LOGICA PER LA PROGRAMMAZIONE (A,B) - a.a. 2010-2011 TERZO APPELLO - 08/06/2011 SOLUZIONI PROPOSTE

ESERCIZIO 1

Si provi che la seguente proposizione è una tautologia:

$$(P \lor Q \Rightarrow R \lor S) \land (R \Rightarrow S) \Rightarrow (Q \land \neg P \Rightarrow S)$$

Soluzione

Si propone una tra le numerose possibili dimostrazioni.

$$Q \land \neg P$$

$$\Rightarrow \qquad \{\text{Sempl-}\land\}$$

$$Q$$

$$\Rightarrow \qquad \{\text{Intro-}\lor\}$$

$$P \lor Q$$

$$\Rightarrow \qquad \{\text{Ip: } P \lor Q \Rightarrow R \lor S\}$$

$$R \lor S$$

$$\Rightarrow \qquad \{\text{Ip: } R \Rightarrow S \}$$

$$S \lor S$$

$$\equiv \qquad \{ \text{Idempotenza } \}$$

$$S$$

ESERCIZIO 2

Si provi che la seguente formula è valida (P, Q e R contengono la variabile libera x, e a è una costante)

$$(\forall x. \neg (P \Rightarrow Q)) \land (R[a/x] \Rightarrow Q[a/x]) \Rightarrow (\exists x. \neg (R \land P))$$

Soluzione

Si propone una tra le numerose possibili dimostrazioni, ragionando per assurdo.

$$\neg(\exists x. \neg(R \land P))$$

$$\equiv \qquad \{\text{De Morgan, Doppia negazione}\}$$

$$(\forall x. R \land P)$$

$$\Rightarrow \qquad \{\text{Elim-}\forall\}$$

$$R[a/x] \land P[a/x]$$

$$\Rightarrow \qquad \{\text{Ip: } R[a/x] \Rightarrow Q[a/x]\}$$

$$Q[a/x] \land P[a/x]$$

$$\Rightarrow \qquad \{\text{Ip: } (\forall x. \neg(P \Rightarrow Q)), \text{ Elim-}\forall\}$$

$$(Q[a/x] \land P[a/x]) \land \neg(P[a/x] \Rightarrow Q[a/x])$$

$$\equiv \qquad \{\text{Elim-}\Rightarrow, \text{ De Morgan}\}$$

$$Q[a/x] \land P[a/x] \land P[a/x] \land \neg Q[a/x]$$

$$\equiv \qquad \{\text{Contraddizione, Zero}\}$$

$$F$$

ESERCIZIO 3

Utilizzando il calcolo del primo ordine si formalizzi il seguente enunciato dichiarativo, indicando esplicitamente l'interpretazione intesa:

"Non tutti gli studenti del secondo anno hanno superato tutti gli esami del primo, ma tutti ne hanno superato almeno uno"

Soluzione

Si propone una tra le numerose possibili formalizzazioni.

Dominio : $S \cup E$

- ullet S è l'insieme degli studenti
- $\bullet~E$ è l'insieme degli esami

Predicati: $\{\text{stud_secondo_anno}(\cdot), \text{esame_primo}(\cdot), \text{superato}(\cdot, \cdot)\}, \text{con}$

- $\bullet \ \alpha(\text{stud_secondo_anno})(d)$ vero se e solo se d è uno studente del secondo anno
- $\bullet \ \alpha(\text{esame_primo})(d)$ vero se e solo se d è un esame del primo anno
- $\alpha(\text{superato})(d, d')$ vero se e solo se lo studente d ha superato l'esame d'

Funzioni: Insieme vuoto

Costanti: Insieme vuoto

Formalizzazione dell'enunciato:

```
(\exists s, e. \  \, \text{stud\_secondo\_anno}(s) \land e \text{same\_primo}(e) \land \neg \text{superato}(s, e)) \\ \land \\ (\forall s. \  \, \text{stud\_secondo\_anno}(s) \Rightarrow (\exists e. \  \, \text{esame\_primo}(e) \land \text{superato}(s, e)))
```

ESERCIZIO 4

Assumendo a: array [0, n) of nat, si formalizzi il seguente enunciato:

"La somma di tutti gli elementi pari di **a** è strettamente maggiore della somma di tutti gli elementi di **a** con indice dispari"

NB: Leggere il testo con attenzione.

Soluzione

$$(\sum i : i \in [0, n) \land a[i]\%2 = 0. \ a[i]) > (\sum i : i \in [0, n) \land i\%2 = 1. \ a[i])$$

ESERCIZIO 5

Si dimostri la correttezza della seguente tripla:

$$\{n > 0 \land j \in [0, n) \land s = (\sum i : i \in [0, n) \land i \neq j \land multiplo(i, 3) . i) \}$$
 if j % 3 = 0 then s := s+j else skip fi
$$\{n > 0 \land s = (\sum i : i \in [0, n) \land multiplo(i, 3) . i) \}$$

dove $\operatorname{multiplo}(x,y)$ è vero se e soltanto se x è un multiplo di y. (Si ricorda che il valore dell'espressione a % b è il resto della divisione intera tra a e b).

Soluzione

Trattandosi di un comando condizionale dobbiamo dimostrare

(1)
$$(n > 0 \land j \in [0, n) \land s = (\sum i : i \in [0, n) \land i \neq j \land multiplo(i, 3) . i)) \Rightarrow def(j\%3 = 0)$$
 ovvia essendo $def(j\%3 = 0) \equiv T$

(2)
$$\{j\%3 = 0 \land n > 0 \land j \in [0, n) \land s = (\sum i : i \in [0, n) \land i \neq j \land multiplo(i, 3) . i)\}$$

$$s := s + j$$

$$\{n > 0 \land s = (\sum i : i \in [0, n) \land multiplo(i, 3) . i)\}$$

(3)
$$\{j\%3 \neq 0 \land n > 0 \land j \in [0, n) \land s = (\sum i : i \in [0, n) \land i \neq j \land multiplo(i, 3) . i)\}$$

$$\mathbf{skip}$$

$$\{n > 0 \land s = (\sum i : i \in [0, n) \land multiplo(i, 3) . i)\}$$

Osserviamo che $(j\%3 = 0) \equiv multiplo(j, 3)$.

Dimostrazione di (2)

Per l'assioma dell'assegnamento dobbiamo dimostrare (ignorando def(s+j) che è equivalente a T):

$$(j\%3 = 0 \land n > 0 \land j \in [0, n) \land s = (\sum i : i \in [0, n) \land i \neq j \land multiplo(i, 3) . i))$$

$$\Rightarrow$$

$$(n > 0 \land s + j = (\sum i : i \in [0, n) \land multiplo(i, 3) . i))$$

Partiamo dalla conclusione.

$$n > 0 \land s + j = (\sum i : i \in [0, n) \land multiplo(i, 3) . i)$$

$$\equiv \{ \mathbf{Ip:} \ j \in [0, n) \land multiplo(j, 3), \ \mathbf{Intervallo} \}$$

$$n > 0 \land s + j = (\sum i : i \in [0, n) \land i \neq j \land multiplo(i, 3) . i) + j \}$$

$$\equiv \{ \mathbf{calcolo} \}$$

$$n > 0 \land s = (\sum i : i \in [0, n) \land i \neq j \land multiplo(i, 3) . i)$$

Dimostrazione di (3)

Per l'assioma del comando vuoto, dobbiamo dimostrare:

$$\begin{split} (j\%3 \neq 0 \land n > 0 \land j \in [0,n) \land s = (\sum i \colon i \in [0,n) \land i \neq j \land multiplo(i,3) \ldotp i)) \\ \Rightarrow \\ (n > 0 \land s = (\sum i \colon i \in [0,n) \land multiplo(i,3) \ldotp i)) \end{split}$$

Partiamo dalla conclusione.

$$n > 0 \land s = (\sum i : i \in [0, n) \land multiplo(i, 3) . i)$$

$$\equiv \{ \mathbf{Ip:} \ j \in [0, n) \land \neg multiplo(j, 3), \ \text{Intervallo} \}$$

$$n > 0 \land s = (\sum i : i \in [0, n) \land i \neq j \land multiplo(i, 3) . i)$$

ESERCIZIO 6

Si consideri il seguente programma annotato, dove '*' è l'operatore di moltiplicazione:

```
 \left\{ x = A \wedge y = B \right\} \\ z := 0 \; ; \\ \left\{ \text{Inv}: \; x \; * \; (y - z) = A \; * \; B \; \right\} \left\{ t \colon \; |y| \right\} \\ \text{while } y \neq 0 \; \text{do} \\ \text{if } y > 0 \; \text{then } y, \; z := y - 1, \; z - 1 \; \text{else } y, \; z := y + 1, \; z + 1 \; \text{fi} \\ \text{endw} \\ \left\{ \text{Inv} \wedge y = 0 \right\} \right\} \\ \left\{ \; x \; * \; z = -(A \; * \; B) \; \right\}
```

Scrivere e dimostrare le proprietà di progresso e terminazione.

Soluzione

Terminazione

 $Inv \Rightarrow |y| \ge 0$

Ovvia, il valore assoluto di un intero è per definizione non negativo!

Progresso

Dobbiamo dimostrare la tripla:

$$\begin{aligned} \{Inv \, \wedge \, \mathbf{y} \neq 0 \, \wedge \, |\mathbf{y}| = V\} \\ & \quad \text{if } \mathbf{y} > 0 \text{ then } \mathbf{y}, \, \mathbf{z} := \mathbf{y} - 1, \, \mathbf{z} - 1 \text{ else } \mathbf{y}, \, \mathbf{z} := \mathbf{y} + 1, \, \mathbf{z} + 1 \text{ fi} \\ \{|\mathbf{y}| < V\} \end{aligned}$$

Trattandosi di un comando condizionale dobbiamo dimostrare

(1)
$$(Inv \land y \neq 0 \land |y| = V) \Rightarrow def(y > 0)$$

ovvia essendo $def(y > 0) \equiv T$

(2)
$$\{Inv \land y \neq 0 \land |y| = V \land y > 0\}$$

$$y, z := y-1, z-1$$

$$\{|y| < V\}$$

(3)
$$\{Inv \land y \neq 0 \land |y| = V \land y \leq 0\}$$

$$y, z := y+1, z+1$$

$$\{|y| < V\}$$

Tralasciamo di riportare le def essendo tutte equivalenti a T.

Dimostrazione di (2)

Per l'assioma dell'assegnamento dobbiamo dimostrare:

$$Inv \, \land \, \mathbf{y} \neq 0 \, \land \, |\mathbf{y}| = V \, \land \, \mathbf{y} > 0$$

$$\Rightarrow \qquad |\mathbf{y}\text{-}1| < V$$

ovvia, osservando y > 0 \Rightarrow (|y|>|y-1|).

Dimostrazione di (3)

Per l'assioma dell'assegnamento dobbiamo dimostrare:

$$Inv \, \land \, \mathbf{y} \neq 0 \, \land \, |\mathbf{y}| = V \, \land \, \mathbf{y} \leq 0$$

$$\Rightarrow \qquad |\mathbf{y} + 1| < V$$

ovvia, osservando y $\leq 0 \Rightarrow (|\mathbf{y}| > |\mathbf{y}+1|).$