Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 4

* Lexical analysis: implementing a scanner

The Reason Why Lexical Analysis
is a Separate Phase

* Simplifies the design of the compiler

— LL(1) or LR(1) parsing with 1 token lookahead would
not be possible (multiple characters/tokens to match)

* Provides efficient implementation

— Systematic techniques to implement lexical analyzers
by hand or automatically from specifications

— Stream buffering methods to scan input

* Improves portability

— Non-standard symbols and alternate character
encodings can be normalized (e.g. UTFS8, trigraphs)

Interaction of the Lexical Analyzer
with the Parser

Source
Program

Attributes of Tokens

p—

<id, “y "> <assign, > <num, 31> <‘+’, > <num, 28> <‘*’, > <id, “x >

D

y := 31 + 28*x

token

(lookahead) C
tokenval

(token attribute)

Tokens, Patterns, and Lexemes

A token is a classification of lexical units

— For example: id and num

Lexemes are the specific character strings that make up a
token

— For example: abc and 123
Patterns are rules describing the set of lexemes
belonging to a token

— For example: “letter followed by letters and digits” and “non-

empty sequence of digits”

The scanner reads characters from the input till when it

recognizes a lexeme that matches the patterns for a
token

Example

Token | Informal description Sample lexemes
if Characters 1, f if
else Characters e, 1, s, else
relation @ <or>or<=or>=or==or!= <, 1=
id Letter followed by letter and digits | pi, score, D2
number Any numeric constant 3.14159, 0, 6.02¢23
literal Anything but “ sorrounded by “ | “core dumped”

Using Buffer to Enhance Efficiency
/—/%Current token

E = M * Ci*x =x |2 leof

lexeme beginning forward (scans
ahead to find
pattern match)

if forward at end of first half then begin
reload second half ;

forward : = forward +1
end

else if forward at end of second half then begin
reload first half ;
move forward to beginning of first half

end

else forward : = forward +1;

Algorithm: Buffered I/O with Sentinels
/—/%Current token

E = M:* eoffC | * * | leof eof
lexeme beginning forward (scans
ahead to find

forward : = forward +1;
if forward is at eof then begin pattern match)
if forward at end of first half then begin
reload second half ;
forward : = forward +1
end
else if forward at end of second half then begin
reload first half;
move forward to beginning of first half
end
else / * eof within buffer signifying end of input * /
terminate lexical analysis

end

Specification of Patterns for Tokens:
Definitions
* An alphabet X is a finite set of symbols (characters)

e Astring s is a finite sequence of symbols from X
— | s| denotes the length of string s
— ¢ denotes the empty string, thus |&| =0

* Alanguage is a specific set of strings over some fixed
alphabet X

Specification of Patterns for Tokens:
String Operations

* The concatenation of two strings x and y is
denoted by xy

 The exponentation of a string s is defined by

sO=¢
si=s"1s fori>0

note thatsge=¢es=s

10

Specification of Patterns for Tokens:
Language Operations

Union
LUM={s | sELors€&E M}

Concatenation

LM={xy | x€Landy € M}
Exponentiation

[O={e};, L'=1"11
Kleene closure

L* = Ui=O,...,oo L'
Positive closure

[t =U L'

i=1,...,0

11

12

Language Operations: Examples
L={A,B,C, D} D={1, 2, 3}

- LUD={AB,(CD,1,2,3}

 LD={A1, A2, A3,B1,B2,B3,C1,C2,C3,D1,D2,D3}
* L?={AA, AB, AC, AD, BA, BB, BC, BD, CA, ... DD}

o |4=[2%2 =77

 L*={All possible strings of L plus ¢}

e L*=L*-{¢}

e L(LUD)=7??

e L(LUD)*=7??

Specification of Patterns for Tokens:
Regular Expressions

Basis symbols:
— € is a regular expression denoting language {¢}

—aEX is a regular expression denoting {a}

If r and s are regular expressions denoting languages L(r)
and M(s) respectively, then

— (r) | (s) is aregular expression denoting L(r) U M(s)
— (r)(s) is a regular expression denoting L(r)M(s)
— ()" is a regular expression denoting L(r)”
— (r) is a regular expression denoting L(r)
To avoid too many brackets we impose:
— Precedence of operators: ()" > ()() > O)I0)

— Left-associativity of all operators
Example: (a)|((b)"(c)) can be written as a|bc

13

EXAMPLES of Regular Expressions

L={A,B,C,D} D={1, 2, 3}

A|B|C|D-=L
(A\|B|C|D)(A|B|C|D)=L2
(A|B|C|D)*=L*

(A[B[C|ID)((A[B|C|ID)|(1]2]3))=
L (LU D)

* Alanguage defined by a regular expression is called a
regular set

14

Algebraic Properties of
Regular Expressions

AXIOM

DESCRIPTION

ris=s]|r

iIs commutative

ri(s]t)=(r[s)|t

is associative

(r s)t=r(st)

concatenation is associative

r(s|t)=rs|rt
(s|t)r=sr]|tr

concatenation distributes over |

er=r
= ¢ Is the identity element for concatenation
r*=(r|e)* relation between * and ¢

p** = % * is idempotent

15

Specification of Patterns for Tokens:
Reqgular Definitions

* Regular definitions introduce a naming convention
with name-to-regular-expression bindings:
d, —r,
d,—r,

dn g rn
where each r;is a regular expression over
>2U{d,d,, .. d.}

* Anyd;in r;can be textually substituted in r; to obtain
an equivalent set of definitions

16

Specification of Patterns for Tokens:

Reqgular Definitions

* Example:

letter = A|B|...|Z2|a|b]|...|z
digit - 0|1|...|9
id — letter (letter | digit)"
* Regular definitions cannot be recursive:

digits — digit digits | digit wrong!

17

Specification of Patterns for Tokens:
Notational Shorthand

* The following shorthands are often used:

rt=rr
I’?=I"8
[a-z]=a|b|c|...|z

* Examples:
digit — [0-9]
num — digit* (. digit*)? (E (+

-)? digit*)?

18

Context-free Grammars and Tokens

* Given the context-free grammar of a

language, terminal symbols correspond to the
tokens the parser will use.

* Exam pIe: stmt — if expr then stmt
e The tokens are: if expr then stmt else stmt
if, then, else, €
relop, id, num expr — term relop term
term

term — id

num

19

20

Informal specification of tokens and

their attributes

Pattern of Token Attribute-Value
lexeme

Any ws - -

if if -

then then -

else else -

Any id id pointer to table entry

Any num num pointer to table entry

< relop LT

<= relop LE

= relop EQ

<> relop NE

> relop GT

>= relop GE

Regular Definitions for tokens

* The specification of the patterns for the
tokens is provided with regular definitions

if - 1if
then — then
else — else
relop>< | <= | <> | > | >=| =
id — letter (letter | digit)”
num — digit* (. digit")? (E (+ | -)? digit*)?

21

From Regular Definitions to code

From the regular definitions we first extract a
transition diagram, and next the code of the
scanner.

We do this by hand, but it can be automatized.

In the example the lexemes are recognized either
when they are completed, or at the next
character. In real situations a longer lookahead
might be necessary.

The diagrams guarantee that the longest lexeme
is identified.

Coding Regular Definitions in
Transition Diagrams

relop%<|<=‘<>‘>|>=‘=

start <

= return(relop, LE)
2—>@) return(relop, NE)
other return(relop, LT)
return(relop, EQ)
6 = return(relop, GE)
ather return(relop, GT)

id — letter (letter | digit)" yetter or digit

tart lett 0 th
star >@ crler >@ other >@*return(gett0ken(),

install_id()) 23

Coding Regular Definitions in
Transition Diagrams (cont.)

Transition diagram for unsigned numbers
num — digit* (. digit*)? (E (+ ‘ -)? digit*)?

digit digit digit

24

From Individual Transition Diagrams
to Code

* Easy to convert each Transition Diagram into
code

* Loop with multiway branch (switch/case)
based on the current state to reach the
instructions for that state

* Each state is a multiway branch based on the
next input channel

25

Coding the Transition Diagrams for Relational Operators

tart < =
sta return(relop, LE)

>
ﬁ> return(relop, NE)
other

. return(relop, LT)

return(relop, EQ)

>. return(relop, GE)
TOKEN getRelop()

{ TOKEN retToken = new(RELOP); return(relop,GT)
while(1l) { /* repeat character processing
until a return or failure occurs */
switch(state) {
case 0: c¢ = nextChar();
if(c == '<') state = 1;
else if (c '="') state = 5;
else if (c '>’) state = 6;
else fail() ; /* lexeme is not a relop */
break;
case 1:

case 8: retract();
retToken.attribute = GT;
return(retToken);

Putting the code together

token nexttoken()
{ while (1) {
switch (state) {
case 0: ¢ = nextchar();

if (c==blank || c==tab || c==newline) {
state = 0;
lexeme beginning++;
}
else if (c==‘<’) state = 1;
else if (c==‘=") state = 5;
else if (c==‘>") state = 6;
else state = fail();
break;
case 1:
case 9: c = nextchar();
if (isletter(c)) state = 10;

else state = fail();
break;

case 10: ¢ = nextchar();
if (isletter(c)) state =1
else if (isdigit(c)) state
else state = 11;
break;

0;

= 10;

The transition diagrams
for the various tokens
can be tried sequentially:
on failure, we re-scan
the input trying another
diagram.

int fail ()
{ forward = token beginning;

switch (state) {

case 0: start = 9; break;
case 9: start = 12; break;
case 12: start = 20; break;
case 20: start = 25; break;

0

ase 25: recover(); break;
default: /* error */

}

return start;

Putting the code together:
Alternative solutions

* The diagrams can be checked in parallel

 The diagrams can be merged into a single
one, typically non-deterministic: this is the
approach we will study in depth.

Lexical errors

* Some errors are out of power of lexical
analyzer to recognize:

fi (a == £(x)) ..

* However, it may be able to recognize errors
like:
d = 2r
e Such errors are recognized when no pattern
for tokens matches a character sequence

29

30

Error recovery

Panic mode: successive characters are ignored
until we reach to a well formed token

Delete one character from the remaining input

Insert a missing character into the remaining
input

Replace a character by another character
Transpose two adjacent characters

Minimal Distance

The Lex and Flex Scanner Generators

* Lex and its newer cousin flex are scanner
generators

* Scanner generators systematically translate
regular definitions into C source code for
efficient scanning

* Generated code is easy to integrate in C
applications

31

Creating a Lexical Analyzer with Lex
and Flex

lex
source > lex.yy.cC
program
lex.1
lex.yy.c > a.out
input sequence
stream of tokens

32

Lex Specification

* A lex specification consists of three parts:
regular definitions, C declarations in ${ %}

o O
%%

translation rules
S o
OO

user-defined auxiliary procedures

e The translation rules are of the form:

p, 1 action, }
p, { action, }

p, 1 action, }

33

Regular Expressions in Lex

x match the character x
\ . match the character .
“string” match contents of string of characters
match any character except newline
~ match beginning of a line
$ match the end of a line
[xyz] match one character x, y, or z (use \ to escape —)
[*xyz] match any character except x, y, and z
[a-z] matchoneofato z
r* closure (match zero or more occurrences)
r+ positive closure (match one or more occurrences)
r? optional (match zero or one occurrence)
r,r, match r, then r, (concatenation)
ry|r, match r, or r, (union)
(r) grouping
r,\r, match r, when followed by r,
{d} match the regular expression defined by d

34

Example Lex Specification 1

Contains
% { the matching

Translation finclude <stdio.h> lexeme
rules \ . l

[0-9]1+ { printf(“%s\n”, yytext); }

N ;\n] Invokes
main () — the lexical

{ yylex() & <

} analyzer

lex spec.1
gce lex.yy.c -11
./a.out < spec.l

JI

Translation

Example Lex Specification 2

51

#include <stdio.h> Regular

int ch =0, wd =0, nl = 0;

rules \ delim [\el+

\n { ch++; wd++; nl++; }
~*{delim} { ch+=yyleng; }
{delim} { ch+=yyleng; wd++; }
. { ch++; }

main ()

{ yylex();

printf ("%$8d%8d%8d\n", nl, wd, ch);
}

definition

36

Example Lex Specification 3

51

#include <stdio.h> Regular

: s} definitions

rules letter [A-Za-Z]
\\\\\N‘id {letter} ({letter} | {digit}) *

%%

{digit}+ { printf (“number: %s\n”, yytext); }
{id} { printf (“ident: %$s\n”, yytext); }
{ printf (“other: %s\n”, yytext); }

o®
o®

main ()

{ yylex();
}

37

Example Lex Specification 4

%${ /* definitions of manifest constants */
#define LT (256)

)

delim [\t\n]

ws {delim}+

letter [A-Za-Zz] Return
digit [0-9]

id {letter} ({letter} | {digit})* t(ﬂierltC)
zgmber {digit}+(\.{digit}+)?(E[+\-]1?{digit}+)?2 parser
{ws} {1}

if {return IF;} TOken

then {return THEN;} attribute

else {return ELSE.

{id} {yylval = install id(); return ID;}

{number} {yylval = install num(return NUMBER; }

“< {yylval = LT; return RELOK;

“<=" {yylval = LE; return RELOP;

“= {yylval = EQ; return RELOP;}

“<> {yylval = NE; return RELOP;}

“> {yylval = GT; return RELOP;}

;::“ {yylval = GE; return RELOP;} B InStaH yytext as

int install id() < identifier in symbol table

