Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 10

e Continuation of the course
* Syntax-Directed Translation (1)

Continuation of the course

* [Nov-Dec 2014] 22 h
— Introduction to compilers
— Lexical analysis
— Parsing
 [Feb-May 2015] ~50 h
— Syntax directed translation
— Intermediate code generation
— Code generation

— Concepts of Programming Languages
— <to be detailed...>

— May 27-29: 2" Mid-Term Exam
— Can be taken by everybody

Continuation of the course (2)

Office hours: Wednesday, 4-6 pm

9 Credits vs. 12 Credits: still a problem for
somebody?

Important: no lectures on
— Friday, March 6

— Tuesday, March 17

— Friday, March 20

Need to recover several lectures with 3
lectures per week

— Possible days and hours: Thursday, 2-4 pm

The Structure of the Front-End

Source
Progra Token
(Charact- stream.

stream)

/
,»~ Develop \
\

,’ parser and code \
/
2 generator for translator®,

ntermediate
presentation

Syntax-Directed Translation

Briefly introduced in the first lectures

General technique to “manipulate” programs, based
on context-free grammars
Tightly bound with parsing

Will be used for static analysis (type checking) and
(intermediate) code generation

Several other uses:

— Generation of abstract syntax trees

— Evaluation of expressions

— Implementation of Domain Specific Languages (see
example on typesetting math formulas in the book)

Partly supported by parser generators like Yacc

Syntax-Directed Definitions

A syntax-directed definition (or attribute grammar)
binds a set of semantic rules to productions

Terminals and nonterminals have attributes holding
values, which are set by the semantic rules

A depth-first (postorder) traversal algorithm
traverses the parse tree executing semantic rules to
assign attribute values

After the traversal is complete the attributes contain
the translated form of the input

Example: evaluating expressions with
synthesized attributes

Production Semantic Rule
L—En print(E.val)
E—=FE+T E.val := E,.val + T.val
E—=T E.val :=T.val

T—T *F T.val :=T,.val * F.val
T—F T.val .= F.val
F—(E) F.val := E.val

F — digit F.val := digit.lexval

A Syntax-Directed Definition (SDD) or Attribute Grammar

Example: An Annotated Parse Tree

/L
Eval=16
E’/Val =14 T'Tal =2 Productions
L—En
Eval=9 Twal=5 Fval=5 E—E+T
\ \ =
T—T *F
T.val =9 Fval=5 . Fl
‘ F—(E)
F.val ‘= 9 F — digit

Annotating a Parse Tree
with Depth-First Traversals

procedure visit(n : node);
begin
for each child m of n, from left to right do
visit(m);
evaluate semantic rules at node »
end

Depth-First Traversals (Example)

E:;al_ =14
et 5| Rt
Pualzo/ ||

9 + 5

16,
T.\‘/al =2
Fval =5
2

L

-
-
-
-

7 print(16)

-
-
-
-
-

Semantic Rules

print(E.val)
E.val .= E,.val + T.val
E.val :=T.val

T.val :=T,.val * Fval
T.val := F.val

F.al .= E.val

F.val := digit.lexval

10

Attributes

 Each grammar symbol can have any number of
attributes

* Attribute values typically represent
— Numbers (literal constants)
— Strings (literal constants)

— Memory locations, such as a frame index of a local
variable or function argument

— A data type for type checking of expressions
— Scoping information for local declarations
— Intermediate program representations

11

Synthesized vs. Inherited Attributes

* Given a production
A— QO
then each semantic rule is of the form
b := f(c,,C,,...,C)
where fis a function and c; are attributes of A
and o, and either

— b is a synthesized attribute of A

— b is an inherited attribute of one of the grammar
symbols in o

12

Synthesized Versus Inherited
Attributes (cont’d)

Production SemW inherited
D—TL (Lin)= Ttype
T — int :: ‘integer’

i ; id -— Lin synthesized

13

S-Attributed Definitions

* A syntax-directed definition that uses
synthesized attributes exclusively is called an
S-attributed definition (or S-attributed
grammar)

* A parse tree of an S-attributed definition can
be annotated with a single bottom-up
traversal

* [Yacc/Bison only support S-attributed
definitions]

14

Example: generation of
Abstract Syntax Trees

* A parse tree is called a concrete syntax tree

* An abstract syntax tree (AST) is defined by the
compiler writer as a more convenient
intermediate representation

/\\ ,
/\\ PR

| AN
\ id id

id id

Concrete syntax tree Abstract syntax tree

S-Attributed Definitions for Generating
Abstract Syntax Trees

Production Semantic Rule

E—E +T E nptr := mknode('+, E,.nptr, T.nptr)

E—E -T E nptr := mknode(-" , E, .nptr, T.nptr)

E—=T E nptr .= T.nptr

T—T, *id T.nptr := mknode(“*’ , T, .nptr, mkleaf(id, id.entry))
T—T,/id T.nptr := mknode('/, T, .nptr, mkleaf(id, id.entry))
T—id T nptr := mkleaf(id, id.entry)

16

Generating Abstract Syntax Trees

Synthesize
AST

E. nr)tr\ + ftr\\ \
///// \\\\\ Tl
1 1 ~
| \
T nptr, T.nptr, id ! K
\|| I| : \
||\‘ . 1 | \l
id “\‘ id | Y ;
|
\\‘\ |‘ + :
\ \ 1
Nvel Y {
~--2I1II77d *
\\\
"""" id id

17

Example Attribute Grammar with
Synthesized + Inherited Attributes

* Grammar generating declaration of typed variables
* The attributes add typing information to the symbol table

via side effects

Production Semantic Rule

D—TL L.in := T.type

T — int Ttype := ‘integer’

T — real Ttype := ‘real’

L—L,,id L,.in := L.in; addtype(id .entry, L.in)
L—id addtype(id.entry, L.in)

Synthesized: T'.type, id.entry
Inherited: L.n "

Evaluation order of attributes

* In presence of inherited attributes, it is not obvious in which order
* the attributes can be evaluated

Grammar generating declaration of typed variables
* The attributes add typing information to the symbol table

via side effIe’gt‘)sduction Semantic Rule
D—TL L.in := T.type
T — int Ttype := ‘integer’
T — real Ttype := ‘real’
L—L,,id L,.in := L.in; addtype(id .entry, L.in)
L—1id addtype(id.entry, L.in)

Synthesized: T'.type, id.entry
Inherited: L.n "

Evaluation order of attributes

* |n presence of inherited attributes, it is not
obvious in what order the attributes should be

evaluated
e Attributes of a nonterminal in a production

may depend in an arbitrary way on attributes
of other symbols

e The evaluation order must be consistent with
such dependencies

Dependency Graphs for
Attributed Parse Trees

Aa
A= XY // \\ Aa:=f(Xx,Yy)
Xx Yy
Aa
SN Xx :=f(Aa,Yy)
XX Yy

Direction of '
— ﬂ&\\ Yy :=f(A.a,XX)

value dependence XX Yy

21

Dependency Graphs with Cycles?

* Edges in the dependency graph determine the
evaluation order for attribute values

* Dependency graphs cannot be cyclic

Error: cyclic dependence

22

Example Annotated Parse Tree

D—TL
T — int

T — real
L—L, ,id
L—id

L.in := Ttype
T'type := ‘integer’
Ttype := ‘real’

L,.in := L.in; addtype(id.entry, L.in)
addtype(id .entry, L.in)

D
/ \
T.type = ‘real’ L.in = ‘real’
real L.n=‘real’ |, id,.entry

Lin = ‘real” , id, .entry

id, .entry

23

Example Annotated Parse Tree with

D—TL
T — int

T — real
L—L, ,id
L—id

Dependency Graph

L.in := Ttype
T'type := ‘integer’
Ttype := ‘real’

L,.in := L.in; addtype(id.entry, L.in)
addtype(id .entry, L.in)

Tt /11)\

ype = ‘rea

et // \}ﬁltry
// T

Lin= ‘real’ 1d entry

1

id, .entry

24

Evaluation Order

* Atopological sort of a directed acyclic graph
(DAG) is any ordering m,, m,, ..., m_ of the
nodes of the graph, such that it m;—m; is an
edge, then m; appears before m,

* Any topological sort of a dependency graph
gives a valid evaluation order of the semantic
rules

25

Example Parse Tree with
Topologically Sorted Actions

D Topological sort:

/‘><'\ . Get id, .entry
T, type = ‘reall® ()L, .in = ‘reals) . Get id,.entry
\ ﬁ(\k
%gl = rea‘ @ld entry
T

. Get id;.entry
@L In = real‘ @ld entry

1

2

3
4. T,.type= real’
5. L,an=T,.type
6
7

id, .entry 8

9.

1

. addtype(id,.entry, L, .in)

. L,an=L,.in

. addtype(id, .entry, L,.in)
L;.in=L,.in

0. addtype(ld entry, L,.in)

26

Evaluation Methods

* Parse-tree methods determine an evaluation order
from a topological sort of the dependency graph
constructed from the parse tree for each input

* Rule-base methods the evaluation order is pre-
determined from the semantic rules

e Oblivious methods the evaluation order is fixed and
semantic rules must be (re)written to support the
evaluation order (for example S-attributed
definitions)

27

L-Attributed Definitions

* A syntax-directed definition 1s L-attributed if each
inherited attribute of X, on the right side of A — X, X,
... X depends only on

1. the attributes of the symbols X, X;, ..., X; |
2. the inherited attributes of A

A.a
Possible dependences
of inherited attributes m>

28

L-Attributed Definitions (cont’d)

e [-attributed definitions allow for a natural order of
evaluating attributes: depth-first and left to right

A—=XY

X.izzzy/A%szzY.s)51 1=§.i
J:=A.S
//4X Y.i:=X.sY»§* As:=Ys

* Note: every S-attributed syntax-directed definition 1s also
L-attributed (since it doesn’t have any inherited attribute)

29

Syntax-Directed Translation Schemes

* A translation scheme 1s a CF grammar
embedded with semantic actions

rest — + term { print(“+") } rest

\ J
Y

Embedded
semantic action

rest

\
AY
\
AY
AY
AY
\
\
AY
AY
AY
AY
\
AY
.

+ term {print(“+") } rest
30

Syntax-Directed Translation Schemes

Translation Schemes are an alternative notation
for Syntax-Directed Definitions

The semantic rules can be suitably embedded 1nto
productions

SDT’s can always be implemented by building the
parse tree first, and then performing the actions in
left-to-right depth-first order

In several cases they can be implemented during
parsing, without building the whole parse tree first

31

Postfix Translation Schemes

* If the grammar is LR (thus can be parsed
bottom-up) and the SDD is S-attributed
(synthesized attributes only), semantic actions
can be placed at the end of the productions

* They are executed when the body is reduced
to the head

* These are called postfix SDTs

Example Translation Scheme
for Postfix Notation

expr — expr + term { print("+") }
expr — expr - term { print("-") }
expr — term

term — 0 { print(“07) }
term — 1 { print(“17) }

term — 9 { print(“97) }

33

Example Translation Scheme (cont’d)

expri” " term e
f ST T print(“57) 3
term,.. 5

Translates 9-5+2 into postfix 95-2+34

Implementation of Postfix SDTs

Postfix SDTs can be implemented during LR
parsing
The actions are executed when reductions occur

The attributes of grammar symbols can be put on
the stack, together with the symbol or the state
corresponding to it

Since all attributes are synthesized, the attribute
for the head can be computed when the
reduction occurs, because all attributes of
symbols in the body are already computed

