPU cores, the GPU succeeds in
executing more tasks.

It is worth pointing out that, also in the case when only CPU
cores are used, other strategies applying similar kinds of op-
timization may be implemented. Fig. 6 shows the completion
times and speedups achieved when executing a map(map(f))
application on CPU cores only. The “Fine grain” execution,
refers to the plain execution of all the inner map “worker”
MDF instructions as they are generated by the compiler. The
“Coarse grain” execution, instead, refers to execution of the
map(seqmap(f)) version of the same application, obtained
by applying the skeleton rewriting rule

map(map(f)) ≡ map(seq(∀ i (f)))

The “MDF graph optimized” execution refers to the execution
of the original map(map(f)) application where the derived
macro data flow graph is optimized “on-the-fly” to group the
worker MDF instructions relative to the same map skeleton.
This optimization is completely general, may be applied in
all cases where a map skeleton with a (too) large num-
ber of worker MDF instructions is present in the compiled
MDF graph, and achieves performances comparable to those
achieved by the source-rewritten application code.

Finally, Fig. 7 shows the differences in the completion times
measured with GPU optimized vs. non-optimized execution
of the same synthetic map application. In this case, the
optimization of the unnecessary B matrix copies introduces an
improvement in the completion time in the [20%, 30%] range.
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unoptimized GPU copies optimized GPU copies
#cores Avg task/core GPU tasks GPU % Avg task/core GPU tasks GPU %

1 53 459 89% 43 469 91%
2 53 406 79% 37 438 85%
4 49 317 61% 34 377 73%
8 40 193 37% 30 272 53%
16 30 42 8% 23 141 27%

Fig. 5. CPU/GPU task distribution
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Fig. 7. Percentage difference in completion times of the execution of the
application with and without copy optimization

VI. RELATED WORK

Heterogeneous architectures hosting multicores and GPUs
are currently programmed using a mix of multi-threading and
CUDA/OpenCL techniques. In this case, all the burden of
heterogeneous device exploitation is the responsibility of the
application programmer. Researchers active in the algorith-
mic skeleton area have designed and implemented skeleton
frameworks exploiting CPU and GP-GPUs in the execution
of skeleton code. Notable examples are the SkePU framework
[10], Muesli [11] and SkeCL [19]. Despite the fact that some
of these frameworks appear more mature than ours (they can
already be downloaded from the group web pages), none
of them uses macro data flow, and most of the compilation
techniques used are static. In addition, while SkePU and
Muesli target both components of heterogeneous architectures
(i.e. CPU and GP-GPU cores), SkeCL only uses GP-GPU
cores.

Programming frameworks based on algorithmic skeletons
have been recently introduced to alleviate the task of the
application programmer when targeting data parallel com-
putations to GPUs. Muesli [11] supports GPU targeting for
data parallel computations under programmer responsibility
(the programmer must explicitly indicate whether GPUs are
to be used for data parallel skeletons). SkePU [7] provides

programmers with GPU implementations of map and reduce
skeletons and relies (in the latest versions) on StarPU for the
execution of stream parallel skeletons (pipe and farm). Both
environments adopt a template based approach rather than a
macro data flow based implementation for skeletons.

The OpenMP task concept [4] has also been extended
to deal with data dependencies in StarSS [5]. This led to
the possibility to define de facto MDF graphs by suitably
annotating sections of code in the source C/C++ applica-
tion. The main difference with our approach consists in
the “declarative” (annotation style) approach followed which
requires considerable application programmer intervention, as
the programmer must fully understand the business logic of the
application in order to write effective and efficient annotations.
A number of different projects aim at extending the “task”
concept to support automatic and efficient scheduling of tasks
on multicore heterogeneous machines [18], [16]. However,
the responsibility for identifying the tasks and the related
dependencies is left to the application programmer. On the one
hand, this allows a higher degree of freedom in the definition
of the parallel computation for the application programmer.
On the other hand, the level of abstraction presented to the
applications programmer by the programming framework is
much lower than in our approach.

VII. CONCLUSIONS

We briefly introduced a two phase process targeting hetero-
geneous architectures built of multi-cores and GPUs. The first
step is aimed at translating high level languages into macro
data flow graphs. These graphs are then executed by means
of a parallel macro data flow interpreter specialized to run
data parallel computations on GPUs without programmer in-
tervention. The preliminary experimental results show that the
approach is feasible and efficiently implements different kinds
of applications on a heterogeneous, single node architecture.

A number of different optimizations may be used when
targeting heterogenous architectures by MDF, making the best
(and correct) usage of the information coming either from
the high level skeletons or from the structure of the MDF
graphs. We are currently investigating the possibilities offered
by several techniques, including the possibility to monitor
execution of data parallel instructions on CPU cores/GPUs
and to autonomically decide to schedule them on either GPU
or CPU cores using Behavioural skeleton technology [2] and
the possibility to use affinity scheduling and job stealing tech-
niques to improve the memory usage in NUMA heterogeneous
architectures.
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