Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 15

* Code generation (1)

Recap (last lecture)

e Static checking vs. Dynamic checking of
program properties

* Type checking
— Type expressions
— Name/Structural Equivalence of types

— Type systems: inference rules in Post system
notation

— Type conversion and coercion

On Code Generation

* Code produced by compiler must be correct
— Source-to-target program transformation should
be semantics preserving
* Code produced by compiler should be of high
quality
— Effective use of target machine resources

— Heuristic techniques should be used to generate
good but suboptimal code, because generating
optimal code is undecidable

Position of a Code Generator in the
Compiler Model

Intermediate Intermediate
code code

ource
program

Target
program

Lexical error
Syntax error
Semantic error

Code Generation: tasks

* Code generation has three primary tasks:
— Instruction selection
— Register allocation and assigment
— Instruction ordering

 The compiler can include an optimization

phase (mapping IR to optimized IR) before the
code generation

* We consider some rudimentary optimizations
only

Input of the Code Generator

 The input of code generation is the IR of the
source program, with info in the symbol table

* Assumptions:

— In general we assume that the IR is three-address
code

— Values and names in the IR can be manipulated
directly by the target machine

— The IR is free of syntactic and static semantic errors

— Type conversion operators have been introduced
where needed

Target Program Code

* The back-end code generator of a compiler
may generate different forms of code,
depending on the requirements:

— Absolute machine code (executable code)

— Relocatable machine code (object files for linker:
allows separate compilation of subprograms)

— Assembly language (facilitates debugging, but
requires an assembly step)

Target Machine Architecture

Defines the instruction-set, including addressing
modes: high impact on the code generator

RISC (reduced instruction set computer): many register,
three address instructions, simple addressing modes

CISC (complex instruction set computer): complex
addressing modes, several register classes, variable-
length instructions (possibly with side effects)

Stack-based machines: operands are put on the stack
and operations act on top of stack (held in register). In
general less efficient.

— Revived thanks to bytecode forms for interpreters like the
Java Virtual Machine

Our Target Machine

e We consider a RISC-like machine with some CISC-like
addressing modes

* Assembly code as target language (for readability)

e Our (hypothetical) machine:
— Byte-addressable (word = 4 bytes)

— Has n general purpose registers RO, R1, ..., Rn-1
— Simplified instruction-set: all operands are integer

— Three-address instructions of the form
op dest, srcl, src2

The Target Machine: Instruction Set

ID r, x (load operation: r = x)
ST x, r (store operation: x = r)

OP dst, srcl, src2 where OP=ADD,SUB,...:
apply OP to srcl and src2, placing the result in ds?).

BR L (unconditional jump: goto L)

Bcond r, L (conditional jump: if cond(r) goto L)
es: BLTZ r, L (if(r<0)gotolL)

The Target Machine: Addressing Modes

* Addressing modes (c 1s an integer):

Mode Form Address Added Cost
Absolute M M 1
Register R R 0
Indexed c(R) c+contents(R) 1

Indirect register | *R contents(R) 0
Indirect indexed | *c(R) | contents(c+contents(R)) 1
Literal #c N/A 1

11

Instruction Costs

* Machine 1s a simple, non-super-scalar processor with
fixed instruction costs

* Realistic machines have deep pipelines, various kinds
of caches, parallel instructions, etc.

* Define:

cost (OP dst, srcl, src2) = 1
+ cost(dst-mode)
+ cost(srcl-mode)
+ cost(src2-mode)

12

Examples

Instruction Operation Cost
LD RO,R1 Load content(R1) into register RO 1
LD RO,M Load content(M) into register RO 2
ST M,RO Store content(R0O) into memory location RO 2
BR 20 (RO) Jump to address 20+contents(RO)) 2

ADD RO RO #1
MUL RO,M, *12 (R1)

Increment RO by 1 2
Multiply contents(M) by contents(12+contents(R1))
and store the result in RO 3

13

Instruction Selection

* Instruction selection depends on (1) the level of the
IR, (2) the 1nstruction-set architecture, (3) the desired

quality (e.g. efficiency) of the generated code

* Suppose we translate three-address code

X:=y+Z

e Then

to: |LD RO,y \\ RO=y
ADD RO,RO0,z \\ RO=RO+z
ST x,RO0 \\ x=RO

ot ID RO, a
a-=a ADD RO,RO,#1

Cost=06

Better ‘ ‘ Best% ST a,R0

ADD a,a,#l

Cost=4 INC a Cost=2

(if available)

14

Need for Global Machine-Specific
Code Optimizations

* Suppose we translate three-address code

x:=y+z to: LD RO,y \\ RO=y
ADD RO,R0,z \\ RO=RO+z
ST x,R0 \\ x=RO
 Then, we translate
a:=b+c LD RO,b
d:=a+e tO: ADD RO,RO,c
ST a,R0
ID RO,a < Redundant

ADD RO,RO,e
ST 4d,R0

* We can choose among several equivalent instruction
sequences =2 Dynamic programming algorithms
15

Register Allocation and Assighment

* Efficient utilization of the limited set of registers is
important to generate good code

* Registers are assigned by

— Register allocation to select the set of variables that will
reside in registers at a point in the code

— Register assignment to pick the specific register that a
variable will reside in

* Finding an optimal register assignment in general is
NP-complete

16

Choice of Instruction Ordering

* When instructions are independent, their evaluation
order can be changed

a+b- (c+d) *e

-

tl
t2
t3
t4

:=a+b
:=c+d
:=e*t2
:=t1-t3

reorder

)

t2:
=e*t2
:=a+b
:=t1-t3

t3
tl
t4

=c+d

* The reordered sequence could lead to a better target

code

17

Towards Flow Graphs

* |In order to improve instruction selection, register
allocation and selection, and instruction ordering, we
structure the input three-address code as a flow graph

* This allows to make explicit certain dependencies
among instructions of the IR

* Simple optimization techniques are based on the
analysis of such dependencies
— Better register allocation knowing how variables are
defined and used

— Better instruction selection looking at sequences of three-
address code statements

Flow Graphs

A flow graph is a graphical representation of a
sequence of instructions with control flow
edges

A flow graph can be defined at the
intermediate code level or target code level

Nodes are basic blocks, sequences of
instructions that are always executed together

Arcs are execution order dependencies

19

Basic Blocks

* A basic block is a sequence of instructions s.t.:
— Control enters through the first instruction only

— Control leaves the block without branching,
except possibly at the last instruction

2) j=1

2) j=1

3) t1=10*1i 3) t1=10*1i

4) t2=t1l+j 4) t2=t1l+j

5) t3=8*t2 5) t3=8*t2

6) t4=t3-88 6) t4=t3-88

7) a[t4]=0.0 7) a[t4]1=0.0

8) j=j+1 8) j=j+1

9) if j<=10 goto (3) 9) if j<=10 goto (3)

10) i=i+l

11) if i<=10 goto(2) 10) i=i+1

12) i=1 11) if i<=10 goto(2)
12) i=1 20

Basic Blocks and Control Flow Graphs

* A control flow graph (CFG) is a directed graph with
basic blocks B; as vertices and with edges B; — B; iff B,
can be executed immediately after B,

* Then B, is a predecessor of B, B; is a successor of B,

2) j=1
2) j=1
3) t1=10*i < 3) t1=10*i
4) t2=t1+j 4) t2=t1+j
5) £3=8*t2 5) £3=8*t2
6) t4=t3-88 6) t4=t3-88
7) a[t4]=0.0 7) a[t4]=0.0
8) Jj=j+1 8) j=j+1
9) if j<=10 goto (3) 9) if j<=10 goto (3)
10) i=i+1
11) if i<=10 goto(2) 10) i=i+1
12) i=1 (:: 11) if i<=10 goto(2)
12) i=1 21

Partition Algorithm for Basic Blocks

Input: A sequence of three-address statements
Output: A list of basic blocks with each three-address statement
in exactly one block

1. Determine the set of leaders, the first statements in basic blocks
a) The first statement is the leader
b) Any statement that is the target of a goto is a leader
c) Any statement that immediately follows a goto is a leader

2. For each leader, its basic block consist of the leader and all
statements up to but not including the next leader or the end
of the program

22

Partition Algorithm for Basic Blocks:

Example
1) i=1
2) j=1
3) t1=10*1
4) t2=t1+j
5) t3=8*t2
6) t4=t3-88
7) a[t41=0.0
8) Jj=Jj+1
9) if j<=10 goto(3)
10) i=i+1
11) if i<=10 goto(2)
12) i=1
13) t5=i-1
14) t6=88*t5
15) afte] = 1.0
16) i=i+l
17) if i<=10 goto(13)

Leaders

()
(b)
(b)

(c)

(c)
(b)

.

N NN

1) i=1 (a)
2) j=1 (b)
3) t1=10*i (b)
4) t2=t1+]

5) t3=8*t2

6) t4=t3-88

7) a[t4]1=0.0

8) J=Jj+1

9) if j<=10 goto(3)

10 i=i+l (c)
11) if i<=10 goto(2)

12) i=1 (c)
13) t5=i-1 (b)
14) t6=88*t5

15) a[té] = 1.0

16) i=i+1

17) if i<=10 goto(1l3)

Loops

* Programs spend most of the time executing

0ops

* |dentifying and optimizing loops is important
during code generation

* Aloop is a collection of basic blocks, such that

— All blocks in the collection are strongly connected

— The collection has a unique entry, and the only
way to reach a block in the loop is through the
entry

24

Loops (Example)

AV VA

1) i=1 (a)
2) j=1 (b)
3) t1=10*1i (b)
4) t2=t1l+j

5) t3=8*t2

6) t4=t3-88

7) a[t4]1=0.0

8) J=Jj+1

9) if j<=10 goto(3)

10) i=i+1 (c)
11) if i<=10 goto(2)

12) i=1 (c)
13) t5=i-1 (b)
14) t6=88*t5

15) a[t6] = 1.0

16) i=i+1

17) if i<=10 goto(1l3)

Bl

B2

B3

B4

B5

B6

Strongly connected
components:

ScC={ {B2,B3,B4},
{B3}, {B6} }

Entries:
B2, B3, B6

25

Transformations on Basic Blocks

A code-improving transformation is a code
optimization to improve speed or reduce code size

Global transformations are performed across basic
blocks

Local transformations are only performed on single
basic blocks

Transformations must be safe and preserve the
meaning of the code

— A local transformation is safe if the transformed basic
block is guaranteed to be equivalent to its original form

We will sketch several local optimization techniques

26

Equivalence of Basic Blocks

 Two basic blocks are (semantically) equivalent
if they compute the same set of expressions

b =0

tl :=a + b

t2 = c * tl a = c * a
a = t2 b =0

c*a a := c*a
0 b :=0

"

a :
b :

Blocks are equivalent, assuming t1 and t2 are dead: no longer used (no longer live)

27

DAG representation of basic blocks

1. One leaf for the initial value of each variable in the block

2. One node N for each statement s. Children are statements
producing values of needed operands

3. Node N is labeled by the operator of s, and by the list of
variables for which it defines the last value in the block

4. “Output nodes” are labeled by live on exit variables,
determined with global analysis

Example:

b,d

(o TN o TN o aN |
o mnn
P O O

I+ 1 +
R Q AN

bo Co

Common-Subexpression Elimination

* Remove redundant computations

a :=b + c a :=b + c
b :=a-4d b :=a-d
c :=b + c c :=b + c
d :=a -d d :=Db

— *
tl b c tl := b * c
t2 := a - tl
t2 := a - tl
L3 :=b *c td = £2 + t1
t4 := t2 + t3 —

29

Dead Code Elimination

e Remove unused statements

b :
a :

a
b

+
+

1
o]

j> b :=a+1

Assuming a 1s dead (not used)

* |[n the DAG: remove any root having no live
variable attached, and iterate

if true goto L2

v

Remove unreachable code

30

Algebraic Transformations

* Change arithmetic operations to transform
blocks to algebraic equivalent forms

tl := a - a tl := 0
t2 := b + tl t2 := Db
t3 = 2 * 2 t3 = t2 <1

— Algebraic 1dentities (e.g. comm/assoc of operators)
—> has to conform the language specification

— Reduction 1n strength

— Constant folding

31

Renaming Temporary Variables

* Temporary variables that are dead at the end
of a block can be safely renamed

tl := b + ¢ tl := b + ¢
t2 := a - tl t2 := a - tl
tl :=t1l * d t3 = t1 * d
d := t2 + tl1 d := t2 + t3

Normal-form block

Interchange of Statements

* Independent statements can be reordered

tl := b + ¢ tl := b + ¢
t2 = a - tl t3 = t1 * d
t3 = t1 * d t2 = a - tl
d := t2 + t3 d := t2 + t3

Note that normal-form blocks permit all
statement interchanges that are possible

