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Foster, What is the Grid?

Did you see J. Fortes invited talk?

Moreover, since this is not Euro-Seq, I assume applications 
we are focusing on should be parallel (and hopefully high-
performance).
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ASSIST idea

“moving most of the Grid 
specific efforts needed while 

developing high-performance 
Grid applications from 

programmers to grid tools 
and run-time systems”

ASSIST is a high-level programming environment for grid-aware // 
applications. Developed at Uni. Pisa within several national/EU projects. 

First version in 2001. Open source under GPL.
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P2 P3

P4P1

input output

Sequential or 
parallel module

Typed streams
of data items

Programmable, possibly 
nondeterministic input behaviour



native + standard
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ASSIST native or wrap 
(MPI, CORBA, CCM, WS)

TCP/IP, Globus,
IIOP CORBA,
HTTP/SOAP
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VP VP

VP VP

VP VP

An “input 
section” can be 
programmed in 
a  CSP-like way

Data items can be 
distributed (scattered, 

broadcasted, 
multicasted) to a set of 

Virtual Processes 
which are named 
accordingly to a 

topology

Data items partitions 
are elaborated by 
VPs, possibly in 

iterative way

while(...)
  forall VP(in, out)
  barrier

data is logically shared by 
VPs (owner-computes)

Data is eventually 
gathered accordingly to 

an user defined way

Easy to express 
standard paradigms
(skeltons), such as

farm, deal, haloswap, 
map, apply-to-all, 

forall, ...
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Application adaptivity

• Adaptivity aims to dynamically  
control program configuration (e.g. 
parallel degree) and mapping

• for performance (high-performance is a 
natural sub-target)

• for fault-tolerance (enable to cope with 
unsteadiness of resources, and some kind 
of faults) 

13
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• reconf-safe points
• in which points a parallel code can be safely reconfigured?

• reconf-safe point consensus
• different parallel activities may not proceed in lock-step fashion

• add/remove/migrate computation & data

2. Managing adaptivity

• QoS contracts
• Describing high-level QoS requirement for modules/applications

• “self-optimizing” module
• under the control of an autonomic manager
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reconf-safe points

• In which points of the code the execution 
can be reconfigured?

• low-level approach
• the programmer places in the code calls to a suitable API, e.g. 

safe_point();  
• error-prone, time-consuming

• ASSIST 
• automatically generated by the compiler, driven by program 

semantics
• no artifactual synchronization added, already existing 

synchronizations are rather instrumented

• overhead w.r.t. not adaptive code < 0.04%

15
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Distributed agreement

• The program reconfiguration actually 
starts only when all interested 
entities are ready to react

• i.e. all processes have reached a suitable 
reconf-safe point

• they agreed on which one
• fresh resources are up and running

• distributed protocol

16
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Basic operations

• Change parallelism degree

• Add n VPMs to parmod
• Remove n VPMs from a parmod

• Change mapping

• Move k VPs from a VPM to another
• Move a VPM from a PE to another
• Dynamic load-balancing as sequence of 

migrate operations

17
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Example: Add VPM

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

data
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Example: Add VPM

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

data

1. Gexec(newPE, VPM)
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VPM

Example: Add VPM

VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP VP

data

1. Gexec(newPE, VPM)

2. acquire consensus

3. move VP and data

Only 3. is in the critical path 18
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Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

# of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

Overheads (milliseconds)

GrADS papers reports overhead in the order of hundreds of seconds (K. Kennedy et al. 
2004),  this is mainly due to the stop/restart behavior, not to the different running env. 

19
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Demo Here !

run begin
with 1 VPM

lines arrives
slowly one

after the other
(par. degree=1)

fresh VPMs are 
added to the app.

lines arrives 
much faster

(par. degree=5)

reconf: release 
3 VPMs

lines arrives
a bit slower

(par. degree=2)

reconf: add the 
4 VPMs

4 fresh VPMs
are started

reconf. console



Managing adaptivity
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Management

Grid execution agent 

(Globus, ACE, ...)
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seqseq

parmod
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data

Execute
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config

broken
contracts
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parmod autonomic manager

1. monitor
• collect execution stats: machine load, VPM service 

time, input/output queues lenghts, ...

2. analyze
• instanciate performance models with monitored 

data, detect broken contract, in and in the case try to 
indivituate the problem

3. plan
• select a (predefined or user defined) strategy to 

reconvey the contract to valid status. The strategy is 
actually a list of mechanism to apply.

4. execute
• leverage on mechanism to apply the plan

Management



QoS contract
(of the experiment I’ll show you in a minute)

Perf. features QLi (input queue level), QLo (input queue
level), TISM (ISM service time), TOSM

(OSM service time), Nw (number of VPMs),
Tw[i] (VPMi avg. service time), Tp (parmod
avg. service time)

Perf. model Tp = max{TISM ,
∑n

i=1
Tw[i]/n, TOSM},

Tp < K (goal)

Deployment arch = (i686-pc-linux-gnu ∨ powerpc-apple-
darwin*)

Adapt. policy goal based

Management



Performance models:
an example (DP load balancing)

Time

24
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Performance models:
an example (DP load balancing)

Time

barrier

barrier

idle

T1=T2=3 T3=2 T4=1

n1=n2=n3=n4=7
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Performance models:
an example (DP load balancing)

Time

barrier

barrier

idle

T1=T2=3 T3=2 T4=1

n1=n2=n3=n4=7

barrier

barrier

T1=T2=3 T3=2 T4=1

n1=5  n2=5  n3=7  n4=12
idle

24
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N. of VPMs in parmod

Input stream pressure
VPMs aggregated power

QoS contract
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Conclusions 1/2

• Application adaptivity in ASSIST

• complex, but trasparent (no burden for the 
programmers)
• they should just define they QoS requirements
• perf. models are automatically generated from 

program structure (and don’t depend on seq. funct.)

• dynamically controlled, efficiently managed
• catch both platforms unsteadiness and code 

irregular behavior in running time
• performance models not critical, reconfiguration 

does not stop the application
• key feature for the grid
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Conclusions 2/2

• ASSIST cope with
• grid platform unsteadiness
• interoperability with standards

• and rely on them for many features

• high-performance
• app deployment problems on grid

• private networks, job schedulers, firewalls, ...

• We currently working on
• QoS of the whole application through hierarchy of 

managers
• components, fault-tolerance, efficient launch time 

mapping
• in cooperation with many coreGRID partners
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Thank you
• ASSIST is open source under GPL, available 

on the web

• http://www.di.unipi.it/Assist.html
• or search with google: 

ASSIST programming environment
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