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Abstract

FastFlow is a structured parallel programming framework targeting
shared memory multicores. Its layered design and the optimized im-
plementation of the communication mechanisms used to implement the
FastFlow streaming networks provided to the application programmer as
algorithmic skeletons support the development of efficient fine grain par-
allel applications. FastFlow is available (open source) at SourceForge1.
This work introduces FastFlow programming techniques and points out
the different ways used to parallelize existing C/C++ code using FastFlow
as a software accelerator. In short: this is a kind of tutorial on FastFlow.

1 Introduction

FastFlow is an algorithmic skeleton programming environment developed at the
Dept. of Computer Science of Pisa and Torino [1].

A number of different papers and technical reports discuss the different fea-
tures of this programming environment [11, 6, 2], the kind of results achieved
while parallelizing different applications [13, 9, 10, 3, 8, 7] and the usage of
FastFlow as software accelerator, i.e. as a mechanisms suitable to exploit un-
used cores of a multicore architecture to speedup execution of sequential code
[4, 5].

This paper represents instead a tutorial aimed at instructing programmers
in the usage of the FastFlow skeletons and in the typical FastFlow programming
techniques.

Therefore, after recalling the FastFlow design principles in Sec. 2, in Sec. 3
we describe the (trivial) installation procedure. Then, in Sections 4 to 8.3
we introduce the main features of the FastFlow programming framework. Other
sections detail particular techniques related to FastFlow usage, namely: access to
shared data (Sec. 7), FastFlow usage as an accelerator (Sec. 9) and the possibility
to use FastFlow as a framework to experiment new (w.r.t. the ones already

0Dip. Informatica – Univ. di Torino?, Dip. Informatica – Univ. di Pisa◦
1http://sourceforge.net/projects/mc-fastflow/
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Figure 1: Layered FastFlow design

provided) skeletons (Sec. 8.3.1 and Sec. 12.1). Eventually, Sec. 13 gives a rough
idea of the expected performance while running FastFlow programs and Sec. 14
outlines the main FastFlow RTS accessory routines.

2 Design principles

FastFlow2 has been designed to provide programmers with efficient parallelism
exploitation patterns suitable to implement (fine grain) stream parallel applica-
tions. In particular, FastFlow has been designed

• to promote high-level parallel programming, and in particular skeletal
programming (i.e. pattern-based explicit parallel programming), and

• to promote efficient programming of applications for multi-core.

The whole programming framework has been incrementally developed according
to a layered design on top of Pthread/C++ standard programming framework
and targets shared memory multicore architectures (see Fig. 1).

A first layer, the Simple streaming networks layer, provides lock-free Sin-
gle Producers Single Consumer (SPSC) queues on top of the Pthread standard
threading model.

A second layer, the Arbitrary streaming networks layer, provides lock-
free implementations for Single Producer Multiple Consumer (SPMC), Multiple
Producer Single Consumer (MPSC) and Multiple Producer Multiple Consumer
(MPMC) queues on top of the SPSC implemented in the first layer.

Eventually, the third layer, the Streaming Networks Patterns layer, pro-
vides common stream parallel patterns. The primitive patterns include pipeline

2see also the FastFlow home page at http://mc-fastflow.sourceforge.net
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and farms. Simple specialization of these patterns may be used to implement
more complex patterns, such as divide and conquer, map and reduce patterns.

Parallel application programmers are assumed to use FastFlow directly ex-
ploiting the parallel patterns available in the Streaming Network Patterns level.
In particular:

• defining sequential concurrent activities, by sub classing a proper FastFlow
class, the ff_node class, and

• building complex stream parallel patterns by hierarchically composing se-
quential concurrent activities, pipeline patterns, farm patterns and their
“specialized” versions implementing more complex parallel patterns.

The ff_node sequential concurrent activity abstraction provide suitable ways
to define a sequential activity processing data items appearing on a single input
channel and delivering the related results onto a single output channel. Particu-
lar cases of ff_nodes may be simply implemented with no input channel or no
output channel. The former is used to install a concurrent activity generating
an output stream (e.g. from data items read from keyboard or from a disk file);
the latter to install a concurrent activity consuming an input stream (e.g. to
present results on a video or to store them on disk).

The pipeline pattern may be used to implement sequences of streaming net-
works S1 → . . .→ Sk with Sk receiving input from Sk−1 and delivering outputs
to Sk+1. Si may be either a sequential activity or another parallel pattern. S1

must be a stream generator activity and Sk a stream consuming one.

The farm pattern models different embarrassingly (stream) parallel con-
structs. In its simplest form, it models a master/worker pattern with workers
producing no stream data items. Rather the worker consolidate results directly
in memory. More complex forms including either an emitter, or a collector of
both an emitter and a collector implement more sophisticated patterns:

• by adding an emitter, the user may specify policies, different from the
default round robin one, to schedule input tasks to the workers;

• by adding a collector, the user may use worker actually producing some
output values, which are gathered and delivered to the farm output stream.
Different policies may be implemented on the collector to gather data from
the worker and deliver them to the output stream.

In addition, a feedback channel may be added to a farm, moving output results
back from the collector (or from the collection of workers in case no collector is
specified) back to the emitter input channel. The feedback channel may only
be added to the farm/pipe at the root of the skeleton tree.

Specialized version of the farm may be used to implement more complex
patterns, such as:

• divide and conquer, using a farm with feedback loop and proper stream
items tagging (input tasks, subtask results, results)
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• MISD (multiple instruction single data, that is something computing

f1(xi), . . . , fk(xi)

out of each xi appearing onto the input stream) pattern, using a farm
with an emitter implementing a broadcast scheduling policy

• map, using an emitter partitioning an input collection and scheduling one
partition per worker, and a collector gathering sub-partitions results from
the workers and delivering a collection made out of all these results to the
output stream.

It is worth pointing out that while using plain pipeline and farms (with or
without emitters and collectors) actually can be classified as “using skeletons”
in a traditional skeleton based programming framework, the usage of specialized
versions of the farm streaming network can be more easily classified as “using
skeleton templates”, as the base features of the FastFlow framework are used to
build new patterns, not provided as primitive skeletons3.

Concerning the usage of FastFlow to support parallel application develop-
ment on shared memory multicores, the framework provides two abstractions of
structured parallel computation:

• a “skeleton program abstraction” which is used to implement applica-
tions completely modelled according to the algorithmic skeleton concepts.
When using this abstraction, the programmer write a parallel application
by providing the business logic code, wrapped into proper ff_node sub-
classes, a skeleton (composition) modelling the parallelism exploitation
pattern of the application and a single command starting the skeleton
computation and awaiting for its termination.

• an “accelerator abstraction” which is used to parallelize (and therefore
accelerate) only some parts of an existing application. In this case, the
programmer provides a skeleton (composition) which is run on the “spare”
cores of the architecture and implements a parallel version of the business
logic to be accelerated, that is the computing a given f(x). The skeleton
(composition) will have its own input and output channels. When an f(x)
has actually to be computed within the application, rather than writing
proper code to call to the sequential f code, the programmer may insert
code asynchronously “offloading” x to the accelerator skeleton. Later on,
when the result of f(x) is to be used, some code “reading” accelerator
result may be used to retrieve the accelerator computed values.

This second abstraction fully implements the “minimal disruption” principle
stated by Cole in his skeleton manifesto [12], as the programmer using the
accelerator is only required to program a couple of offload/get_result
primitives in place of the single . . . = f(x) function call statement (see Sec. 9).

3Although this may change in future FastFlow releases, this is the current situation as of
FastFlow version 1.1
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3 Installation

Before entering the details of how FastFlow may be used to implement efficient
stream parallel (and not only) programs on shared memory multicore architec-
tures, let’s have a look at how FastFlow may be installed4.

The installation process is trivial, actually:

1. first, you have to download the source code from SourceForge (http:
//sourceforge.net/projects/mc-fastflow/)

2. then you have to extract the files using a tar xzvf fastflow-XX.tgz
command, and

3. eventually, you should use the top level directory resulting from the tarxzvf
command as the argument of the -I flag of g++.

As an example, the currently available version (1.1) is hosted in a fastflow-
1.1.0.tar.gz file. If you download it and extract files to your home directory,
you should compile FastFlow code using the flags

g++ -I $HOME/fastflow-1.1.0 -lpthread in addition to any

other flags needed to compile your specific code.
Sample makefiles are provided both within the fastflow-1.1.0/tests
and the fastflow-1.1.0/examples directories in the source distribution.

4 Hello world in FastFlow

As all programming frameworks tutorials, we start with a Hello world code. In
order to implement our hello world program, we use the following code:

1 #include <iostream>
2 #include < f f / p i p e l i n e . hpp>
3

4 using namespace f f ;
5

6 class Stage1 : public f f n o d e {
7 public :
8

9 void ∗ svc (void ∗ task ) {
10 std : : cout << ” He l lo world ” << std : : endl ;
11 return NULL;
12 }
13 } ;
14

15 int main ( int argc , char ∗ argv [ ] ) {
16

4We only detail instructions needed to install FastFlow on Linux/Unix/BSD machines here.
A Windows port of FastFlow exist, that requires slightly different steps for the installation.

5



17 f f p i p e l i n e pipe ;
18 pipe . add stage (new Stage1 ( ) ) ;
19

20 i f ( p ipe . run and wait end ( ) <0) {
21 e r r o r ( ” running p i p e l i n e \n” ) ;
22 return −1;
23 }
24

25 return 0 ;
26 }

ffsrc/helloworldSimple.cpp

Line 2 includes all what’s needed to compile a FastFlow program just us-
ing a pipeline pattern and line 4 instruct compiler to resolve names looking
(also) at ff namespace. Lines 6 to 13 host the application business logic
code, wrapped into a class sub classing ff_node. The void * svc(void *)
method5 wraps the body of the concurrent activity resulting from the wrapping.
It is called every time the concurrent activity is given a new input stream data
item. The input stream data item pointer is passed through the input void *
parameter. The result of the single invocation of the concurrent activity body
is passed back to the FastFlow runtime returning the void * result. In case
a NULL is returned, the concurrent activity actually terminates itself. The ap-
plication main only hosts code needed to setup the FastFlow streaming network
and to start the skeleton (composition) computation: lines 17 and 18 declare a
pipeline pattern (line 17) and insert a single stage (line 18) in the pipeline. Line
20 starts the computation of the skeleton program and awaits for skeleton com-
putation termination. In case of errors the run_and_wait_end() call will
return a negative number (according to the Unix/Linux syscall conventions).

When the program is started, the FastFlow RTS accomplishes to start the
pipeline. In turn the first stage is started. As the first stage svc returns a
NULL, the stage is terminated immediately after by the FastFlow RTS.

If we compile and run the program, we get the following output:

1 f f s r c $ g++ −l p thread −I /home/marcod/Documents/ Research /
CodeProgramming/ f a s t f l o w −1.1 .0 he l l owor ldS imple . cpp −o
h e l l o

2 f f s r c $ . / h e l l o
3 Hel lo world
4 f f s r c $

There is nothing parallel here, however. The single pipeline stage is run just
once and there is nothing else, from the programmer viewpoint, running in
parallel. The graph of concurrent activities in this case is the following, trivial
one:

5we use the term svc as a shortcut for “service”
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A more interesting “HelloWorld” would have been to have a two stage
pipeline where the first stage prints the “Hello” and the second one, after get-
ting the results of the computation of the first one, prints “world”. In order to
implement this behaviour, we have to write two sequential concurrent activities
and to use them as stages in a pipeline. Additionally, we have to send some-
thing out as a result from the first stage to the second stage. Let’s assume we
just send the string with the word to be printed. The code may be written as
follows:

1 #include <iostream>
2 #include < f f / p i p e l i n e . hpp>
3

4 using namespace f f ;
5

6 class Stage1 : public f f n o d e {
7 public :
8

9 void ∗ svc (void ∗ task ) {
10 std : : cout << ” He l lo ” << std : : endl ;
11 char ∗ p = (char ∗) c a l l o c ( s izeof (char ) ,10) ;
12 s t r cpy (p , ”World” ) ;
13 s l e e p (1 ) ;
14 return ( ( void ∗)p) ;
15 }
16 } ;
17

18 class Stage2 : public f f n o d e {
19 public :
20

21 void ∗ svc (void ∗ task ) {
22 std : : cout << ( ( char ∗) task ) << std : : endl ;
23 f r e e ( task ) ;
24 return GO ON;
25 }
26 } ;
27

28 int main ( int argc , char ∗ argv [ ] ) {
29

30 f f p i p e l i n e pipe ;
31 pipe . add stage (new Stage1 ( ) ) ;
32 pipe . add stage (new Stage2 ( ) ) ;
33

34 i f ( p ipe . run and wait end ( ) <0) {
35 e r r o r ( ” running p i p e l i n e \n” ) ;
36 return −1;
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37 }
38

39 return 0 ;
40 }

ffsrc/hello2stages.cpp

We define two sequential stages. The first one (lines 6–16) prints the “Hello”
message, the allocates some memory buffer, store the “world” message in the
buffer and send its to the output stream (return on line 14). The sleep on line
13 is here just for making more evident the FastFlow scheduling of concurrent
activities. The second one (lines 18–26) just prints whatever he gets on the input
stream (the data item stored after the void * task pointer of svc header
on line 21), frees the allocated memory and then returns a GO_ON mark, which
is intended to be a value interpreted by the FastFlow framework as: “I finished
processing the current task, I give you no result to be delivered onto the output
stream, but please keep me alive ready to receive another input task”. The
main on lines 28–40 is almost identical to the one of the previous version but
for the fact we add two stages to the pipeline pattern. Implicitly, this sets up
a streaming network with Stage1 connected by a stream to Stage2. Items
delivered on the output stream by Stage1 will be read on the input stream by
Stage2. The concurrent activity graph is therefore:

If we compile and run the program, however, we get a kind of unexpected
result:

1 f f s r c $ g++ −l p thread −I /home/marcod/Documents/ Research /
CodeProgramming/ f a s t f l o w −1.1 .0 h e l l o 2 s t a g e s . cpp −o
h e l l o 2 s t a g e s

2 f f s r c $ . / h e l l o 2 s t a g e s
3 Hel lo
4 WorldHello
5

6 Hel lo World
7

8 Hel lo World
9

10 Hel lo World
11

12 ˆC
13 f f s r c $

First of all, the program keeps running printing an “Hello world” every
second. We in fact terminate the execution through a CONTROL-C. Second,
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the initial sequence of strings is a little bit strange6.
The “infinite run” is related to way FastFlow implements concurrent ac-

tivities. Each ff_node is run as many times as the number of the input data
items appearing onto the output stream, unless the svc method returns a NULL.
Therefore, if the method returns either a task (pointer) to be delivered onto the
concurrent activity output stream, or the GO_ON mark (no data output to the
output stream but continue execution), it is re-executed as soon as there is some
input available. The first stage, which has no associated input stream, is re-
executed up to the moment it terminates the svc with a NULL. In order to have
the program terminating, we therefore may use the following code for Stage1:

1 class Stage1 : public f f n o d e {
2 public :
3

4 Stage1 ( ) { f i r s t = (1==1) ; }
5

6 void ∗ svc (void ∗ task ) {
7 i f ( f i r s t ) {
8 std : : cout << ” He l lo ” << std : : endl ;
9 char ∗ p = (char ∗) c a l l o c ( s izeof (char ) ,10) ;

10 s t r cpy (p , ”World” ) ;
11 s l e e p (1 ) ;
12 f i r s t = 0 ;
13 return ( ( void ∗)p) ;
14 } else {
15 return NULL;
16 }
17 }
18 private :
19 int f i r s t ;
20 } ;

If we compile and execute the program with this modified Stage1 stage,
we’ll get an output such as:

1 f f s r c $ g++ −l p thread −I /home/marcod/Documents/ Research /
CodeProgramming/ f a s t f l o w −1.1 .0 he l l o 2 t e r m i na t e . cpp −o
he l l o 2 t e r m i na t e

2 f f s r c $ . / h e l l o 2 t e r m i na t e
3 Hel lo
4 World
5 f f s r c $

that is the program terminates after a single run of the two stages. Now the
question is: why the second stage terminated, although the svc method return

6and depending on the actual number of cores of your machine and on the kind of scheduler
used in the operating system, the sequence may vary a little bit
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value states that more work is to be done? The answer is in the stream se-
mantics implemented by FastFlow. FastFlow streaming networks automatically
manage end-of-streams. That is, as soon as an ff_node returns a NULL–
implicitly declaring he wants to terminate its output stream, the information is
propagated to the node consuming the output stream. This nodes will there-
fore also terminate execution–without actually executing its svc method–and
the end of stream will be propagated onto its output stream, if any. Therefore
Stage2 terminates after the termination of Stage1.

The other problem, namely the appearing of the initial 2 “Hello” strings
apparently related to just one “world” string is related to the fact that FastFlow
does not guarantee any scheduling semantics of the ff_node svc executions.
The first stage delivers a string to the second stage, then it is executed again
and again. The sleep inserted in the first stage prevents to accumulate too
much “hello” strings on the output stream delivered to the second stage. If we
remove the sleep statement, in fact, the output is much more different: we
will see on the input a large number of “hello” strings followed by another large
number of “world” strings. This because the first stage is enabled to send as
much data items on the output stream as of the capacity of the SPSC queue
used to implement the stream between the two stages.

5 Generating a stream

In order to achieve a better idea of how streams are managed within FastFlow,
we slightly change our HelloWorld code in such a way the first stage in the
pipeline produces on the output stream n integer data items and then termi-
nates. The second stage prints a “world -i-” message upon receiving each i item
onto the input stream.

We already discussed the role of the return value of the svc method. There-
fore a first version of this program may be implemented using as the Stage1
class the following code:

1 #include <iostream>
2 #include < f f / p i p e l i n e . hpp>
3

4 using namespace f f ;
5

6 class Stage1 : public f f n o d e {
7 public :
8

9 Stage1 ( int n) {
10 streamlen = n ;
11 cur rent = 0 ;
12 }
13

14 void ∗ svc (void ∗ task ) {
15 i f ( cur rent < streamlen ) {
16 cur rent++;
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17 std : : cout << ” He l lo number ” << cur rent << ” ” << std : :
endl ;

18 int ∗ p = ( int ∗) c a l l o c ( s izeof ( int ) , 1 ) ;
19 ∗p = current ;
20 s l e e p (1 ) ;
21 return ( ( void ∗)p) ;
22 } else {
23 return NULL;
24 }
25 }
26 private :
27 int streamlen , cur rent ;
28 } ;
29

30 class Stage2 : public f f n o d e {
31 public :
32

33 void ∗ svc (void ∗ task ) {
34 int ∗ i = ( int ∗) task ;
35 std : : cout << ”World −” << ∗ i << ”− ” << std : : endl ;
36 f r e e ( task ) ;
37 return GO ON;
38 }
39 } ;
40

41 int main ( int argc , char ∗ argv [ ] ) {
42

43 f f p i p e l i n e pipe ;
44 pipe . add stage (new Stage1 ( a t o i ( argv [ 1 ] ) ) ) ;
45 pipe . add stage (new Stage2 ( ) ) ;
46

47 i f ( p ipe . run and wait end ( ) <0) {
48 e r r o r ( ” running p i p e l i n e \n” ) ;
49 return −1;
50 }
51

52 return 0 ;
53 }

ffsrc/helloStream.cpp

The output we get is the following one:

1 f f s r c $ g++ −l p thread −I /home/marcod/Documents/ Research /
CodeProgramming/ f a s t f l o w −1.1 .0 he l loStream . cpp −o
he l loStream

2 f f s r c $ . / he l loStream 5
3 Hel lo number 1
4 Hel lo number 2World − 1−
5

6 Hel lo number World −32 −
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7

8 World −3− Hel lo number
9 4

10 Hel lo number 5World − 4−
11

12 World −5−
13 f f s r c $

However, there is another way we can use to generate the stream, which is
a little bit more “programmatic”. FastFlow makes available an ff_send_out
method in the ff_node class, which can be used to direct a data item onto
the concurrent activity output stream, without actually using the svc return
way.

In this case, we could have written the Stage as follows:

1 class Stage1 : public f f n o d e {
2 public :
3

4 Stage1 ( int n) {
5 streamlen = n ;
6 cur rent = 0 ;
7 }
8

9 void ∗ svc (void ∗ task ) {
10 while ( cur rent < streamlen ) {
11 cur rent++;
12 std : : cout << ” He l lo number ” << cur rent << ” ” << std : :

endl ;
13 int ∗ p = ( int ∗) c a l l o c ( s izeof ( int ) , 1 ) ;
14 ∗p = current ;
15 s l e e p (1 ) ;
16 f f s e n d o u t (p) ;
17 }
18 return NULL;
19 }
20 private :
21 int streamlen , cur rent ;
22 } ;

In this case, the Stage1 is run just once (as it immediately returns a NULL.
However, during the single run the svc while loop delivers the intended data
items on the output stream through the ff_send_out method. In case the
sends fill up the SPSC queue used to implement the stream, the ff_send_out
will block up to the moment Stage2 consumes some items and consequently
frees space in the SPSC buffers.
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6 More on ff node

The ff_node class actually defines three distinct virtual methods:

1 public :
2 virtual void∗ svc (void ∗ task ) = 0 ;
3 virtual int s v c i n i t ( ) { return 0 ; } ;
4 virtual void svc end ( ) {}

The first one is the one defining the behaviour of the node while processing the
input stream data items. The other two methods are automatically invoked once
and for all by the FastFlow RTS when the concurrent activity represented by
the node is started (svc_init) and right before it is terminated (svc_end).

These virtual methods may be overwritten in the user supplied ff_node
subclasses to implement initialization code and finalization code, respectively.
Actually, the svc method must be overwritten as it is defined as a pure virtual
method.

We illustrate the usage of the two methods with another program, computing
the Sieve of Eratosthenes. The sieve uses a number of stages in a pipeline. Each
stage stores the first integer it got on the input stream. Then is cycles passing
onto the output stream only the input stream items which are not multiple
of the stored integer. An initial stage injects in the pipeline the sequence of
integers starting at 2, up to n. Upon completion, each stage has stored a prime
number.

We can implement the Eratostheness sieve with the following FastFlow pro-
gram.

1 #include <iostream>
2 #include < f f / p i p e l i n e . hpp>
3

4 using namespace f f ;
5

6 class Sieve : public f f n o d e {
7 public :
8

9 Sieve ( ) { f i l t e r = 0 ; }
10

11 void ∗ svc (void ∗ task ) {
12 unsigned int ∗ t = (unsigned int ∗) task ;
13

14 i f ( f i l t e r == 0) {
15 f i l t e r = ∗ t ;
16 return GO ON;
17 } else {
18 i f (∗ t % f i l t e r == 0)
19 return GO ON;
20 else
21 return task ;
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22 }
23 }
24

25 void svc end ( ) {
26 std : : cout << ”Prime ( ” << f i l t e r << ” ) \n” ;
27 return ;
28 }
29

30

31 private :
32 int f i l t e r ;
33 } ;
34

35 class Generate : public f f n o d e {
36 public :
37

38 Generate ( int n) {
39 streamlen = n ;
40 task = 2 ;
41 std : : cout << ” Generate ob j e c t c r ea ted ” << std : : endl ;
42 return ;
43 }
44

45

46 int s v c i n i t ( ) {
47 std : : cout << ” S ieve s t a r t e d . Generating a stream of ” <<

streamlen <<
48 ” elements , s t a r t i n g with ” << task << std : : endl ;
49 return 0 ;
50 }
51

52 void ∗ svc (void ∗ t t ) {
53 unsigned int ∗ t = (unsigned int ∗) t t ;
54

55 i f ( task < streamlen ) {
56 int ∗ x i = ( int ∗) c a l l o c (1 , s izeof ( int ) ) ;
57 ∗ x i = task++;
58 return x i ;
59 } else {
60 return NULL;
61 }
62 }
63 private :
64 int streamlen ;
65 int task ;
66 } ;
67

68 class Pr in t e r : public f f n o d e {
69

70 int s v c i n i t ( ) {
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71 std : : cout << ” Pr in t e r s t a r t e d ” << std : : endl ;
72 f i r s t = 0 ;
73 }
74

75 void ∗ svc (void ∗ t ) {
76 int ∗ x i = ( int ∗) t ;
77 i f ( f i r s t == 0) {
78 f i r s t = ∗ x i ;
79 }
80 return GO ON;
81 }
82

83 void svc end ( ) {
84 std : : cout << ” S ieve terminat ing , prime numbers found up to

” << f i r s t
85 << std : : endl ;
86 }
87

88 private :
89 int f i r s t ;
90 } ;
91

92 int main ( int argc , char ∗ argv [ ] ) {
93 i f ( argc !=3) {
94 std : : c e r r << ” use : ” << argv [ 0 ] << ” nstages streamlen \n”

;
95 return −1;
96 }
97

98 f f p i p e l i n e pipe ;
99 int nstages = a t o i ( argv [ 1 ] ) ;

100 pipe . add stage (new Generate ( a t o i ( argv [ 2 ] ) ) ) ;
101 for ( int j =0; j<nstages ; j++)
102 pipe . add stage (new Sieve ( ) ) ;
103 pipe . add stage (new Pr in t e r ( ) ) ;
104

105 f fTime (START TIME) ;
106 i f ( p ipe . run and wait end ( ) <0) {
107 e r r o r ( ” running p i p e l i n e \n” ) ;
108 return −1;
109 }
110 f fTime (STOP TIME) ;
111

112 std : : c e r r << ”DONE, pipe time= ” << pipe . f fTime ( ) << ” (ms)
\n” ;

113 std : : c e r r << ”DONE, t o t a l time= ” << f fTime (GET TIME) << ” (
ms) \n” ;

114 pipe . f f S t a t s ( std : : c e r r ) ;
115 return 0 ;
116 }
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ffsrc/sieve.cpp

The Generate stage at line 35–66 generates the integer stream, from 2 up
to a value taken from the command line parameters. It uses an svc_init just
to point out when the concurrent activity is started. The creation of the object
used to represent the concurrent activity is instead evidenced by the message
printed in the constructor.

The Sieve stage (lines 6–28) defines the generic pipeline stage. This stores
the initial value got from the input stream on lines 14–16 and then goes on pass-
ing the inputs not multiple of the stored values on lines 18–21. The svc_end
method is executed right before terminating the concurrent activity and prints
out the stored value, which happen to be the prime number found in that node.

The Printer stage is used as the last stage in the pipeline (the pipeline
build on lines 98–103 in the program main) and just discards all the received
values but the first one, which is kept to remember the point where we arrived
storing prime numbers. It defines both an svc_init method (to print a mes-
sage when the concurrent activity is started) and an svc_end method, which
is used to print the first integer received, representing the upper bound (non in-
cluded in) of the sequence of prime numbers discovered with the pipeline stages.
The concurrent activity graph of the program is the following one:

The program output, when run with 7 Sieve stages on a stream from 2 to
30, is the following one:

1 f f s r c $ . / s i e v e 7 30
2 Generate ob j e c t c r ea ted
3 Pr in t e r s t a r t e d
4 Sieve s t a r t e d . Generating a stream of 30 elements , s t a r t i n g

with 2
5 Prime (2 )
6 Prime (3 )
7 Prime (5 )
8 Prime (7 )
9 Prime ( Prime ( S ieve terminat ing , prime numbers found up to 1317)

10 )
11 19
12 Prime (11)
13 DONE, pipe time= 0.275 (ms)
14 DONE, t o t a l time= 25.568 (ms)
15 FastFlow t ra c e not enabled
16 f f s r c $

showing that the prime numbers up to 19 (excluded) has been found.
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7 Managing access to shared objects

Shared objects may be accessed within FastFlow programs using the classical
pthread concurrency control mechanisms. The FastFlow program is actually
a multithreaded code using the pthread library, in fact.

We demonstrate how access to shared objects may be ensured within a
FastFlow program forcing mutual exclusion in the access to the std::cout
file descriptor. This will be used to have much nicer strings output on the
screen when running the Sieve program illustrated in the previous section.

In order to guarantee mutual exclusion on the shared std::cout descrip-
tor we use a pthread_mutex_lock. The lock is declared and properly ini-
tialized as a static, global variable in the program (see code below, line 7).
Then each one of the writes to the std::cout descriptor in the concurrent
activities relative to the different stages of the pipeline are protected through
a pthread_mutex_lock / pthread_mutex_unlock “brackets” (see line
29–31 in the code below, as an example).

1 #include <iostream>
2 #include < f f / p i p e l i n e . hpp>
3 #include <pthread . h>
4

5 using namespace f f ;
6

7 stat ic pthread mutex t l ock = PTHREAD MUTEX INITIALIZER;
8

9 class Sieve : public f f n o d e {
10 public :
11

12 Sieve ( ) { f i l t e r = 0 ; }
13

14 void ∗ svc (void ∗ task ) {
15 unsigned int ∗ t = (unsigned int ∗) task ;
16

17 i f ( f i l t e r == 0) {
18 f i l t e r = ∗ t ;
19 return GO ON;
20 } else {
21 i f (∗ t % f i l t e r == 0)
22 return GO ON;
23 else
24 return task ;
25 }
26 }
27

28 void svc end ( ) {
29 pthread mutex lock(& lock ) ;
30 std : : cout << ”Prime ( ” << f i l t e r << ” ) \n” ;
31 pthread mutex unlock(& lock ) ;
32 return ;
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33 }
34

35

36 private :
37 int f i l t e r ;
38 } ;
39

40 class Generate : public f f n o d e {
41 public :
42

43 Generate ( int n) {
44 streamlen = n ;
45 task = 2 ;
46 pthread mutex lock(& lock ) ;
47 std : : cout << ” Generate ob j e c t c r ea ted ” << std : : endl ;
48 pthread mutex unlock(& lock ) ;
49 return ;
50 }
51

52

53 int s v c i n i t ( ) {
54 pthread mutex lock(& lock ) ;
55 std : : cout << ” S ieve s t a r t e d . Generating a stream of ” <<

streamlen <<
56 ” elements , s t a r t i n g with ” << task << std : : endl ;
57 pthread mutex unlock(& lock ) ;
58 return 0 ;
59 }
60

61 void ∗ svc (void ∗ t t ) {
62 unsigned int ∗ t = (unsigned int ∗) t t ;
63

64 i f ( task < streamlen ) {
65 int ∗ x i = ( int ∗) c a l l o c (1 , s izeof ( int ) ) ;
66 ∗ x i = task++;
67 return x i ;
68 } else {
69 return NULL;
70 }
71 }
72 private :
73 int streamlen ;
74 int task ;
75 } ;
76

77 class Pr in t e r : public f f n o d e {
78

79 int s v c i n i t ( ) {
80 pthread mutex lock(& lock ) ;
81 std : : cout << ” Pr in t e r s t a r t e d ” << std : : endl ;
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82 pthread mutex unlock(& lock ) ;
83 f i r s t = 0 ;
84 }
85

86 void ∗ svc (void ∗ t ) {
87 int ∗ x i = ( int ∗) t ;
88 i f ( f i r s t == 0) {
89 f i r s t = ∗ x i ;
90 }
91 return GO ON;
92 }
93

94 void svc end ( ) {
95 pthread mutex lock(& lock ) ;
96 std : : cout << ” S ieve terminat ing , prime numbers found up to

” << f i r s t
97 << std : : endl ;
98 pthread mutex unlock(& lock ) ;
99 }

100

101 private :
102 int f i r s t ;
103 } ;
104

105 int main ( int argc , char ∗ argv [ ] ) {
106 i f ( argc !=3) {
107 std : : c e r r << ” use : ” << argv [ 0 ] << ” nstages streamlen \n”

;
108 return −1;
109 }
110

111 f f p i p e l i n e pipe ;
112 int nstages = a t o i ( argv [ 1 ] ) ;
113 pipe . add stage (new Generate ( a t o i ( argv [ 2 ] ) ) ) ;
114 for ( int j =0; j<nstages ; j++)
115 pipe . add stage (new Sieve ( ) ) ;
116 pipe . add stage (new Pr in t e r ( ) ) ;
117

118 f fTime (START TIME) ;
119 i f ( p ipe . run and wait end ( ) <0) {
120 e r r o r ( ” running p i p e l i n e \n” ) ;
121 return −1;
122 }
123 f fTime (STOP TIME) ;
124

125 std : : c e r r << ”DONE, pipe time= ” << pipe . f fTime ( ) << ” (ms)
\n” ;

126 std : : c e r r << ”DONE, t o t a l time= ” << f fTime (GET TIME) << ” (
ms) \n” ;

127 pipe . f f S t a t s ( std : : c e r r ) ;
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128 return 0 ;
129 }

ffsrc/sievelock.cpp

When running the program, we get a slightly different output than the one
we obtained when the usage of std::cout was not properly regulated:

1 f f s r c $ . / a . out 7 30
2 Generate ob j e c t c r ea ted
3 Pr in t e r s t a r t e d
4 Sieve s t a r t e d . Generating a stream of 30 elements , s t a r t i n g

with 2
5 Prime (2 )
6 Prime (5 )
7 Prime (13)
8 Prime (11)
9 Prime (7 )

10 Sieve terminat ing , prime numbers found up to 19
11 Prime (3 )
12 Prime (17)
13 DONE, pipe time= 58.439 (ms)
14 DONE, t o t a l time= 64.473 (ms)
15 FastFlow t ra c e not enabled
16 f f s r c $

The strings are printed in clearly separated lines, although some apparently
unordered string sequence appears, which is due to the FastFlow scheduling of
the concurrent activities and to the way locks are implemented and managed
in the pthread library.

It is worth pointing out that

• FastFlow ensures correct access sequences to the shared object used to
implement the streaming networks (the graph of concurrent activities),
such as the SPSC queues used to implement the streams, as an example.

• FastFlow stream semantics guarantee correct sequencing of activation of
the concurrent activities modelled through ff_nodes and connected through
streams. The stream implementation actually ensures pure data flow se-
mantics.

• any access to any user defined shared data structure must be protected
with either the primitive mechanisms provided by FastFlow (see Sec. 7) or
the primitives provided within the pthread library.

8 More skeletons: the FastFlow farm

In the previous sections, we used only pipeline skeletons in the sample code.
Here we introduce the other primitive skeleton provided in FastFlow, namely
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the farm skeleton.
The simplest way to define a farm skeleton in FastFlow is by declaring a

farm object and adding a vector of worker concurrent activities to the farm.
An excerpt of the needed code is the following one

1 #include < f f / farm . hpp>
2

3 using namespace f f ;
4

5 int main ( int argc , char ∗ argv [ ] ) {
6

7 . . .
8 f f f a rm<> myFarm ;
9 std : : vector<f f n o d e ∗> w;

10 for ( int i =0; i<nworkers;++ i )
11 w. push back (new Worker ) ;
12 myFarm . add workers (w) ;
13 . . .

This code basically defines a farm with nworkers workers processing the data
items appearing onto the farm input stream and delivering results onto the farm
output stream. The scheduling policy used to send input tasks to workers is the
default one, that is round robin one. Workers are implemented by the ff_node
Worker objects. These objects may represent sequential concurrent activities
as well as further skeletons, that is either pipeline or farm instances.

However, this farm may not be used alone. There is no way to provide an
input stream to a FastFlow streaming network but having the first component
in the network generating the stream. To this purpose, FastFlow supports two
options:

• we can use the farm defined with a code similar to the one described
above as the second stage of a pipeline whose first stage generates the
input stream according to one of the techniques discussed in Sec. 5. This
means we will use the farm writing a code such as:

1 . . .
2 f f p i p e l i n e myPipe ;
3

4 myPipe . add stage (new GeneratorStage ( ) ) ;
5 myPipe . add stage (myFarm) ;

• or we can provide an emitter and a collector to the farm, specialized
in such a way they can be used to produce the input stream and consume
the output stream of the farm, respectively, while inheriting the default
scheduling and gathering policies.
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The former case is simple. We only have to understand why adding the farm
to the pipeline as a pipeline stage works. This will discussed in detail in Sec. 10.
The latter case is simple as well, but we discuss it through some more code.

8.1 Farm with emitter and collector

First, let us see what kind of objects we have to build to provide the farm
an emitter and a collector. Both emitter and collector must be
supplied as ff_node subclass objects. If we implement the emitter just pro-
viding the svc method, the tasks delivered by the svc on the output stream
either using a ff_send_out or returning the proper pointer with the svc
return statement, those elements will be dispatched to the available work-
ers according to the default round robin scheduling. An example of emitter
node, generating the stream of tasks actually eventually processed by the farm
worker nodes is the following one:

1 class Emitter : public f f n o d e {
2 public :
3 Emitter ( int n) {
4 streamlen = n ;
5 task = 0 ;
6 } ;
7

8 void ∗ svc (void ∗) {
9 s l e e p (1 ) ;

10 task++;
11 int ∗ t = new int ( task ) ;
12 i f ( task<streamlen )
13 return t ;
14 else
15 return NULL;
16 }
17

18 private :
19 int streamlen ;
20 int task ;
21 } ;

In this case, the node svc actually does not take into account any input
stream item (the input parameter name is omitted on line 5). Rather, each
time the node is activated, it returns a task to be computed using the internal
ntasks value. The task is directed to the “next” worker by the FastFlow farm
run time support.

Concerning the collector, we can also use a ff_node: in case the results
need further processing, they can be directed to the next node in the stream-
ing network using the mechanisms detailed in Sec. 5. Otherwise, they can be
processed within the svc method of the ff_node subclass.
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As an example, a collector just printing the tasks/results he gets from
the workers may be programmed as follows:

1 class C o l l e c t o r : public f f n o d e {
2 public :
3 void ∗ svc (void ∗ task ) {
4 int ∗ t = ( int ∗) task ;
5 std : : cout << ” C o l l e c t o r got ” << ∗ t << std : : endl ;
6 return GO ON;
7 }
8 } ;

With these classes defined and assuming to have a worker defined by the
class:

1 class Worker : public f f n o d e {
2 public :
3 void ∗ svc (void ∗ task ) {
4 int ∗ t = ( int ∗) task ;
5 (∗ t )++;
6 return task ;
7 }
8 } ;

we can define a program processing a stream of integers by increasing each one
of them with a farm as follows:

1 int main ( int argc , char ∗ argv [ ] ) {
2 int nworkers=a t o i ( argv [ 1 ] ) ;
3 int streamlen=a t o i ( argv [ 2 ] ) ;
4

5 f f f a rm<> farm ;
6

7 Emitter E( streamlen ) ;
8 farm . add emitter (&E) ;
9

10 std : : vector<f f n o d e ∗> w;
11 for ( int i =0; i<nworkers;++ i )
12 w. push back (new Worker ) ;
13 farm . add workers (w) ;
14

15 C o l l e c t o r C;
16 farm . a d d c o l l e c t o r (&C) ;
17

18 i f ( farm . run and wait end ( ) <0) {
19 e r r o r ( ” running farm\n” ) ;
20 return −1;
21 }
22 return 0 ;
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23 }

The concurrent activity graph in this case is the following one:

When run with the first argument specifying the number of workers to be
used and the second one specifying the length of the input stream generated in
the collector node, we get the expected output:

1 f f s r c $ . / a . out 2 10
2 C o l l e c t o r got 2
3 C o l l e c t o r got 3
4 C o l l e c t o r got 4
5 C o l l e c t o r got 5
6 C o l l e c t o r got 6
7 C o l l e c t o r got 7
8 C o l l e c t o r got 8
9 C o l l e c t o r got 9

10 C o l l e c t o r got 10
11 f f s r c $

8.2 Farm with no collector

We move on considering a further case: a farm with emitter but no collector.
Having no collector the workers may not deliver results: all the results computed
by the workers must be consolidated in memory. The following code implements
a farm where a stream of tasks of type TASK with an integer tag i and an integer
value t are processed by the worker of the farm by:

• computing t++ and

• storing the result in a global array at the position given by the tag i.

Writes to the global result array need not to be synchronized as each worker
writes different positions in the array (the TASK tags are unique).
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1 #include <vector>
2 #include <iostream>
3 #include < f f / farm . hpp>
4

5 stat ic int ∗ r e s u l t s ;
6

7 typedef struct t a s k t {
8 int i ;
9 int t ;

10 } TASK;
11

12 using namespace f f ;
13

14 class Worker : public f f n o d e {
15 public :
16 void ∗ svc (void ∗ task ) {
17 TASK ∗ t = (TASK ∗) task ;
18 r e s u l t s [ t−>i ] = ++(t−>t ) ;
19 return GO ON;
20 }
21 } ;
22

23

24 class Emitter : public f f n o d e {
25 public :
26 Emitter ( int n) {
27 streamlen = n ;
28 task = 0 ;
29 } ;
30

31 void ∗ svc (void ∗) {
32 task++;
33 TASK ∗ t = (TASK ∗) c a l l o c (1 , s izeof (TASK) ) ;
34 t−>i = task ;
35 t−>t = task ∗ task ;
36 i f ( task<streamlen )
37 return t ;
38 else
39 return NULL;
40 }
41

42 private :
43 int streamlen ;
44 int task ;
45 } ;
46

47

48 int main ( int argc , char ∗ argv [ ] ) {
49

25



50 int nworkers=a t o i ( argv [ 1 ] ) ;
51 int streamlen=a t o i ( argv [ 2 ] ) ;
52 r e s u l t s = ( int ∗) c a l l o c ( streamlen , s izeof ( int ) ) ;
53

54 f f f a rm<> farm ;
55

56 Emitter E( streamlen ) ;
57 farm . add emitter (&E) ;
58

59 std : : vector<f f n o d e ∗> w;
60 for ( int i =0; i<nworkers;++ i )
61 w. push back (new Worker ) ;
62 farm . add workers (w) ;
63

64 std : : cout << ” Before s t a r t i n g computation ” << std : : endl ;
65 for ( int i =0; i<streamlen ; i++)
66 std : : cout << i << ” : ” << r e s u l t s [ i ] << std : : endl ;
67 i f ( farm . run and wait end ( ) <0) {
68 e r r o r ( ” running farm\n” ) ;
69 return −1;
70 }
71 std : : cout << ” After computation ” << std : : endl ;
72 for ( int i =0; i<streamlen ; i++)
73 std : : cout << i << ” : ” << r e s u l t s [ i ] << std : : endl ;
74 return 0 ;
75 }

ffsrc/farmNoC.cpp

The Worker code at lines 14–21 defines an svc method that returns a
GO_ON. Therefore no results are directed to the collector (non existing, see lines
55-74: they define the farm but they do not contain any add_collector in
the program main). Rather, the results computed by the worker code at line
18 are directly stored in the global array. In this case the concurrent activity
graph is the following:

The main program prints the results vector before calling the FastFlow
start_and_wait_end() and after the call, and you can easily verify the
results are actually computed and stored in the correct place in the vector:

1 f f s r c $ farmNoC 2 10
2 Before s t a r t i n g computation
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3 0 : 0
4 1 : 0
5 2 : 0
6 3 : 0
7 4 : 0
8 5 : 0
9 6 : 0

10 7 : 0
11 8 : 0
12 9 : 0
13 After computation
14 0 : 0
15 1 : 2
16 2 : 5
17 3 : 10
18 4 : 17
19 5 : 26
20 6 : 37
21 7 : 50
22 8 : 65
23 9 : 82
24 f f s r c $

Besides demonstrating how a farm without collector may compute useful
results, the program of the last listing also demonstrates how complex task data
structures can be delivered and retrieved to and from the FastFlow streaming
network streams.

8.3 Specializing the scheduling strategy in a farm

In order to select the worker where an incoming input task has to be di-
rected, the FastFlow farm uses an internal ff_loadbalancer that provides
a method int selectworker() returning the index in the worker array
corresponding to the worker where the next task has to be directed. This
method cannot be overwritten, actually. But the programmer may subclass the
ff_loadbalancer and provide his own selectworker() method and pass
the new load balancer to the farm emitter, therefore implementing a farm with
a user defined scheduling policy.

The steps to performed in this case are exemplified with the following, rele-
vant portions of code.

First, we subclass the ff_loadmanager and provide our own setworker()
method:

1 class my loadbalancer : public f f l o a d b a l a n c e r {
2 protected :
3 // implement your p o l i c y . . .
4 inl ine int s e l e c t w o r k e r ( ) { return v ict im ; }
5
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6 public :
7 // t h i s i s nece s sa ry because f f l o a d b a l a n c e r has non

d e f a u l t parameters . . . .
8 my loadbalancer ( int max num workers ) : f f l o a d b a l a n c e r (

max num workers ) {}
9

10 void s e t v i c t i m ( int v ) { v ict im=v ;}
11

12 private :
13 int v ict im ;
14 } ;

Then we create a farm with specifying the new load balancer class as a type
parameter:

1 f f f a rm<my loadbalancer> myFarm ( . . . ) ;

Eventually, we create an emitter that within its svc method invokes the set_victim
method right before outputting a task towards the worker string, either with a
ff_send_out(task) or with a return(task). The emitter is declared as:

1 class myEmitter : public f f n o d e {
2

3 myEmitter ( f f l o a d b a l a n c e r ∗ ldb ) {
4 lb = ldb ;
5 }
6

7 . . .
8

9 void ∗ svc (void ∗ task ) {
10 . . .
11 workerToBeUsed = somePolicy ( . . . ) ;
12 lb−>s e t v i c t i m ( workerToBeUsed ) ;
13 . . .
14 f f s e n d o u t ( task ) ;
15 return GO ON;
16 }
17

18 . . .
19 private :
20 f f l o a d b a n c e r ∗ lb ;
21 }

and inserted in the farm with the code

1 myEmitter emi t t e r (myFarm . g e t l b ( ) ) ;
2 myFarm . add emitter ( emi t t e r ) ;
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What we get is a farm where the worker to be used to execute the task
appearing onto the input stream is decided by the programmer through the
proper implementation of my_loadbancer rather than being decided by the
current FastFlow implementation.

Two particular cases specializing the scheduling policy in different way by
using FastFlow predefined code are illustrated in the following two subsections.

8.3.1 Broadcasting a task to all workers

FastFlow supports the possibility to direct a task to all the workers in a farm.
It is particularly useful if we want to process the task by workers implementing
different functions. The broadcasting is achieved through the declaration of a
specialized load balancer, in a way very similar to what we illustrated in Sec. 8.3.

The following code implements a farm whose input tasks are broadcasted
to all the workers, and whose workers compute different functions on the input
tasks, and therefore deliver different results on the output stream.

1 #include <iostream>
2 #include < f f / farm . hpp>
3 #include < f f /node . hpp>
4 #include <math . h>
5

6 using namespace std ;
7 using namespace f f ;
8

9

10 // should be g l o b a l to be a c c e s s i b l e from workers
11 #define MAX 4
12 int x [MAX] ;
13

14 class WorkerPlus : public f f n o d e {
15 int s v c i n i t ( ) {
16 cout << ”Worker i n i t i a l i z e d ” << endl ;
17 return 0 ;
18 }
19

20 void ∗ svc (void ∗ in ) {
21 int ∗ i = ( ( int ∗) in ) ;
22 int i i = ∗ i ;
23 ∗ i ++;
24 cout << ”WorkerPLus got ” << i i << ” and computed ” << ∗ i

<< endl ;
25 return in ;
26 }
27 } ;
28
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29 class WorkerMinus : public f f n o d e {
30 int s v c i n i t ( ) {
31 cout << ”Worker i n i t i a l i z e d ” << endl ;
32 return 0 ;
33 }
34

35 void ∗ svc (void ∗ in ) {
36 int ∗ i = ( ( int ∗) in ) ;
37 int i i = ∗ i ;
38 ∗ i−−;
39 cout << ”WorkerMinus got ” << i i << ” and computed ” << ∗ i

<< endl ;
40 return in ;
41 }
42 } ;
43

44 class my loadbalancer : public f f l o a d b a l a n c e r {
45 public :
46 // t h i s i s nece s sa ry because f f l o a d b a l a n c e r has non

d e f a u l t parameters . . . .
47 my loadbalancer ( int max num workers ) : f f l o a d b a l a n c e r (

max num workers ) {}
48

49 void broadcast (void ∗ task ) {
50 f f l o a d b a l a n c e r : : b roadca s t ta sk ( task ) ;
51 }
52 } ;
53

54 class Emitter : public f f n o d e {
55 public :
56 Emitter ( my loadbalancer ∗ const lb ) : lb ( lb ) {}
57 void ∗ svc (void ∗ task ) {
58 lb−>broadcast ( task ) ;
59 return GO ON;
60 }
61 private :
62 my loadbalancer ∗ lb ;
63 } ;
64

65 class C o l l e c t o r : public f f n o d e {
66 public :
67 C o l l e c t o r ( int i ) {}
68 void ∗ svc (void ∗ task ) {
69 cout << ”Got r e s u l t ” << ∗ ( ( int ∗) task ) << endl ;
70 return GO ON;
71 }
72

73

74 } ;
75
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76

77

78 #define NW 2
79

80 int main ( int argc , char ∗ argv [ ] )
81 {
82 f fTime (START TIME) ;
83

84 cout << ” i n i t ” << argc << endl ;
85 int nw = ( argc==1 ? NW : a t o i ( argv [ 1 ] ) ) ;
86

87 cout << ” us ing ” << nw << ” workers ” << endl ;
88

89 // i n i t input ( fake )
90 for ( int i =0; i<MAX; i++) {
91 x [ i ] = ( i ∗10) ;
92 }
93 cout << ” Se t t i ng up farm” << endl ;
94 // c r e a t e the farm ob j e c t
95 f f f a rm<my loadbalancer> farm ( true , nw) ;
96 // c r e a t e and add emi t t e r ob j e c t to the farm
97 Emitter E( farm . g e t l b ( ) ) ;
98 farm . add emitter (&E) ;
99 cout << ” emi t t e r ok ”<< endl ;

100

101

102 std : : vector<f f n o d e ∗> w; // prepare workers
103 w. push back (new WorkerPlus ) ;
104 w. push back (new WorkerMinus ) ;
105 farm . add workers (w) ; // add them to the farm
106 cout << ” workers ok ”<< endl ;
107

108 C o l l e c t o r C(1) ;
109 farm . a d d c o l l e c t o r (&C) ;
110 cout << ” c o l l e c t o r ok ”<< endl ;
111

112 farm . r u n t h e n f r e e z e ( ) ; // run farm asynchronous ly
113

114 cout << ” Sending ta sk s . . . ” << endl ;
115 int ta sk s [MAX] ;
116 for ( int i =0; i<MAX; i++) {
117 ta sk s [ i ]= i ;
118 farm . o f f l o a d ( ( void ∗) &task s [ i ] ) ;
119 }
120 farm . o f f l o a d ( ( void ∗) FF EOS) ;
121

122 cout << ”Waiting terminat ion ” << endl ;
123 farm . wait ( ) ;
124

125 cout << ”Farm terminated a f t e r computing f o r ” << farm .
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f fTime ( ) << endl ;
126

127 f fTime (STOP TIME) ;
128 cout << ”Spent o v e r a l l ” << f fTime (GET TIME) << endl ;
129

130 }

ffsrc/ff misd.cpp

At lines 44-52 a ff_loadbalancer is defined providing a broadcast
method. The method is implemented in terms of an ff_loadbalancer in-
ternal method. This new loadbalancer class is used as in the case of other user
defined schedulers (see Sec. 8.3) and the emitter eventually uses the load bal-
ancer broadcast method instead of delivering the task to the output stream
(i.e. directly to the string of the workers). This is done through the svc code
at lines 57–60.

Lines 103 and 104 are used to add two different workers to the farm.
The rest of the program is standard, but for the fact the resulting farm is

used as an accelerator (lines 112–123, see Sec. 9).

8.3.2 Using autoscheduling

FastFlow provides suitable tools to implement farms with “auto scheduling”,
that is farms where the workers “ask” for something to be computed rather
than accepting tasks sent by the emitter (explicit or implicit) according to some
scheduling policy. This scheduling behaviour may be simply implemented by
using the ff_farm method set_scheduling_ondemand(), as follows:

1 f f f a r m myFarm ( . . . ) ;
2 myFarm . set schedul ing ondemand ( ) ;
3 . . .
4 farm . add emitter ( . . . ) ;
5 . . .

The scheduling policy implemented in this case is an approximation of the auto
scheduling, indeed. The emitter simply checks the length of the SPSC queues
connecting the emitter to the workers, and delivers the task to the first worker
whose queue length is less or equal to 1. To be more precise, FastFlow should
have implemented a request queue where the workers may write tasks requests
tagged with the worker id and the emitter may read such request to choose the
worker where the incoming tasks is to be directed. This is not possible as of
FastFlow 1.1 because it still doesn’t allow to read from multiple SPSC queues
preserving the FIFO order.

9 FastFlow as a software accelerator

Up to know we just showed how to use FastFlow to write a “complete skeleton
application”, that is an application whose complete flow of control is defined
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Figure 2: FastFlow accelerator

through skeletons. In this case the main of the C/C++ program written by the
user is basically providing the structure of the parallel application by defining
a proper FastFlow skeleton nesting and the commands to start the computation
of the skeleton program and to wait its termination. All the business logic of
the application is embedded in the skeleton parameters.

Now we want to discuss the second kind of usage which is supported by
FastFlow, namely FastFlow accelerator mode. The term “accelerator” is used the
way it used when dealing with hardware accelerators. An hardware accelerator–
a GPU or an FPGA or even a more “general purpose” accelerator such as Tilera
64 core chips, Intel Many Core or IBM WireSpeed/PowerEN–is a device that
can be used to compute particular kind of code faster that the CPU. FastFlow
accelerator is a software device that can be used to speedup skeleton structured
portions of code using the cores left unused by the main application. In other
words, it’s a way FastFlow supports to accelerate particular computation by
using a skeleton program and offloading to the skeleton program tasks to be
computed.

The FastFlow accelerator will use n−1 cores of the n core machine, assuming
that the calling code is not parallel and will try to ensure a n− 1 fold speedup
is achieved in the computation of the tasks offloaded to the accelerator, provide
a sufficient number of tasks are given to be computed.

Using FastFlow accelerator mode is not too much different from using FastFlow
to write an application only using skeletons (see Fig. 2). In particular, the fol-
lowing steps must be followed:

• A skeleton program has to be written, using the FastFlow skeletons (or
their customized versions), computing the tasks that will be given to the
accelerator. The skeleton program used to program the accelerator is sup-
posed to have an input stream, used to offload the tasks to the accelerator.

• Then, the skeleton program must be run using a particular method, dif-
ferent from the run_and_wait_end we have already seen, that is a
run_then_freeze() method. This method will start the accelerator
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skeleton program, consuming the input stream items to produce either
output stream items or to consolidate (partial) results in memory. When
we want to stop the accelerator, we will deliver and end-of-stream mark
to the input stream.

• Eventually, we must wait the computation of the accelerator is terminated.

A simple program using FastFlow accelerator mode is shown below:

1 #include <vector>
2 #include <iostream>
3 #include < f f / farm . hpp>
4 #include <time . h>
5

6 using namespace f f ;
7

8 int ∗ x ;
9 int nworkers = 0 ;

10

11 class Worker : public f f n o d e {
12 public :
13

14 Worker ( int i ) {
15 my id = i ;
16 }
17

18 void ∗ svc (void ∗ task ) {
19 int ∗ t = ( int ∗) task ;
20 x [ my id ] = ∗ t ;
21 return GO ON;
22 }
23 private :
24 int my id ;
25 } ;
26

27 int main ( int argc , char ∗ argv [ ] ) {
28

29 i f ( argc <3) {
30 std : : c e r r << ” use : ”
31 << argv [ 0 ]
32 << ” nworkers streamlen \n” ;
33 return −1;
34 }
35

36 nworkers=a t o i ( argv [ 1 ] ) ;
37 int streamlen=a t o i ( argv [ 2 ] ) ;
38

39 x = ( int ∗) c a l l o c ( nworkers , s izeof ( int ) ) ;
40 for ( int i =0; i<nworkers ; i++)
41 x [ i ] = 0 ;
42
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43 f f f a rm<> a c c e l e r a t o r ( true ) ;
44

45 std : : vector<f f n o d e ∗> w;
46 for ( int i =0; i<nworkers;++ i )
47 w. push back (new Worker ( i ) ) ;
48 a c c e l e r a t o r . add workers (w) ;
49

50 i f ( a c c e l e r a t o r . r u n t h e n f r e e z e ( ) <0) {
51 e r r o r ( ” running farm\n” ) ;
52 return −1;
53 }
54

55 for ( int i =0; i<=streamlen ; i++) {
56 int ∗ task = new int ( i ) ;
57 a c c e l e r a t o r . o f f l o a d ( task ) ;
58 }
59 a c c e l e r a t o r . o f f l o a d ( ( void ∗) FF EOS) ;
60 a c c e l e r a t o r . wait ( ) ;
61

62 for ( int i =0; i<nworkers ; i++)
63 std : : cout << i << ” : ” << x [ i ] << std : : endl ;
64

65 return 0 ;
66 }

ffsrc/acc.cpp

We use a farm accelerator. The accelerator is declared at line 43. The “true”
parameter is the one telling FastFlow this has to be used as an accelerator.
Workers are added at lines 45–48. Each worker is given its id as a constructor
parameters. This is the same as the code in plain FastFlow applications. Line
50 starts the skeleton code in accelerator mode. Lines 55 to 58 offload tasks
to be computed to the accelerator. These lines could be part of any larger
C++ program, indeed. The idea is that whenever we have a task ready to be
submitted to the accelerator, we simply “offload” it to the accelerator. When we
have no more tasks to offload, we send and end-of-stream (line 59) and eventually
we wait for the completion of the computation of tasks in the accelerator (line
60).

This kind of interaction with an accelerator not having an output stream
is intended to model those computations than consolidate results directly in
memory. In fact, the Worker code actually writes results into specific position
of the vector x. Each worker writes the task it receives in the i-th position of
the vector, being i the index of the worker in the farm worker string. As each
worker writes a distinct position in the vector, no specific synchronization is
needed to access vector positions. Eventually the last task received by worker i
will be stored at position i in the vector.

We can also assume that results are awaited from the accelerator through
its output stream. In this case, we first have to write the skeleton code of the
accelerator in such a way an output stream is supported. In the new version the
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accelerator sample program below, we add a collector to the accelerator farm
(line 45). The collector is defined as just collecting results from workers and
delivering the results to the output stream (lines 18–24). Once the tasks have
been offloaded to the accelerator, rather waiting for accelerator completion, we
can ask computed results as delivered to the accelerator output stream through
the bool load_result(void **) method (see lines 59–61).

1 #include <vector>
2 #include <iostream>
3 #include < f f / farm . hpp>
4 #include <time . h>
5

6 using namespace f f ;
7

8 class Worker : public f f n o d e {
9 public :

10

11 void ∗ svc (void ∗ task ) {
12 int ∗ t = ( int ∗) task ;
13 (∗ t )++;
14 return task ;
15 }
16 } ;
17

18 class C o l l e c t o r : public f f n o d e {
19 public :
20 void ∗ svc (void ∗ task ) {
21 int ∗ t = ( int ∗) task ;
22 return task ;
23 }
24 } ;
25

26

27 int main ( int argc , char ∗ argv [ ] ) {
28

29 i f ( argc <3) {
30 std : : c e r r << ” use : ”
31 << argv [ 0 ]
32 << ” nworkers streamlen \n” ;
33 return −1;
34 }
35

36 int nworkers=a t o i ( argv [ 1 ] ) ;
37 int streamlen=a t o i ( argv [ 2 ] ) ;
38

39 f f f a rm<> a c c e l e r a t o r ( true ) ;
40

41 std : : vector<f f n o d e ∗> w;
42 for ( int i =0; i<nworkers;++ i )
43 w. push back (new Worker ( ) ) ;
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44 a c c e l e r a t o r . add workers (w) ;
45 a c c e l e r a t o r . a d d c o l l e c t o r (new C o l l e c t o r ( ) ) ;
46

47 i f ( a c c e l e r a t o r . r u n t h e n f r e e z e ( ) <0) {
48 e r r o r ( ” running farm\n” ) ;
49 return −1;
50 }
51

52 for ( int i =0; i<=streamlen ; i++) {
53 int ∗ task = new int ( i ) ;
54 a c c e l e r a t o r . o f f l o a d ( task ) ;
55 }
56 a c c e l e r a t o r . o f f l o a d ( ( void ∗) FF EOS) ;
57

58 void ∗ r e s u l t ;
59 while ( a c c e l e r a t o r . l o a d r e s u l t (& r e s u l t ) ) {
60 std : : cout << ”Got r e s u l t : : ”<< (∗ ( ( int ∗) r e s u l t ) ) << std

: : endl ;
61 }
62 a c c e l e r a t o r . wait ( ) ;
63

64 return 0 ;
65 }

ffsrc/accColl.cpp

The bool load_result(void **) methods synchronously await for one
item being delivered on the accelerator output stream. If such item is available,
the method returns “true” and stores the item pointer in the parameter. If no
other items will be available, the method returns “false”.

An asynchronoud method is also available bool load_results_nb(void **).
In this case, if no result is available at the moment, the method returns a “false”
value, and you should retry later on to see whether a result may be retrieved.

10 Skeleton nesting

In FastFlow skeletons may be arbitrarily nested. As the current version only
supports farm and pipeline skeletons, this means that:

• farms may be used as pipeline stages, and

• pipelines may be used as farm workers.

There are no limitations to nesting, but the following one :

• skeletons using the wrap_around facility (see also Sec. 11) cannot be
used as parameters of other skeletons.

As an example, you can define a farm with pipeline workers as follows:
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1 f f f a rm<> myFarm ;
2

3 std : : vector<f f n o d e ∗> w;
4 for ( int i =0; i<NW; i++)
5 f f p i p e l i n e ∗ p = new f f p i p e l i n e ;
6 p−>add stage (new S1 ( ) ) ;
7 p−>add stage (new S2 ( ) ) ;
8 w. push back (p) ;
9 }

10 myFarm . addWorkers (w) ;

or we can use a farm as a pipeline stage by using a code such as:

1 f f p i p e l i n e ∗ p = new f f p i p e l i n e ;
2 f f f a r m <> f = new f f f a r m ;
3

4 . . .
5

6 f . addWorkers (w) ;
7

8 . . .
9

10 p−>add stage (new SeqWorkerA ( ) ) ;
11 p−>add stage ( f ) ;
12 p−>add stage (new SeqWorkerB ( ) ) ;

The concurrent activity graph in this case will be the following one:

while in the former case it will be such as
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11 Feedback channels

In some cases, it will be useful to have the possibility to route back some results
to the streaming network input stream. As an example, this allows to implement
divide and conquer using farms. Task injected in the farm are split by the
workers and the resulting splitted tasks are routed back to the input stream
for further processing. Tasks that can be computed using the base case code,
are computed instead and their results are used for the conquer phase, usually
performed in memory.

All what’s needed to implement the feedback channel is to invoke the wrap_around
method on the interested skeleton. In case our applications uses a farm pat-
tern as the outermost skeleton, we may therefore add the method call after
instantiating the farm object:

1 f f f a rm<> myFarm ;
2 . . .
3 myFarm . add emitter (&e ) ;
4 myFarm . a d d c o l l e c t o r (&c ) ;
5 myFarm . add workers (w) ;
6

7 myFarm . wrap aroud ( ) ;
8 . . .

and this will lead to the concurrent activity graph
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The same if parallelism is expressed by using a pipeline as the outermost
skeleton:

1 f f p i p e l i n e myPipe ;
2

3 myPipe . add stage ( s1 ) ;
4 myPipe . add stage ( s2 ) ;
5 myPipe . add stage ( s3 ) ;
6 . . .
7 myPipe . wrap around ( ) ;
8 . . .

leading to the concurrent activity graph:

As of FastFlow 1.1, the only possibility to use the feedback channel provided
by the wrap_around method is relative to the outermost skeleton, that is
the one with no input stream. This because at the moment FastFlow does not
support merging of input streams. In future versions this constrain will be
possibly eliminated.

12 Introducing new skeletons

Current version of FastFlow (1.1) only supports stream parallel pipeline and
farm skeletons. However, the skeletons themselves may be used/customized
to serve as “implementation templates”7 for different kinds of skeletons. The

7according to the terminology used in the algorithmic skeleton community
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FastFlow distribution already includes sample applications where the farm with
feedback is used to support divide&conquer applications. Here we want to
discuss how a data parallel map skeleton may be used in FastFlow, exploiting
the programmability of farm skeleton emitter and collector.

12.1 Implementing a Map skeleton with a Farm “tem-
plate”

In a pure map pattern all the items in a collection are processed by means of a
function f . If the collection was

x = 〈x1, . . . , xm〉

then the computation
map f x

will produce as a result
〈f(x1), . . . , f(xm)〉

In more elaborated map skeletons, the user is allowed to define a set of (possibly
overlapping) partitions of the input collection, a function to be applied on each
one of the partitions, and a strategy to rebuild–from the partial results computed
on the partitions–the result of the map.

As an example, a matrix multiplication may be programmed as a map such
that:

• the input matrixes A and B are considered as collections of rows and
columns, respectively

• a set of items 〈Ai,∗, B∗,j〉–the i − th row of A and the j − th column of
B–are used to build the set of partitions

• an inner product is computed on each 〈Ai,∗, B∗,j〉: this is ci,j actually

• the C matrix (C = A×B) is computed out of the different ci,j .

If we adopt this second, more general approach, a map may be build imple-
menting a set of concurrent activities such as:
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where the Split node create the partitions and delivers them to the workers,
the workers compute each ci,j and deliver the results to the Compose. The
Compose eventually rebuilds the full C out of the n2 ci,j .

We can therefore program the whole map as a FastFlow farm. After defining
proper task, subtask and partial result data structures:

1 // a task r e q u i r e s to compute the matrix mult ip ly C = A x B
2 // we assume square matrixes , f o r the sake o f s i m p l i c i t y
3 typedef struct {
4 int n ;
5 f loat ∗∗a ;
6 f loat ∗∗b ;
7 f loat ∗∗ c ;
8 int tag ; // used to gather p a r t i a l r e s u l t s from the same

task
9 } TASK;

10

11 // a subtask i s the computation o f the inner product or A, row
i , by B, c o l j

12 typedef struct {
13 int i , j ;
14 TASK ∗ t ;
15 } SUBTASK;
16

17 // a p a r t i a l r e s u l t i s the i , j item in the r e s u l t matrix
18 typedef struct {
19 int i , j ;
20 f loat x ;
21 TASK ∗ t ;
22 } PART RESULT;

we define the emitter to be used in the farm as follows:

1 // t h i s node i s used to generate the task l i s t out o f the
i n i t i a l data

2 // kind o f user de f ined i t e r a t o r over ta sk s
3 class S p l i t : public f f n o d e {
4 void ∗ svc (void ∗ t ) {
5 TASK ∗ task = (TASK ∗) t ; // ta sk s come in a l r eady

a l l o c a t e d
6 for ( int i =0; i<task−>n ; i++)
7 for ( int j =0; j< task−>n ; j++) {
8 // SUBTASKe are a l l o c a t e d in the s p l i t t e r and

destroyed in the worker
9 SUBTASK ∗ s t = (SUBTASK ∗) c a l l o c (1 , s izeof (SUBTASK) ) ;

10 st−>i = i ;
11 st−>j = j ;
12 st−>t = task ;
13 f f s e n d o u t ( ( void ∗) s t ) ;
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14 }
15 return GO ON;
16 }
17 } ;

Basically, the first time the emitter is called, we generate all the tasks relative
to the different 〈Ai,∗, B∗,j〉. These tasks are directed to the workers, that will
compute the different ci,j and direct the PART_RESULT to the collector. The
worker ff_node will therefore be programmed as:

1 class Worker : public f f n o d e {
2 public :
3

4 void ∗ svc (void ∗ task ) {
5 SUBTASK ∗ t = (SUBTASK ∗) task ;
6 f loat ∗ x = new float ( 0 . 0 ) ;
7 for ( int k=0; k<(t−>t )−>n ; k++) {
8 ∗x = ∗x + ( t−>t−>a ) [ t−>i ] [ k ] ∗ ( t−>t−>b) [ k ] [ t−>j ] ;
9 }

10 // prepare the p a r t i a l r e s u l t to be d e l i v e r e d
11 PART RESULT ∗ pr = (PART RESULT ∗) c a l l o c (1 , s izeof (

PART RESULT) ) ;
12 pr−>i = t−>i ;
13 pr−>j = t−>j ;
14 pr−>t = t−>t ;
15 pr−>x = ∗x ;
16 // the subtask i s no more use fu l , d e a l l o c a t e i t
17 f r e e ( task ) ;
18 // return the p a r t i a l r e s u l t
19 return pr ;
20 }
21 } ;

The collector will be defined in such a way the different partial results computed
by the workers are eventually consolidated in memory. Therefore each ci,j re-
ceived is stored at the correct entry of the C matrix. The pointer of the result
matrix is in fact a field in the TASK data strcuture and ci,j , i and j are fields of
teh PART_RESULT data structure. The code for the collector is therefore:

1 class Compose : public f f n o d e {
2 public :
3 Compose ( ) {
4 n = 0 ;
5 for ( int i =0; i<MAXDIFF; i++)
6 tags [ i ] = 0 ;
7 }
8

9 void ∗ svc (void ∗ t ) {
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10 PART RESULT ∗ r = (PART RESULT ∗) t ;
11 TASK ∗ t t = r−>t ;
12 // c o n s o l i d a t e r e s u l t in memory
13 ( ( r−>t )−>c ) [ r−>i ] [ r−>j ] = r−>x ;
14 tags [ ( ( r−>t )−>tag )%MAXDIFF]++;
15 i f ( tags [ ( ( r−>t )−>tag )%MAXDIFF] == ( ( r−>t )−>n) ∗ ( ( r−>t )−>n)

) {
16 tags [ ( ( r−>t )−>tag )%MAXDIFF] = 0 ;
17 f r e e ( t ) ;
18 return ( t t ) ;
19 } else {
20 f r e e ( t ) ;
21 return GO ON;
22 }
23 }
24 private :
25 int n ;
26 int tags [MAXDIFF] ;
27 } ;

The tags here are used to deliver a result on the farm output stream (i.e. the
output stream of the collector) when exactly n2 results relative to the same input
task have been received by the collector. A MAXDIFF value is used assuming that
no more than MAXDIFF different matrix multiplication tasks may be circulating
at the same time in the farm, due to variable time spent in the computation of
the single ci,j .

With these classes, our map may be programmed as follows:

1 f f f a rm<> farm ( true ) ;
2

3 farm . add emitter (new S p l i t ( ) ) ; // add the s p l i t t e r
emi t t e r

4 farm . a d d c o l l e c t o r (new Compose ( ) ) ; // add the composer
c o l l e c t o r

5 std : : vector<f f n o d e ∗> w; // add the convenient
# o f workers

6 for ( int i =0; i<nworkers;++ i )
7 w. push back (new Worker ) ;
8 farm . add workers (w) ;

It is worth pointing out that:

• the kind of knowledge required to write the Split and Compose nodes to
the application programmer is very application specific and not too much
related to the implementation of the map

• this implementation of the map transforms a data parallel pattern into
a stream parallel one. Some overhead is paid to move the data parallel
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sub-tasks along the streams used to implement the farm. This overhead
may be not completely negligible

• a much coarser grain implementation could have been designed assuming
that the Split node outputs tasks representing the computation of a
whole Ci,∗ row and modifying accordingly the Worker.

• usually, the implementation of a map data parallel pattern generates as
many subtasks as the amount of available workers. In our implementation,
we could have left to the Split node this task, using the FastFlow prim-
itive mechanisms to retrieve the number of workers actually allocated to
the farm8 and modifying accordingly both the Worker and the Compose
code.

Also, the proposed implementation for the map may be easily encapsulated
in a proper ff_map class:

1 class f f map {
2 public :
3

4 // map cons t ruc to r
5 // takes as parameters : the s p l i t t e r ,
6 // the s t r i n g o f workers and the r e s u l t r e b u i l d e r
7

8 f f map ( f f n o d e ∗ sp l t , s td : : vector<f f n o d e ∗> wrks , f f n o d e
∗ cmps ) {

9

10 exec . add emitter ( s p l t ) ; // add the s p l i t t e r emi t t e r
11 exec . a d d c o l l e c t o r ( cmps ) ; // add the composer

c o l l e c t o r
12 exec . add workers ( wrks ) ; // add workers
13 }
14

15 operator f f n o d e ∗ ( ) { // ( re ) d e f i n e what ’ s
returned when

16 return ( f f n o d e ∗)&exec ; // ask ing a po in t e r to the
c l a s s ob j e c t

17 }
18

19 private :
20 f f f a rm<> exec ; // t h i s i s the farm a c t u a l l y

used to compute
21 } ;

With this definition, the user could have defined the map (and added the map
stage to a pipeline) using the following code:

8this is the getnworkers method of the farm loadbalancer.
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1 std : : vector<f f n o d e ∗> w;
2 for ( int i =0; i<nworkers;++ i )
3 w. push back (new Worker ) ;
4 f f map myMap(new S p l i t ( ) , w, new Compose ( ) ) ;
5

6 . . .
7

8 myPipe . add stage (myMap) ;

13 Performance

Up to now we only discussed how to use FastFlow to build parallel programs,
either applications completely coded with skeletons, or FastFlow software accel-
erators. We want to shortly discuss here the typical performances improvements
got through FastFlow.

In skeleton application or in software accelerator, using a FastFlow farm
would in general lead to a performance increase proportional to the number of
workers used (that is to the parallelism degree of the farm). This unless:

• we introduce serial code fragments–in this case the speedup will be limited
according to the Amdahl law–or

• we use more workers than the available tasks

• or eventually the time spent to deliver a task to be computed to the worker
and retrieving a result from the worker are higher than the computation
time of the task.

This means that if the time spent to compute m tasks serially is Tseq, we
can expect the time spent computing the same m tasks with an nw worker farm
will be more or less

Tseq

nw . It is worth pointing out here that the latency relative
to the computation of the single task does not decrease w.r.t. the sequential
case.

In case a k stage FastFlow pipeline is used to implement a parallel compu-
tation, we may expect the overall service time of the pipeline is

TS = max{TS1
, . . . , TSk

}

As a consequence, the time spent computing m tasks is approximately m× TS

and the relative speedup may be quantified as

m×
∑k

i=1 TSi

m×max{TS1
, . . . , TSk

}
=

∑k
i=1 TSi

max{TS1
, . . . , TSk

}
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In case of balanced stages, that is pipeline stages all taking the same time to
compute a task, this speedup may be approximated as k, being

k∑
i=1

TSi = k × TS1

and
max{TS1

, . . . , TSk
} = TS1

14 Run time routines

Several utility routines are defined in FastFlow. We recall here the main ones.

• virtual int get_my_id()
returns a virtual id of the node where the concurrent activity (its svc
method) is being computed

• const int ff_numCores()
returns the number of cores in the target architecture

• int ff_mapThreadToCpu(int cpu_id, int priority_level=0)
pins the current thread to cpu_id. A priority may be set as well, but
you need root rights in general, and therefore this should non be specified
by normal users

• void error(const char * str, ...)
is used to print error messages

• virtual bool ff_send_out(void * task,
unsigned intretry=((unsigned int)-1),
unsigned int ticks=(TICKS2WAIT))

delivers an item onto the output stream, possibly retrying upon failre a
given number of times, after waiting a given number of clock ticks.

• double ffTime()
returns the time spent in the computation of a farm or of pipeline, includ-
ing the svc_init and svc_end time. This is method of both classes
pipeline and farm.

• double ffwTime()
returns the time spent in the computation of a farm or of pipeline, in the
svc method only.

• double ffTime(int tag)
is used to measure time in portions of code. The tag may be: START_TIME,
STOP_TIME or GET_TIME

• void ffStats(std::ostream & out)
prints the statistics collected while using FastFlow. The program must be
compiled with TRACE_FASTFLOW defined, however.
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