Principles of Programming Languages [PLP-2014]
Exercises on Programming Languages - May 22, 2015

1) Consider the Pascal program to the right:
a) What is the reference environment at
the location in the program indicated
by <== (*)? That is, give the variables,
arguments, and procedures that are
visible (in scope) at this location.

b) The main program calls, P1, P1 calls
P3, and P3 calls P2. Draw the stack
layout of the subroutine stack after
these calls. Show the subroutine
frames (without their details) with
the static links.

c) Draw the specific subroutine frame
layout of procedure P1, indicating the
relevant information that it has to
contain.

program scopes(input, output)
procedure P1(Al : integer)
var X : integer
procedure P2(A2 : integer)
var Y : integer
begin (* body of P2 *)
. <== (%)
end;
procedure P3(A3 : integer)
var X : integer;
begin (* body of P3 *)
P2(X)
end
begin (* body of P1 *)
P3(X)
end
begin (* body of main program *)
P1(0)
end.

2) Consider the following outline of a program in a C-like language:

int add (int i) { return i + d;

void p () { const int d = 1;
print(add(20)); // (1)

void g () { const int d = 2;
print(add(20)); // (2)

}

a) If the language is dynamically scoped, what would be printed at points (1) and

(2)?

b) If the language is statically scoped, what would happen?

3) Inthe program to the right, for each
of the parameter passing modes
listed below show the value printed
by the program (the same
parameter passing mode is applied
to both arguments of addto):

* by value

* by reference

* by value/result

var z :

end

integer; /* global variable */
procedure addto(x, y)
begin
z = 1;
y :=y +x
end
begin /* body of main program */
z = 2;
addto(z, z);

write_integer(z)

1




4) Show a code fragment in which short-circuit semantics for or yield a different result
than complete-evaluation semantics.

5) FORTRAN only passes parameters in reference mode. C only passes parameters in
value mode. Pascal allows both modes. Show how you can get the effect of reference
mode in C and how you can get the effect of value mode in FORTRAN by appropriate
programming techniques. In particular, show in both FORTRAN and C how to get the
effect of the following code.

1 variable X, Y : integer;

2 procedure Accept (A:reference integer; B:value integer);
3 begin

4 A := B;

5 B := B+1l;

6 end; -- Accept

7 X:=1;

8 Y:=2;

9 Accept (X, Y);

10 -- at this point, X should be 2, and Y should be 2

11

6) C does not allow a procedure to be declared inside another procedure, but Pascal
does allow nested procedure declarations. What effect does this choice have on
runtime storage organization?

7) Define, in any programming language, a function, f, such that the evaluation of the
expression (a + f (b)) * (c + f (b)) when performed from left-to-right has a result that
differs from that obtained by evaluating right-to-left.

8) Consider the following function:

int foo (int x) {
1f (x>100) return x-10;
else return foo(foo(x+11l));

}

[s this tail recursive? Justify your answer.

9) The following code fragment is written in a pseudo-language which admits bounded
iteration (numerically controlled) expressed using the for construct.

z=1;

for i=1 to 5+z by 1 dof{
write (1) ;
z++; }

write(z);

What is printed by write?



10) Show what does the following program prints if the programming language has:
a) static scoping and deep binding
b) dynamic scoping and deep binding
c) static scoping and shallow binding
d) dynamic scoping and shallow binding

int y = 2;
int function f(int function h(int)) {
int y = 3;

return h();

}

int function g{(){
int x = y+1;
return x;

}

int function k() {
int y = 4;
return f(g);

}
write(k()) ;

In which of the four cases above the functional parameter has to be passed as a closure?

11) The following code is in a language with static scope and call by name, where
each binary operation is evaluated left-to-right. What does it print?

{int x=5;

int P(name int m) {
int x=2;
return m+x;

}

write (P (x++) + x);

}

12) Write in your preferred language an iterator (or a true iterator) acting on lists, that
returns its element in reverse order. Discuss the design choices.

13) Why the runtime stack can be eliminated by translating programs to Continuation
Passing Style?

14) Transform the following simple function definition in continutation passing style
function volume (int x, int y, int z) {

return x * y * z;

}

15) Write a simple program where call by name and call by need produce different
results.



