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Introduction 
A serious drawback in the application of modern data processing systems is the 

cost and time consumed in programming these complexes. The user's problems 
and their solutions are described in a natural language such as English. To utilize 
the services of a data processor, it is necessary to convert this language descrip- 
tion into machine language, to wit, program steps. Recently, attempts have 
arisen to bridge the gap between these two languages. The method has been to 
construct languages (called problem oriented languages, or POL) that are 

(i) rich enough to allow a description of a set of problems and their solutions; 
(ii) reasonably close to the user's ordinary language of description and solu- 

tion; and 
(iii) formal enough to permit a mechanical translation into machine language. 

COBOL and ALGOL are two examples of POL. 
The purpose of this investigation is to gain some insight into the syntax of 

POL, in particular ALGOL [1]. Specifically, the method of defining constituent 
parts of ALGOL 60 is abstracted, this giving rise to a family of sets of strings; and 
mathematical facts about the resulting family deduced. Now an ALGoL-like 
definable language (we hesitate to use the inclusive term "POL") may be viewed 
either as one of these sets (the set of sentences) ; or else, as a finite collection of 
these sets, one of which is the set of sentences, and the remaining, the constituent 
parts of the language used to construct the sentences. This is in line with one 
current view of natural languages [4, 5, 6]. The defining scheme for ALOOL turns 
out to be equivalent to one of the several schemes described by Chomsky [6] in 
his attempt to analyze the syntax of natural languages. Of course, POL, as special 
kinds of languages, should fit into a general theory of language. However, it is 
reasonable to expect that POL, as artificial languages contrived so as to be 
capable of being mechanically translated into machine language, should have a 
syntax simpler than that of the natural languages. 

The technical results achieved in this paper are as follows. Two families of sets 
(of strings), the family of definable sets and the family of sequentially definable 
sets, are described. Definable sets are obtained from a system of simultaneous 
equations, all the equations being of a certain form. This system, essentially 
parallel in nature, is an abstraction of the ALGOL method of description. Defina- 
ble sets turn out to be identical to the type 2 languages (with identity) intro- 
duced by Chomsky [6]. Sequentially definable sets are obtained from a system 
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of equations which are solved sequentially, that  is, one at a time. The second 
system is a special case of the first, namely, when elimination of variables is 
possible. The two families of sets are not identical (Section 4). I t  is known that  
if a is a definable set and f~ is a regular set, then a - f l  is also definable. This result 
is shown not to be true if a is sequentially definable. However, if a is sequentially 
definable and B is finite, then a - -~  is sequentially definable (Theorem 3). Finally, 
if in a system of equations deriving a definable set, each equation is linear on the 
right or if the coefficients in all the equations commute, then the derived set is 
sequentially definable (Section 5). 

1. Definable and Sequentially Definable Sets 
Consider the following three equations from ALGOL: 

(identifier} : := (letter}[(identifier} (letter}l(identifier } (digit} 

(unsigned integer} : := (digit}l(unsigned integer} (digit} (1) 

(label} ::= (identifier}](unsigned integer}. 

These three equations are typical of the equations used to define the various 
constituent parts comprising ALGOL. Rewrite (1) as follows. Let I1 be the set of 
identifiers, i.e., Is = (identifier}, let L1 be the set of letters (finite), D1 the set of 
digits (finite), U1 the set of unsigned integers, and L~ the set of labels. Replace 
: := by = and ] by + .  Then (1) assumes the more compact form: 

11 = L1 -~- IsLs -~- IsDs 

Ui = D1 + U1Ds (2) 

L5 = 11 + Us. 

Implied in (1), and thus in (2), is that  I s  , U 1 ,  and L5 are generated by  L1 and 
D1. Ignoring the finite sets, (2) may be represented in functional form by either 

I1 = f l ( I s ,  Ui, Ls) 

U1 = f2(Is,  U1, Ls) (3) 

L5 = f3(I1, U1, Ls) 

o r  

11 = f 4 ( I s )  

Us = fs(Is ,  Us) (4) 

L~ = f6(I1, Us, Ls). 

Now there are systems of equations in ALGOL which have the form (3) but  not 
(4), such as that  used in defining the arithmetic expressions. In this paper we 
shall consider both types of systems, (3) because of its generality and (4) be- 
cause of its inherently simple form. 
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The  remainder  of this section is devo ted  to formal iz ing the  above  concepts  in 
order  to subjec t  t h e m  to m a t h e m a t i c a l  analysis.  

Notation. Let  2~ = {a, b, • • • } be a finite n o n e m p t y  a lphabe t ,  i.e., a finite set  of 
pr imi t ive  symbols  or letters.  Le t  0(2~), or  0 for  short ,  denote  the  set  of all words,  
i.e., strings,  fo rmed  f rom the le t ters  in Z, including the  e m p t y  word  e. 

Consider  f unc t i ons f (~  (1), . . .  , ~c~)) which  are cons t ruc ted  f rom a finite n u m b e r  
of  se t  var iables  ~(1), . . .  , ~(~), each  ~(') ranging  over  all subsets  of 8, and  a finite 
n u m b e r  of subsets  of ~ (called coe gicients) ; using the  opera t ions  of " + "  (addi-  
t ion or set  union)  and  " . "  (mul t ip l ica t ion  or complex p roduc t  1) a finite n u m b e r  
of t imes.  Since mul t iphca t ion  is d i s t r ibu t ive  over  addi t ion,  each of these func-  
t ions m a y  be regarded  as in po lynomia l  form,  i.e., f = ~ = 1  II~, where  each  IL  
is a p r o d u c t  of se t  var iab les  and  constants .  

E a c h  of the  funct ions  descr ibed in the  preceding  p a r a g r a p h  is increasing, t h a t  
is, if 2 (~( ' ,  - - .  , ~(~)) ~ (v (1), . . .  , v (n)) t h e n / ( ~  (1), . . .  , ~(~)) C f ( v  ( ' ,  . . .  , v( ' )) .  
~I~re  general ly,  suppose t h a t  f l ,  "" • , f~ is a sequence of funct ions  of ~(~), • • • , 
~( ) each  of the  t y p e  described above.  Le t  2 ° be the  fami ly  of all subsets  of 8. L e t  
f = ( f l ,  " • ,f~) be the  m a p p i n g  f of (2 °) ~ (Car t e s i an  p roduc t  of 2 ° t a k e n  n 
t imes)  into (2 °)" defined b y  

f ( ~ ( ' ) , . . .  ,~(~)) = (fl(~ (1), . . .  , ~(~)), . . .  , f ~ ( ~ ( ' ) , . . .  ~("))). 

E a c h  funct ion  f = ( f l ,  " ' "  , fn) is an  increasing func t ion  in the  sense t h a t  if 
= (~ (1 ) , . . . , ~ (~ ) )  _c v = ( p ( i ) , . . . ,  ( ~ ) ) , t h e n f ( ~ )  _ ~ f ( v ) .  
Now the funct ions  in (2) ,  and  more  general ly,  the  defining funct ions  in 

ALGOL have  an  addi t ional  restr ict ion,  n a m e l y  t h a t  all coefficients are finite sets. 

Definition. A funct ion  f (of  the  t ype  described above)  is said to be a standard 
funct ion  if each coefficient is a finite set. 

F o r  our  purposes ,  a sy s t em of funct ions  f l ,  • • • , f~ such as appea r ing  in (2) 
m a y  be considered as the  single funct ion  f = ( f l ,  " "  , fn) .  

Definition. Let f l , " "  ,f~ be a sequence of n s t anda rd  funct ions  of 
= (~(1), . . .  , ~(~)) each. T h e n  f (~)  = ( f l ,  " ' "  ,f~) is called a n-tuple standard 

funct ion.  

We  are now r eady  to  discuss the  solution to a sy s t em of equat ions  such as (2) .  
T h e o r e m  1 below shows t h a t  the  fo rmal  definit ion next  to  be given coincides wi th  
the  mean ing  in tended  for  these sys tems  in ALGOL. 

Definition. A subset  "r of 0 is said to be definable if there  exists an  n- tuple  s tand-  

Let  A~ , • .. , A,~ be a sequence  of se ts  of words .  The  (complex) p r o d u c t A ~ . A 2  . . . . .  A , ~  , 
or A1 . . .  A,~ for  sho r t ,  is the  se t  of words  {x, . . -  x,~ t each  x,  in A,} ,  xl " "  x,~ be ing  the  
word  fo rmed  f rom the  conca tena t ion  of the  words  x,  in the  given order .  I f  one or more  of 
the  A ,  , say  A s ( x )  , • • • , A : ( , )  consis t  of j u s t  a single word ,  s ay  a3(~) , • • • , as(,) respec t ive ly ,  
t h e n  aa(,) is wr i t t en  ins tead  of A~(,) at  each occurrence.  F o r  example ,  A b  is wr i t t en  ins tead  
of A { b }  and  e is w r i t t e n  in s t ead  of {e}. 

B y  (~(1), . . .  , ~(,,)) is m e a n t  the  se t  of n - tup l e s  {(x~ , . . -  , x,0 {x, in ~(*), 1 ~ i =< n}. 
(~(~), -. • , ~(~)) will be refer red  to  as an  n - tup le  of se ts .  E a c h  ~(~) will be called a c o o r d i n a t e .  
Obse rve  t h a t  (~(~), . . .  , ~<')) C ( ~ ) ,  - . .  , ~,(")) if and  only  if ~<') _~ ~,<*) for  each i .  
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ard function f such that  one of the coordinates of the minimal fixed point of 
f is~,. 

Occasionally, as when specifying an equation for illustrative purposes, we shall 
-.=<1) , ~<,)) . . .  , ~<,>) wri tef(~ , . . . .  (~(1), as the system of n equations 

~(" = f g ~ < ' ,  . . .  , ~(")) 

~(n) - -~(1) = j ~ ( ~  , ' - - , ~ ( " ) )  

The previous discussion dealt with systems of the type (3). I t  is now a simple 
mat ter  to discuss systems of the type (4). 

D e f i n i t i o n .  The n-tuple standard function f(~<l), . . .  , ~<,)) = (f~, . . .  ,rio is 
said to be an n - t u p l e  sequen t ia l l y  s t a n d a r d  f u n c t i o n  if f~ = f,(~<l), . . .  , ~(,)) for 
1 < i _-__ n. A set is said to be sequen t ia l l y  def inable if it is definable by an n-tuple 
sequentially standard function. 

Let  To be the finite subsets of 0. For  n > 0 let T,+i be the family of sets which 
are a minimal fixed point to at  least one polynomial in one set variable with co- 
efficients in T , .  A set 3' is sequentially definable if and only if "t is in one of the 
families 4 T , .  

Having specified two families of sets, namely, the family of definable sets and 
the family of sequentially definable sets, it is natural to inquire as to whether or 
not the two families are equivalent. I t  would be helpful if the two families were 
the same since the structure of sets in the latter family intuitively appears simpler 
than that  in the former. However, as remarked in the Introduction, it is shown 
in Section 4 that  there exist definable sets which are not sequentially definable. 

I t  is a well-known mathematical result tha t  each n-tuple (sequentially) stand- 
ard function has a minimal fixed point [10]. The minimal fixed point of an 
n-tuple (sequentially) standard function will now be found by the recursive pro- 
cedure for calculating the variables in systems of equations having the form of 
(3) or (4) tha t  is indicated in ALGOL [1, p. 301]. This shows tha t  n-tuple standard 
functions and their minimal fixed points serve as a model for the defining systems 
of equations in ALGOL. 

N o t a t i o n .  Let 9 denote the empty  set. 
THEOREM 1. F o r  1 ~ i ~ n let f~ be a p o l y n o m i a l  i n  the variables  ~(~), • • • , ~<~). 

L e t  f(~(1), " ' '  ,~("))  = ( f l , " "  , f , ) . L e t  c~o = (ao(1), " . .  , a o  (~)) = f(!o,  " "  ,~o), 
+ (1) (~)~ ( a  (1), , a ('~)) be the a n d  let each a~+l = (a ,+ l  , " "  , a ,+ l j  = f ( a O .  L e t  a . . . .  

m i n i m a l  f i x ed  p o i n t  o f f .  T h e n  a (~) = Uk~-o a~)  f o r  each j a n d  a = U~-o  a~ . 
PROOF. By induction it is easily seen that  ak ~ a~+~ for each k. Let  ~ = 

a = (a( 1 ) , - . .  , a (~)) is sa id  to  be  a f ixed p o i n t  of f(~(~), - . -  , ~ ( ' ) )  = ( f ~ , . . -  , f ~ )  if 
f ( a )  = a .  I n  a d d i t i o n ,  if a C fl fo r  e a c h  n - t u p l e  of s e t s  f~ = (~(x), . . .  , fl(~)) s u c h  t h a t  f(f~) -- 
fl, t h e n  a is sa id  to  be  a minimal  fixed p o i n t .  C l e a r l y  t h e r e  is a t  m o s t  one  m i n i m a l  f ixed 
p o i n t .  

See  L e m m a  6 of S e c t i o n  4. 
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( ~ ( I ) ,  " fl(")) where f~(') II= <') for  each  j .  I t  will be shown t h a t  a • " , , ~ I - t k ~ O  O~k 

= U ~ .  
Le t  x = ( x~ ,  • • • , x~) be an  e lement  of ~. For  each  integer  i there  is an  in teger  

k( i )  such t h a t  xk is in ~(~) . Le t  k = m a x  { k ( i ) / i } .  T h e n  x is an  ~k. Since ~k ~_ 
a~+l = f(~k)  ~ f(/~), x is in f ( ~ ) ,  i . e . , / 3~  f ( ~ ) .  Also,/~ ~ Uk ~k. Since ~k ~ f~ 
for  each  k, Uk ak ~ / 3 .  Therefore  ~ -- Uk ak ~ f(/3).  

Le t  x -- ( x l ,  - . .  ,xn)  be an  e lement  of f ( ~ ) .  Le t  ~ -- (~(1), . . .  , ~(~)). Fo r  
each  integer  i letf~(~) = ~ 1  H~,~(~), where IL,~(~) is the  p roduc t  of coefficients 
and  set  var iables  ~(~). Since x~ is in the set  ~ IL,~(~),  x~ is in IL,~, (~) for  some 
integer  r~. Le t  II  .... (~) ~- %,1 • • • 7~,t(~), where  each  7~,~(~) is e i ther  a coefficient 
set  or  one of the var iables  ~(~). T h e n  there  exist  e lements  y~,~ in ~ ,~(f l )  such t h a t  
X ~  = Y , , I  " ' "  y ~ , t ( ~ )  • Hence  x~ is in II  .... (ak(~)) for  some integer  k( i )  sufficiently 
large. T h e n  x is i n f (~k ) ,  where/c  = m a x  { l c ( i ) / i } .  A s f ( a ~ )  = a~+l ~ ~ it follows 
t h a t  f ( ~ )  _~ ~, whence f(f~) = ft. Therefore  ~ is a fixed poin t  of f.  I t  r emains  to 
show t h a t  ~ is the  min ima l  fixed poin t  of f.  

T o  this end observe  t h a t  c~0 = f ( ~ ,  • • • , q~) ~ f ( a )  = ~. Cont inu ing  b y  in- 
duct ion,  suppose t h a t  a~ c a.  Then  ~+1 = f ( ~ )  ~ f ( a )  = a. Therefore  ~ = 
U,~  _~ ~. Due  to the  min ima l i t y  p r o p e r t y  of a,  /3 = a. Q .E .D.  

Nota t ion .  L e t f ( ~  (~), " ' "  , ~(~)) = ( f l ,  " ' "  , f~) ,  where  each  f ,  is a po lynomia l  
in the  var iables  $(~), . . -  , ~¢~); and  let o~ = (a{1), . . .  , ~(~)) be the  min ima l  fixed 
poin t  o f f .  This  is a b b r e v i a t e d  b y  " L e t f ( ~ )  = ( f l ,  "" • , f ~ ) ,  eachf~ a po lynomia l  
in the  var iables  ~(1), . . .  , ~(~); and  let ~ be its min ima l  fixed po in t . "  W h e n e v e r  
this occurs  in the  sequel i t  will be unders tood  t h a t  so = (a0 (~), . . .  , a0 (~)) = 

/ (1) (~)~ f ( ~ , . ' -  , ~ ) , a n d f o r e a c h k  ~ 0, a~+l=  t ~  , " ' "  , ~  ~ = f ( a~ ) .  
Excep t  in the  s imples t  of examples ,  the  sets a~ ~) become compl ica ted  r a the r  

quickly.  To  i l lustrate,  consider the  sy s t em of two equat ions :  

~(:) = ~(~)d + ~(:)c -b b. 

H e r e  ~0 (1) = {a},  -o  (~)= {b}, .~ )  = {a, ac, bd}, ,~:) = {b, ad, bc}, ~1)  = 
{a, ac, bd, ac ~, bdc, ad  ~, bcdl, etc. 

As men t ioned  in the  In t roduc t ion ,  the  n t h  coordinate  a (~) of the  min ima l  fixed 
point  of the  n- tuple  s t anda rd  funct ion f(~)  = ( f l ,  • • • ,f~) m a y  be considered 
a language,  a (~) being the  set  of " sen tences"  and  the  o ther  coordinates  the  con- 
s t i tuents  of  the  language.  T h e  cons t i tuents  correspond to verbs ,  noun-phrases ,  
etc. This  conforms wi th  one cur ren t  v iew of language [4, 5, 6]. I n  fact ,  i t  is shown 
in T h e o r e m  2 t h a t  definable sets is equ iva len t  to the  fami ly  of t y p e  2 languages  
wi th  e described in [6]. 

Fol lowing the  exposi t ion in [2], a s imple  phrase  s tructure sy s t em is an  ordered  
couple (V,  P ) ,  where  V is a finite a lphabe t ,  and  P is a finite set  of product ions  
of the  fo rm 

X - - - + x  ( X i n  V, x i n  8 ( V ) ) .  

Wri te  y ~ z i f  y -- u X v ,  z = uxv,  and X ---~ x is a p roduc t ion  of P .  Wr i te  y ~ z 
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if e i the r  y = z or  if the re  exists  a sequence of e l ements  zo, . . .  , z~ such t h a t  
y = z0, z~ = z, and  z, ~ z~+l for  each  i. A type 2 grammar with e is an  o rdered  
4 - tup le  (V,  P ,  ~,  S ) ,  where  (V, P )  is a s imple  phrase  s t ruc tu re  sy s t e m;  ~ is a 
subse t  of V, none of whose e lements  occur  on the  lef t  side of a p r o d u c t i o n  of P ;  
and  S is a d i s t inguished  e l emen t  of V -  Z. I f  G = (V,  P ,  ~,  S)  is a t y p e  2 
g r a m m a r  wi th  e then  the  set  

L(G) = {x [ x in 0 ( ~ ) ,  S - . +  x} 

is cal led a type 2 language with e, or  a simple phrase structure language. 

THEOREM 2. The famdy of definable sets is identical with the family of simple 
phrase structure languages with e. 

PROOF. L e t  f(~)  = (f~, - - -  , fn) be an  n - tup le  s t a n d a r d  func t ion  a n d  a i t s  
m i n ima l  fixed point .  Le t  V = ~U{~(1), - . .  , ~(~)}. Since mu l t i p l i c a t i on  is dis-  
t r i b u t i v e  over  add i t ion ,  each s t a n d a r d  func t ion  f ,  m a y  be w r i t t e n  as  
f~ = ~ II,,~(~), where  IL, j (~)  = 7,,1 ~3,~(~,,) each  ?,,k be ing  e i the r  a 
va r i ab le  or  a word.  F o r  each i a n d  j associa te  the  p roduc t ion  ~(~) ~ I I i , j (~)  a n d  
le t  P be the  set  of al l  these  produc t ions .  Le t  G = (V,  P ,  Z, ~(~)). Suppose  t h a t  

(~) This  is ce r t a in ly  t rue  for  k 0. L e t  ~(') ~ w for each  i and  each  word  w in ak . = 
w be a word  in (') Then  w is i n f i ( ak ) ,  t hus  in IL  j(ak) for s o m e j .  Thus  w OLk.{- 1 . , 
x~ . . .  x~(~.j) where,  for each  a, x~ = ~,.~ if ?~.~ is a word  a n d  x~ is in a~ ~(~)) if 
, ; , a  is a va r i ab le  ~(~(~)). I n  the  l a t t e r  case, ~¢~(~)) ~ x~ b y  induc t ion .  Since ~(') --~ 
IL, , (~)  is a p roduc t i on  in P ,  i t  follows t h a t  ~(~) ~ x~ - - -  x~¢~,~) = w. T h u s  
~(~) ~ w for each  word  w in a(~). L e t t i n g  i =  n, i t  resul ts  t h a t  L(G) _~ a ('). To 
see t h a t  L(G) c a (~), whence L(G) = a (~), i t  suffices to  d e m o n s t r a t e  t h a t  

if x~ and  x2 are  a n y  two words  in 0(V)  and  x~ --~ x2, 
(5) 

then  x~(a) = x2(a) + g ( a )  for some set  g ( a ) .  

F o r  if w is a n y  word  in L(G) t hen  ~(~) ~ w. Then  a¢~) = w -4- g(a) ,  so t h a t  w is 
a ¢~). Cons ider  those  words  xl and  x2 in 0(V)  for  which  x~ ~ x2. F o r  each  such 
two words  x~ and  x2 le t  zo, • • • , z~ be a sequence such t h a t  x~ = zo, x~ = z~, a n d  
z~ ~ z~+~ for each  i. Suppose  t h a t  r = 1. T h e n  for x~ a n d  x2 there  exis t  words  
w l ,  w2, wa, a n d  w4 in O(V) such t h a t  x~ = w~wawz, x~ = w~w4wz, and  w3 --~ w4 
is in P .  Since wa ~ w4 is in P ,  wa(a)  = w4(a) + g~(a). Then  x~(a) = 
w~(~)w~(~)w~(~) = w~(~)w~(~)w~(~) + wl(~)g~(~)w~(~) = x~(~) + g(~) ,  
where  g (a )  = w~ (a)  g~ (a)  wz ( a ) .  Con t inu ing  b y  induct ion ,  suppose  t h a t  (5) holds  
fore all words  xl and  x2 when r ~ k. Le t  x~ and  x~ be two words  for  which  r = 
k + 1. Then  x~ = z0 ~ z~ and  z~---~ z~+~ = x2 . B y  the  i nduc t ion  hypo thes i s  
z~(a) = x~(a) -t- g l ( a )  and  x2(a) = z~(a) + g2(a) .  T h e n  x : ( a )  = x~(a) -F g ( a ) ,  
where  g ( a )  = g~(a) "4- g2(a). Thus  (5) holds  in general ,  and  L(G) = a ('). There -  
fore each  def inable  set  is a s imple phrase  s t ruc tu re  language.  

F ina l ly ,  le t  G = (V, P ,  ~, S)  b y  a t y p e  2 g r a m m a r  wi th  e. Labe l  the  e l emen t s  
of V - ~ b y  ~(~), . . .  , ~(~), w i th  ~(~) = S. F o r  each  ~(~), le t  ~(~) --~ wl ~ . . .  
~(') --~ w~(~) be the  p roduc t ions  in P for which ~(~) occurs  on the  left.  Cons ide r  t he  

X . - ~ t  ( ~ )  • n- tup le  s t a n d a r d  funct ion  f = (f~, • • • , f=),  where  f~ = z..,~=~ w / .  The  t y p e  2 
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g rammar  with e generated by  f,  by  the procedure of the preceding paragraph,  is 
G = (V, P,  ~, S) .  Thus L(G) = a (~, where (a  (1), - . .  , a (~)) is the minimal fixed 
point of f,  tha t  is, each simple phrase structure language is a definable set. This 
completes the proof of Theorem 2. 

Let  G = (V, P,  Z, ~(~)) be a type 2 g rammar  with e. Le t  V -- ~ = 
{~(') [ 1 ~ i ~ n}. For  each ~<*) and each production ~(') --~ w, suppose tha t  each 
variable ~(') appearing in w is such tha t  j ~  i. Then L(G) is a sequentially de- 
finable set. Furthermore,  every sequentially definable set may  be generated in 
such a way. 

Because of Theorem 2 and the preceding paragraph,  in dealing with definable 
and sequentially definable sets either the equation or the production point of 
view m a y  be used, whichever is the more convenient. 

2. Parallel Results 
A number  of known facts about  definable sets are also true for sequentially 

definable sets. Several of these are now presented. 
I t  is known tha t  the family of definable sets is closed under --t-, ", and * [2]. 5 

The family of sequentially definable sets is closed under the same operations. 
For suppose tha t  7 and ~ are sequentially definable sets, occurring as the mth  and 
nth  coordinates of the minimal fixed points of the m-tuple and n-tuple sequen- 
tially s tandard functions f(~) = ( f l ,  " ' "  , f m )  and g(~(~), . . .  ,p(~)) = 
(gl ,  • • • , g~) respectively. Then 7~, "Y -t- ~, and ~* are the (m A- n "-t- 1)- th co- 
ordinates in the minimal fixed points of ( f l , " "  , f in,  g x , ' " , g ~ ,  gn+~), 
( f i , ' " , f , , ,  g ~ , ' " , g n ,  g,,+Q, and ( f ~ , - - . , f a ,  g l , ' " , g ~ ,  g~+Q respec- 
tively, where g~+~ = ~(m) (.), g~+2 = ~(m) + v(~), and g~+3 = ~(~+3)~(m) A- e. 

TWO impor tant  families of sets which have been extensively studied are the 
regular sets, 6 associated with finite au toma ta  7, and the "recursively enumerable"  
sets [7], associated with "Tur ing  machines" [7]. Chomsky [6] has observed tha t  
the definable sets properly include the regular sets and are properly included in 
the recursively enumerable sets. The family of sequentially definable sets satisfies 
the same inclusion. The sequential definability of the regular sets follows f rom 
the closure properties of the family. On the other hand, the set {a"ca"/n ~ 0} is 
sequentially definable, being the minimal fixed point of a~a "4- c, and is known 

5 The  opera t ion  " * "  is defined by  A* = ~ ~=0 A* for  each set  A, where  A ° = ~ and A'+~ = 
A'A for i  ~ 0. 

The family of regular sets is the smallest family of sets which contains the finite sets 
and which is closed under the operations of + , . ,  and * [81. 
Gal. 1 ACM 963 p 164 Take 5-23-6b 18--5-16--62 

An automaton is a 5-tuple (K, Z, a, q0, F), where K is a finite nonempty set (of "states"), 
is a finite nonempty set (of "inputs"), ~ is a ("next state") function of K X ~ into K, 

q0 is a ("start") state in K, and F is a subset (the "final states") of K [8]. A word (= se- 
quence of inputs) is said to be accepted by the automaton if the word takes (by successive 
application of ~) the automaton from q0 to one of the states in F. I t  is known that a set 
is regular if and only if it is the set of words accepted by some automaton [8]. 
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not to be regular [8]. Another example is from ALGOL. Let P~ be the variable for 
the set of proper strings and 02 the variable for the set of open strings. Then 

and 

P1 = P1H -1- H 

02 = P1 "4- '02' "4- Oz02, 

where H is a finite set containing neither of the two symbols 'and'. By a method 
similar to that  given in [8] it can be shown that  0~' is not regular, where (Pi ' ,  02') 
is the minimal fixed point. This implies that  02' is not the set of words accepted 
by some automaton, that  is, an automaton cannot be found which discerns when 
an arbitrary word in 0 is a word in 02'. 

I t  is known that  the family of definable sets is not closed under set intersection 
(thus not under set complementation) [2, 9]. The family of sequentially definable 
sets is also not closed under set intersection (thus not under set complementa- 
tion). In fact, the same example used in [9] is valid here. Let al = {a~/n ~ 1} 
and a2 = {b"a"/n ~ 1}. al and a2 are the minimal fixed points of a~ "4- a and 
b~a + ba, respectively. Therefore al and a~ are sequentially definable sets. The 
rest of the argument is the same as in [9]. 

The following result, in slightly different form, is known [9, Lemma 3] for 
definable sets. The same proof is valid for sequentially definable sets. 

THEOREM A. I f  a' is an infinite sequentially definable set, then there exist se- 
quentially definable sets ~, f~, % t~, and 1, such that 

(1) ~ is infinite; 
(2) either u or v is not the unit set e; 
(3) ~ g ~; 

and (4) /3~ C a'. 

One more known result about definable sets carries over, with the same proof, 
to sequentially definable sets. This result, appearing as Theorem 3.3 of [2] for 
definable sets, is the following: 

THEOREM B. Let a be a sequentially definable set. I f  h (x )  is a sequentially de- 
finable set for each element x in ~, then U( . . . .  )(~=~ . ~,) h(xl)  . . .  h(x , )  is a 
sequentially definable set. 

In view of Theorem 2 an equivalent formulation of Theorem B is 
THEOREM C. Let f(~(1), . . .  , ~(,~)) = (f~, . . .  , fn ) ,  where each f~ is a poly- 

nomial in the variables ~(1), . . .  , ~(~) and each eoeffwient is sequentially definable. 
Then each coordinate a (') in  the minimal  f ixed point a = ( a (1), • • • , a (~)) is sequen- 
tially definable. Furthermore, let the different coei~cients be A i , . . . ,  A~.  Let  
a l ,  . . .  , a, be s abstract symbols and let h(a~) = A3 for each j .  Denote by g = 
(g~ , • • • , g~) the n-tuple sequentially standard function obtained by replacing each 
A~ by a~ . Let ~ = ( ~ ( 1 ) ,  . . . , ~(n)) be the minimal  f ixed point of g. Then for each i, 
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3. Subtract ion 

Section 2 deal t  with results which were t rue for bo th  definable and sequential ly 
definable sets. We now show t h a t  the parallelism does no t  car ry  over  to sub- 
traction.  

I n  Theorem 8.1 of [2] i t  is shown t h a t  if a set d is definable and  B is regular 
then d --  B is also definable. This result  is no t  t rue for sequential ly definable sets. 

JExample. Let  v' be the set consisting of all words hav ing  the symmetr ic  fo rm 

a,~k-l  db ,,2k-2 dan2k-,d . . .  db '~2da'%a", db ~ d  . . .  d a ' ~ - l ,  

where k, n l ,  • • • , nk--1 are posit ive integers. I t  is shown in Section 4 t h a t  ~' is 
definable bu t  no t  sequential ly definable. Let  M = e~'e. Using Theorem B it is 
readily verified t h a t  M is no t  sequential ly definable ( a l though  it is definable).  
Le t  a '  be the set of those words hav ing  the symmet r i c  form 

n k  n2 n l  ~1 n2 n b  
e x k  . . .  z 2  X l  CXl  x 2  . . .  x k  e 

w h e r e k ,  n l , . . - , n k a r e p o s i t i v e i n t e g e r s ,  xz = xk = a, x~ = a, b, o r d ,  and  
Xr+l ~ x~. Le t  f(~(1),~(2),~(~)) = (fl ,f2 ,f3), where f l  -- a~(1)a -~ b~(1)b + d~(l)d'~ 
aca, f2 = a~(~)a • a~(2)a, and  f3 -- e~(2)e. The  set d is the third  coordinate  
in the minimal  fixed point  of f. Thus  a '  is sequential ly definable. Le t  A = 
(K,~,~,p~ ,{p~}) be the a u t o m a t o n  s defined thusly .  K = {p~ I 1 ~ ~ ~ 6} and 
Z = {a,b,c,d,e}. The  funct ion ~ is defined by  ~(p~,e) = p2,  ~(p2,b) = p s ,  
~ (p : ,d )  -- p3,  ~(p2,e) = p~, it(p3,a) = ~(P3,d) = p6, ~(p3,b) = p4,  
~(p4,a) = p6, ~(p4,d) = p~, ~(pb,a) = p2,  ~(p~,b) = ~(pb,d) = p e , a n d  
~(p , I )  = p for all o ther  p and  I .  The  set H of words accepted by  A is a regular  
set. s I t  is readily seen t h a t  for each word X in d ,  ~(p~ ,X) -- p~ or  ~(p~ ,X) = p~ 
according as X does or  does no t  belong to M.  Thus  a '  f'l H = M.  Le t  B be the 
complement  of H.  As H is a regular set, so is B. Now d -- B -- M.  Thus  a '  is 
sequential ly definable, B is regular,  and  a '  --  B is no t  sequential ly definable. 

I n  Theorem 3 below, we present  some conditions on B which guarantee  t h a t  
a '  - -  B is sequential ly definable when a '  is. Firs t  we need two lemmas. 

LEMMA 1. Let  A be a set such that for  each s tandard func t ion  g(~a), . . .  , ~(~)) 
(n) and  each sequence ~ (~), • • • , ~ of sequentially definable sets; all of  the sets (~(~) fl A )  

and  g(  ~(~) f'l A ,  • • • , ~ (~) ~ A )  --  ( ~ (~) ~ A )  are sequentially definable. I n  addition, 
let A have the property  that for  all words x, y, and  z, i f  xyz  is in  A then y is in  A .  
Then  ~'  --  A is sequentially definable for  each sequentially definable set d .  

PROOF. Le t  a '  be a ny  sequential ly definable set. Le t f (~ )  = ( f l ,  • • • , f~) be a 
n- tuple  sequential ly s t andard  funct ion,  wi th  a its minimal  fixed point  and a(~) = 
a ' . F o r l _ - < i ~ n l e t F ~ = A f ' l a ( ' ) ,  G r = f r ( F ~ , - - . , F 0 , a n d D ~  = G~ -- F t .  
B y  hypothes is  all of the sets Fr and D~ are sequential ly definable. For  each i, 

, ~(~) ~(~)) , writefi(~(~)-i-F~, • • • , ~(~)--]-F~) in the fo rm g4~ , " • " , -t- Gr where g~ is a 
polynomial  in ~(~), • • • , ~(~) wi th  the  cons tan t  t e rm missing. Fo r  each i the  poly-  
nomial  h~ = g~ ~ Dr has only  F~, • • • , F r ,  D r ,  and  the finite sets as coefficients. 
Le t  fl = (fl(~), . . -  , f~(~)) be the minimal  fixed point  of h(~(~), - - .  , ~(~)) -- 

See foo tno te  7. 
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(h i ,  " ' "  , h~). T h e n 8  = Uk ~k ,whe re  80 = (8~ 1), " ' "  , 8o (~)) = h(~, . . .  ,~ )  and  
~(~)- ~(~)~ h(f~k). B y  Theorem C, each 8 (j) is a sequent ial ly  each 8k+l -- (~k+~, • • • , pk+ij = 

definable set. We shall show t h a t  8( ' )=  a (') --  F~ = a(') --  A for each i. Since 
B(~) is sequential ly definable this will prove the lemma.  

Now ~r) _- Dr ~ a (') - F , .  Proceeding by  induction,  suppose t h a t  ~ )  .~ 
a (') - F r ,  thus,  as F~ ~ ~(~), 8~ ') + F~ _c or) ,  for each i. Then  

8(') g,(8~ ), • 8£ ")) .-~ D~ 
(1) g~(Sm, " - ,  ~2 )) -Jr G~ 

f~( ( 1 ) , . . . ,  (~)) 

.~  O~ (~). 

Suppose t h a t  8~+~N(') A is non-empty ,  t h a t  is, contains some word v. As" ~(')p~+~ _~ a (~), 
v is in a (') ~ A. Then  v is no t  in D,  since D~ G~ - (a(~) ~ A) .  Since a(*) 
g~(B~'), " ' " ,  fl l  r)) W D r ,  v is in gr(Bi~), . . .  , 8 2 ) ) .  F r o m  the  definition of 

(1) g~, gr(8~ , " ' "  , f~ ) )  is the  sum of terms each of which is a p roduc t  wi th  a t  
least one set 8~  ) as a factor.  Therefore v = xyz, where y is a word in one of the  

~(') 82)  sets p~ , • • • , 8~ '), say  . F r o m  the hypothesis ,  y is in A since v is in A. Hence  
y i s i n S ~  )N A. B u t  

8~)D A ~ ( a  ( ' ) - F ~ ) ~  A = ¢ .  
a (®) ~ a (1) F r o m  this contradic t ion it follows tha t  ~(') N A is empty .  Thus  ~+~  

A = a (~) --  F~. B y  mathemat ica l  induction,  therefore,  ~2 ) _~ a (~) --  F~ for  each 
i and each m. T h e n  B (~) = U~  82  ) ~ a (') - F ,  for  each i. 

As to the reverse inequali ty,  for each i 

s0 (') - F ,  ~ G, - -  F ,  = 

Again by  induction,  for each i suppose t h a t  a~ ~) 
F , .  Then  

a ~ ,  --  F ,  = f~(o~(m 1), " ' "  , O~  ' ) )  - -  F ,  

f i ( ~  (l) + F 1 ,  " ' "  , ~(1) + F,)  --  Fi  

= [ g , ( ~ m , . . . , 8 ( , ) )  + G,] - -  F ,  

m ( 8 " ) ,  - . .  , 8 (')) + ( G ~ -  F , )  
_-- ~(~).  

Thus  a~ ~) --  F~ ~ ~(') for all 
f~(~) 

- -  F~ ~ B(~). Then  a~ *) ~ ~(') + 

m, whence a (r) --  F ,  ~ ~('). Therefore a (~) - F ,  = 
Q.E.D.  

LEMMA 2. Let c~' be a sequentially definable set and ~2 a subset of the basic alpha- 
bet ~1 • Then c~' N 0( ~2) is sequentially definable. 

PROOF. For  each element  x in ~: l e t f ( x )  = {x}. For  each element  x in ~l - 
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Z2 l e t f (x )  -- ¢. Let  f~' -- U(~ , .  ,,)¢~=~ .... ) f (x l )  . . .  f (x~) .  Clearly a ' n  0(Z2) = 
6'. By  Theorem B, ~' is sequentially definable. 

THEOREM 3. Let  J~ be either a finite set, or a sequentially definable set of words 
all generated by the same one letter. Then d -- B is sequentially definable for every 
sequentially definable set d .  

PnOOF. First  suppose tha t  B is a finite set consisting of words w~, • • • , w~. 
For  each word x in 0 let L ( x )  denote the length of x. ( In  part icular  L(e)  -- 0.) 
L e t h  = max{L(w~) ]1 ~ i ~ r} and l e t A  = { x l x i n 0 ,  L(x)  ~ h} .C lear l y  
A satisfies the hypotheses of Lemma 1. Therefore a '  --  A is sequentially de- 
finable. Since a '  n A and B are both  finite, the set ( a '  f'l A) - B is sequentially 
definable. Then a' - B = (a '  - A )  .-{- [(a '  O A) - B] is sequentially definable. 

Now suppose tha t  B is a sequentially definable set of words, all generated by  
the same one letter, say a. Then B = {a ' [ s in ~} where, as is shown in Corollary 2 
of Theorem 4, k is an ul t imately periodic set of non-negative integers. 9 Denote 
by  A the  set A = {a t I t ~ 0}, where a ° = e. By  Lemma 2, if ~ is a sequentially 
definable set then so is 7 f'l A. By Corollary 2 of Theorem 4, the family of all 
sequentially definable sets of words of the same one letter coincides with the 
family of regular sets. Let  g(~(~), • • • , ~(")) be any  s tandard function. Denote by  
v fl A the n-tuple (v (~) n A, . . .  , ~(") f'l A) .  Each ~(') fl A is regular. Then 
g(pD A) is the sum and product  of regular sets. Since the family of regular sets 
is closed under multiplication, addition, and subtraction,  g (v O A) - (~(') rl A) 
is regular, thus sequentially definable. Therefore A satisfies the hypotheses of 
Lemma  1. Therefore d -- A is sequentially definable. Furthermore,  ( d  f'l A) -- 
B is sequentially definable since c~' n A and B are both  regular. Then a '  - B = 
(a '  -- A) + [(a '  N A) -- B] is sequentially definable. Q.E.D. 

4. A n  Example  

The question arises: Is  the family of definable sets identical with the family 
of sequentially definable sets? The answer is in the negative. For  we shall exhibit 
a definable set t which is not  sequentially definable. 

We first prove some prel iminary lemmas. 

LEMMX 3. Let f (  ~) = (fl , " • " , f , )  be an n-tuple sequentially standard function 
and a its min imal  f ixed point. Let  u(1) ,  . . .  , u(s )  be a subsequence of 1, . . .  , n. 
For each i let y,(~ , • • • , be the function f i  with each variable ~c3), j not 
one of the u ( k ) ,  replaced by a °). Then the min imal  f ixed point of the funct ion 
g ( f  ~(1)), "'" , ~ ( ' ) ) )  = (g~(1), " "  ,g~(,)) is • = (a  (~(1)), . . .  , a(~¢'))). 

PROOF. Since a is a fixed point o f f ,  a (~) = f~(a) for e ach j .  Thus a (~(')) = 
f~(~)(a) -- g~(~)(7). Therefore 7 is a fixed point  of g. I t  remains to show tha t  

is the minimal  fixed point of g. 

9 Le t  ~ be a se t  of non-nega t ive  in tegers  and let  {x~},~l  be the  sequence  of its e lements ,  
ordered by  m a g n i t u d e .  T h e n  ~ is said to  be ultimately pemodzc if the  auxi l ia ry  sequence  
{y~} ,~ l ,  where  yl = xl and y,+l = x,+1 -- x , ,  is u l t i m a t e l y  per iodic ,  i e., the re  exist  in- 
tegers  no and p so t h a t  y,,+p = y~ for  all m >= no • 
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Le t /~  = (fl(u(1)), . . .  , ~(u(,))) be the min ima l  fixed poin t  of g. B y  T h e o r e m  
1, B = Uk~0f~k, where  Bo = (B~(1), " ' "  , ~o (~(~))) = g ( ~ ,  " "  , q~) and  flk+l = 
(D(u (1)) f~(u (s))~ •k+1 , " ' "  , ~k+l j = g(~k) for each  ]¢. T h e n  for  each  u ( j ) ,  

~0 ("(3" = f . ¢ ~ ) ( ~ )  c f - c ~ ) ( ~ ,  " '"  . ~ . )  = ~(~), 
where u, = ~ if i = u ( x )  for some x and u~ = c~ (~) otherwise.  For  each  i ~ n 
and  each  k, let uk (') . . . .  f~') if i u ( x )  for  some x, vk (') a (') otherwise,  and  vk 
(vk (~), " "  ,uk(~)~j. Cont inuing  by  induct ion,  suppose t h a t  (ak (~(1)), . . .  , a~ ~(~))) _C 
B~ ~ ~. T h e n  for each u ( j ) :  

(u(D) 

~(u(~)) --~ pk+t 

Thus  II~ (u(3)) c (u(3)) fl(u(3)), vk=oak = ~ whence ~ ~ /~ .  F r o m  the min ima l i ty  p r o p e r t y  
of f~, i t  follows t h a t  ~ = fL Thus  7 is the  min ima l  fixed point  of g. 

As a corol lary we ob ta in  
LEMMA 4. L e t  f ( ~ )  = (f~ , • • • , f~) be a n  n - t up l e  s equen t ia l l y  s t a n d a r d  f u n c t i o n  

a n d  c~ its m i n i m a l  f i x e d  po in t .  S u p p o s e  that  a (~) i s  f i n i t e  f o r  some  in teger  i. L e t  
g = ( g l ,  " "  , g , - i ,  g~+l,  " ' "  , g~) where  f o r  each in teger  j ~ i ,  g~ i s  the f u n c t i o n  

g , ( ~ ( 1 ) . . . ,  ~(*--1), ~(,"kl) . . .  , ~(n)) = f j (~ (1) ,  . . .  , ~(~--1) O(~), ~(,+1) . .  , ~(n) ) .  

T h e n  g is  a ( n  - -  1 ) - t u p l e  sequen t ia l l y  s t a n d a r d  f u n c t i o n  a n d  TT = ( a  (~), " ' "  , 
a , a , • • • , is  i ts  m i n i m a l  f i x e d  po in t .  

LEMMA 5. L e t  f ( ~ )  = ( f ~ ,  • • • , fi~) be a n  n - t u p l e  sequen t ia l l y  s t a n d a r d  f u n c -  
t w n  a n d  a i ts  m i n i m a l  f i x ed  po in t .  F o r  some  integer i let f~( ~) = ~(~) -~ h (  ~) . T h e n  
the f u n c t i o n  g(~)  = (g~,  . . .  , g , ) ,  where  g~(~) = h (~ )  a n d  f o r  j ~ ~, g~(~) = 
J~ ( ~),  i s  a n  n - t u p l e  sequen t ia l l y  s t a n d a r d  f u n c t w n  a n d  a is  i ts  m i n i m a l  f i x e d  po in t .  

The  proof  of L e m m a  5 follows f rom T h e o r e m  2 and  the  fact  t h a t  a p roduc t ion  
of the fo rm ~(~) --~ ~(~) is not  needed.  

Another  consequence of L e m m a  3 is the  nex t  result.  
LEMMA 6. L e t  ( a  (1), . . .  , a (~)) be the m i n i m a l  f i x e d  p o i n t  o f  the n - t u p l e  se- 

quen t i a l l y  s t a n d a r d  f u n c t i o n  ( f l  , " ' "  , f , ) .  T h e n  a (~) ~s the m i n i m a l  f i x ed  p o i n t  
o f  f ~ ( a ( ~ ) , . . . ,  a ('-~), ~(~)). 

Let  Z = {a, b, c, d} and  g(v, v) = (g l ,  g~), where  g~ = bvb T bdydb andg~ = 
advda  + a~a  + aca.  Denote  b y  (~', ~') the  min imal  fixed poin t  of (g~, g~). I t  
is readi ly  verified t h a t  v'  is the set  of those words  hav ing  the s y m m e t r i c  fo rm 

[n~ , . . . , n~_l]  = a ~ - ~ d  . . . db":da"~ca"~db"~d " " " b "~ -~  da  "~ -~ ,  

where ]c, n l ,  . . -  , and  n~_~ are posi t ive integers. Therefore  ~' is a definable set. 
Suppose  t h a t  v'  is sequent ia l ly  definable. Le t  f(~(1), . . .  , ~(,)) = ( f ~ ,  . . .  , f , )  

be an n- tuple  sequent ia l ly  s t anda rd  funct ion whose min ima l  fixed poin t  
( a  (1), . . .  , a (")) is such t h a t  a (") = v'. B y  L e m m a  4 we m a y  assume t h a t  each  
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a (° is infinite. Let  m be the smallest integer satisfying the following two condi- 
tions. 

(a) There  exists a pair  (u, v) of words such t h a t  ua(~)v is a subset  of a (~). 
(b) The  set ua(m)v contains an  infinite number  of words In1, . . .  , ns], wi th  

different r, r < s, such t h a t  nl <: • • • < n r .  
Since n is an  integer sat isfying (a) and (b) ,  the integer m exists. We shall show 
t h a t  7' is no t  sequential ly definable by  proving  t h a t  the existence of the integer 
m leads to a contradict ion.  

We first prove t h a t  
for any  a °), if W and Y are two sets such t h a t  W a ( J ) Y  c 7'; then  

W and  Y each contain  just  one word,  say  w and y respectively.  (6) 

To  see this let w and y be a ny  words in W and Y, respectively.  Le t  xl and  x~ 
be two words in the infinite set a (J). Suppose t h a t  w contains the letter c. Then  
wxly  and wx2y are two words in 7' wi th  c in w. Clearly one of these two words 
cannot  be symmetr ic .  However ,  this contradicts  the s y m m e t r y  of each word  
in 7'. T h u s  w does no t  conta in  c. Similarly y does no t  conta in  c. Hence each 
word  in a °) contains the letter c. Suppose t h a t  W contains  a second word  w~. 
T h e n  wlx~y and wxly  are two words in v' wi th  c in x i .  One of these two words 
cannot  be symmetr ic ,  again contradic t ing the s y m m e t r y  of each word in 7'. 
Thus  W contains just  one word. Similarly Y contains just  one word. This proves  
(6) .  

Consider the set a ( ') .  B y  assumption,  ((1) ,  . . .  , a(~)) is a fixed poin t  of f. 
Thus  a (m) = f m ( a  (1), • • • , a(m)). AS fin is a polynomial  in ~(1), . . .  , ~(m) we m a y  
write fm in the form 

fm(~(1), " ' "  , ~(")) = Ai~(m)Bi --~ . . .  + At~(m)B~ + K ,  

--(1)  where K = f m  (~(~), " ' "  , f (m-~), ¢) and, for each i, A , =  A , ( ~  , . . .  , ~(")) and  
B,  = B,(~ (~), . . -  , ~(m)). B y  L e m m a  5 we m a y  assume t h a t  ~(~) is no t  identical  

• ~ ( ~ ) B  K '  - ~  • • with a n y  one of the summands  A ~  ~. Le t  f ~ ( a  (~), • , a (m-~), ¢)  and,  
for each i, let A ' , (1) . . .  , a(m)) -~- A ~ ( a  , ' " ,  (m))  and B~' = B~(o~ (1), . Thus  

a ( ~ )  ---- f r o ( a ( 1 ) ,  " ' "  , a ( m ) )  = A~'a(m)B1 ' -k " "  + At 'a(m)Bt  ' "b K ' .  

Since uA~'a(m)B~'v ~ ua(~)v ~ ~', by  (6),  u A  ~' and B~'v each contain  one word.  

We are now in a posit ion to show t h a t  the existence of the integer m leads to  
a contradict ion.  We  do this by  examining the  set K ' .  I n  part icular ,  we shall 
see t h a t  K '  m u s t  satisfy one of two al ternat ives;  and  t h a t  each a l ternat ive  
effects a contradict ion.  

Case 1. Suppose tha t  the set u K ' v  contains an  infinite number  of words  
[n~, . - -  , n,], wi th different r, r < s, such t h a t  nl < - - .  < n~. Wri te  the func-  
t ion K = fm(~ (1), . . -  , ~(m--1), ~) in the  fo rm 

K = II1(~(1), . . -  , ~(m--1)) + . . .  + iih(~(1), . . .  , ~(m-1)), 

where each IL is a p roduc t  of finite sets and variables ~(~), • • • , ~(m--1). Replac ing  
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each ~(J) by a (~) we have 

K '  = P 1 +  "'" + P h ,  

where each P ,  = I L ( a  (1), . . .  , a(m-1)). The set K '  is the sum of a finite number  
of P , .  Hence for one of the terms, call it P1 ,  uP~v contains an infinite number  
of words [nl, - . .  , hal, with different r, r < s, such tha t  n~ < . - -  < nr .  The 
set Pj is the product  of finite sets and c~ (~), . . -  , a (m-l). One of the factors of 
P1 must  be one of the sets a ) ,  . . .  , a(~-l), say a (p). For if not, then P~ would 
be the product  of finite sets, and thus finite, contradicting the fact  tha t  uP~v 
is infinite. Thus Pi  may  be writ ten as Qia(P)Q2. As uQla(P)Q2v c ~', by  (6), 
uQ~ and Q2v each contain just  one word, say w and y respectively. Then wa(P)y = 
uPxv. Then p is an integer smaller than  m which satisfies (a) and (b) .  This 
contradicts the minimali ty  proper ty  of m. Therefore Case 1 does not  arise. 

Case 2. Suppose tha t  the set uK 'v  contains just  a finite number  of words 
[nl, . . .  , n~], with different r, r < s, such tha t  nl < . . .  < hr .  By  Lemma 
6, a (m) is the minimal fixed point of fm(a (1), • • • , a (m-~), ~(m)) = ~ A,~(, ,~)B, + 
K' .  I t  has already been shown tha t  for each i there exist words w~ and y~ so tha t  
A ;  = {w,} and B~' = {y,}. Thus a (m) is the minimal fixed point of ZW~(m)y, + 
K' .  Therefore (m) is the set union of all sets of the form zq . . .  z~K'z~'z2' . . .  zq', 
and ua(m)v is the set union of all sets of the form uzq • • • ziK'zl 'z2' • • • zq'v, where 
q varies, each z~ is one of the words we, and z~' the corresponding word ya.  
Now uK 'v  contains just  a finite number  of words In1, . . .  , n,], with different 
r, r < s, such tha t  n~ < . . .  < n~ ; and ua(~)v contains an infinite number  of 
such words. Thus words of the form uzq . . .  z~ must  contain arbi trar i ly long 
strings of a 's  respectively b's as subwords. Thus one of the words w~, say w~ 
is of the form a * for some e > 0. Similarly one of the words w, ,  say w~ is of the 
form b ~', e' > 0. Let  x0 be a word in K ' .  Then the word uw2wlxoyly2y is in ~' 
and contains a subword ba. This is impossible. Hence Case 2 cannot  occur. 

Since the set K '  is either in Case 1 or Case 2, and both alternatives yield 
contradictions; it follows tha t  the set K '  cannot exist. Therefore the integer 
m does not exist. Thus the definable set 7' is not sequentially definable. 

I t  would be interesting to select one of the definable sets occurring in ALGOL 
and show tha t  it is not sequentially definable. We do not know if such a set 
exists because of the massive structure of ALGOL. We strongly suspect tha t  the 
set of ari thmetic expressions in ALGOL is not sequentially definable. Since it 
requires more than 15 equations to define the set of ari thmetic expressions, we 
have been unable to explicitly determine this set prel iminary to showing it is 
not sequentially definable. 

5. Functions Which  Produce Sequentially Definable Sets 

We have just  seen tha t  there exist definable sets which are not sequentially 
definable. In  Theorem 4 below we shall show tha t  if all the coefficients in a 
n-tuple s tandard function f commute with each other, then each of the co- 
ordinates in the minimal fixed point of f is sequentially definable. We shall 
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accomplish this by showing that  we may (i) restrict the variables to a family 
of sets in which commutat ivi ty  holds; (ii) replace a function by one in which 
one of the variables is linear; (iii) "solve" the function obtained in (ii), i.e., 
express one of the variables in terms of the remaining; (iv) replace one of the 
variables in each of the remaining functions by the "solution" obtained in (iii), 
thereby obtaining one less function and one less variable; (v) repeat ( i ) - ( iv )  
until there is just one function and one variable left; (vi) solve this last function, 
thereby obtaining the last coordinate in the minimal fixed point of the original 
n-tuple function; and (vii) evaluate each of the remaining coordinates of the 
original n-tuple function by repeated substitution. 

In order to carry out this seven step program we shall need some auxiliary 
concepts and results. 

Notation. As in footnote 5, for each set A let A* = IJ,~=o A'.  

Definition. A star polynomial f (  ~(~), . . .  , ~(n)) is a function constructed from 
the finite number of set variables ~(:), . . .  , ~(~), each ~(~) ranging over all subsets 
of O, and having the following form: f is the sum of a finite number of terms, 
f = ~ = :  I I , ,  each term IL having the form IL = 51 • • • ~r (r varying).  Here 

~(1) each ~ is either a sequentially definable set; or ~ is one of the variables ¢ , • • • , 
~(~); or ~, = r , where ~- has the form r = ,y~ . . .  ~t (t varying),  each ~, being 
either a sequentially definable set or one of the variables ~(:), - . .  , ~(,o. Each 
of the ~ or V: which is sequentially definable is called a coe~cient of f. 

For  example, f = A(~(:)B~(2)) * + A is a star polynomial, but  f = 
A[(~(:)B) ,~(2)], + B is not, A and B being sequentially definable sets. 

Definition. A family ~ of subsets of 0 is called a base if 
(i) e i s i n ~ ;  

(ii) for each pair of sets A and B in 5, A B  is in ,~ and A B =  BA;  and 
(iii) for each sequence {A,} of sets in A, U,A, is in ,~. 
From (iii) and (ii) it follows that  for each pair A and B of sets in ~, A -b B 

is in 5 as well as A*. 
In  the sequel ~ will be a fixed base. 
Definition. A function f(~(~), - . .  , ~(~)) is said to be a base polynomial, acting 

on A, if (i) f is a star polynomial, with each variable ((') restricted to A, and 
(ii) each coefficient of f is in A. 

LEMMA 7. Let f(~(:), . . .  , ((")) be a function built up from the set variables 
~(~), . . .  , ~(~), each restricted to ~, and constants in ~, each sequentially definable; 
by using the operations of -t-, ", and * a finite number of times. Then 

f(~(:), , ,~(n)) r~(1) . . . .  g :~  , . . . ,  :("))~(:> + g2(~(~), . . .  , ~(")), 

where g~ and g2 are base polynomials acting on A. Furthermore, the coe2~cients of 
g: and g2 are formed from the eoei~icients of f together with ~ by using the operations 
of zc, ., and * a finite number of times. 

PROOF. We first reduce f to a base polynomial h(((~), . . -  , ~(~)), acting on 
A, by means of the identities: 

(1) (A*) ~ = (A*)* = A*, 
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(2) (A + B)* = A'B*,  

(3) ( A ' B ) *  = ~ + A*BB*, 

where A and B are sets in A. These identities are easily derived from the defini- 
tion A* = [J~A ~ and the commutat ivi ty  of A and B. 

The first step in reducing f to h is to apply identity (2) until no + appears 
within the range of a *. The result is a sum, each term of which involves the 
operations of • and * only. 

We now introduce the idea of a "nest"  with its "dep th"  and "width."  The 
• of a product  of variables and constants is defined to be a nest of depth 0 and 
width 0. An expression (~1 • • • t~,u)*, where the tL's are nests and u is a product  
(perhaps empty)  of constants and variables, is defined to be a nest of width i 
and depth 1 ~ max {depth of ~ffj}. Clearly the width is 0 if and only if the 
depth is. 

Now if a term of the sum has as a factor a nest of width greater than 1, or of 
width 1 and a nonempty ~, we apply identi ty (3) to replace the term 
(~1 ~ ) * ~  by ~ + t~l ~w(~2 * . . . . . . . . .  t~,,) ~, i.e., by two terms, each a product  
of nests, each nest (except ~) of which has either smaller depth, or the same 
depth and smaller width, than the original factor. 

When no term contains as a factor a nest with width greater than or equal 
to 1 and nonempty ~, then we apply identi ty (1) to all nests with width 1 and 
empty ~, reducing their depth by 1. When no such nests remain, we repeat the 
process of the preceding paragraph. The alternation of these processes must  
end with no nests remaining of width or depth greater than 0. This is exactly 
the form of a base polynomial h(~ (~), . - .  , ~(')) over A. 

We now form from h the two base polynomials g~ and g2 • Due to the com- 
mutat iv i ty  of the sets in A, we can write each term of h which has ~a) as a factor 
as V~(~). For each such term, place the corresponding V in g~. Place each term of 
h in which ~ )  does not occur in g~. This leaves only those terms of h in which 
~(~) occurs only inside the nests (the nests being factors). Using the identi ty 

( A B . - . ) *  = e +  ( A B . . . ) ( A B . . . ) * ,  

we generate from each such term in the obvious way two new terms. One of 
these is of the form ,y~¢~) and we place 7 in g~ ; the other (obtained from e) has 
one fewer nests (as factors) containing ~(~) than the original term. This process 
continues until no nests remain, and this residue we place in g2 • From the con- 
struction it is clear that  h = gx~(~) + g2(~(2), . . .  , ~ ) ) ,  with g~ and g2 being 
base polynomials acting on A. From the method of construction, it is also clear 
that  the coefficients of gl and g: have the asserted property.  Q.E.D. 

To illustrate the procedure given in Lemma 7, let f = [(A~*)* ~ (B~7)*~* 
~*]*, where ~ and ~ represent ~(~) and ~(2) respectively. Applying identi ty (2) 
twice we get 

f = [(A~*)* + (B , )  *~*]*(,*)* = [(A~*)*]*[(B~)*~*]*(,*)*. 

Now [(B~)*~*]* is the only nest of width > 1; and there is no nest of width 1 
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and nonempty v. Applying identity (3) we get 

[(BT)*~*]* = ~ + (BT)*~*(~*)* ,  

whence 

f = [(Af*) *]*(v*) * + [(Af*) *]*(7") *(BT) *~*(~*) *. 
There is no term whmh has as a factor a nest of either width greater than or 
equal to 1 and nonempty v. Applying identity (1) to all nests with width 1 and 
empty v we get 

f = (A~*)*7* q- (A~*)*7*(BT)*~*~*. 

There is only one nest of width 1 and nonempty v, and tha t  is (A~*) * (occurring 
twice). Write (A~*)* = (~*A)*. By identity (3), 

(~*A)* = e + ~*AA*. 
Then 

f = 7* + ~*AA*7* + 7"(B7)*~*~* + 7*(BT)*~*~*~*AA*. 

This is the base polynomial h. 
We now determine gl and g2. Place 7/* in 92. Using the identity ~* = e + 

~*, replace ~*AA*7* by AA*7* + ~*AA*7*. Place AA*7* in g2 and ~*AA*n* 
in gl- Replace 7"(B7)*~*~* by ~*(Bv)*~* + 7*(Bv)*~*~*. Place ~*(BT)*~*~* 
in gl.  Replace n*(B7)*~* by v*(BT)* + n*(Bn)*~*. Place 7"(B7)* in g2 and 
7*(B~)*~* in gl.  Similarly the last term, n*(B~)*~*~*~*AA*, in h is ultimately 
replaced by ~I*(Bn)*~*~*~*AA* + *I*(Bn)*~*~*AA* + 7*(Bn)*~*AA* + 
7*(BT)*AA*. This leads to the following forms for gl and g2 : 

gl = ~*AA*7* + 7*(B~)*~*~* + n*(B7)*~* + 7*(B~)*~*AA* 
+ ~*(BT)*~*~*AA* + 7*(B~)*~*~*~*AA*, 

and 

g~ = rt* + AA*rt* + 7"(B7)* + 7*(Brt)*AA*. 
These are not the "simplest" forms for gl and g~. For example, observing 

that  ~*~* = ~* we get 

gl = AA*~*7* + (B7)*~'7" + AA*(B~)*~*n* 
and 

9~ = 7" + AA*7* + (Bv)*v* + AA*(BT)*7*. 
If  we had made this observation at  an earlier stage we would have reduced the 
computation considerably. 

Let f l ,  • • • , fn be n functions, each constructed from sets in A and the var- 
iables ~¢1), . . .  , ~(,), each ~(') ranging over all subsets of 0; by using the opera- 
tions of + ,  , and * a finite number of times. I t  is readily seen tha t  Theorem 
1 is still valid. Furthermore, each ak (') is in 4, whence so is each ~(0 = [ j a  ¢,) 
Thus as far as finding minimal fixed points is concerned, each set variable may 
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be r e s t r i c t e d  to  se t s  in  A. T h i s  is h e r e a f t e r  done .  T h i s  e n a b l e s  us  to  use  L e m m a  
7 a n d  a lso  to  a s s u m e  the  c o m m u t a t i v i t y  of a l l  se t s  u n d e r  d i scuss ion .  

LEMMA 8. L e t  a be the m i n i m a l  f i x e d  p o i n t  o f  f ( ~  (1), . . .  , ~('~)) = ( f i ,  • • • , f n ) ,  
/ ~ (1 )  where  each f~ ~s a base p o l y n o m i a l  actzng on A .  S u p p o s e  that  f l  = g ~  , " ' "  , 

~(,~))~(1) if_ g:(~(:), . . .  , ~(,)) ,  where  g~ a n d  g: are base p o l y n o m i a l s  ac t ing  on  A .  
.~( , )  , ~ ( , ) )  .~(~) . . .  , ~( , , ) ]~(1)  L e t  h~( f  , • • • = g~[g~(f , • • " , f ( ' ) ) ,  ~(:), + g:(~(:),  " • • , f (~ ) ) ,  

a n d  f o r  i => 2 let h~ = f~ . T h e n  a ~s the m m z m a l  f i x e d  p o i n t  o f  h = ( h i ,  " -  , h~). 
PROOF. L e t / ~  = (/~(1), . . .  , /~(~)) be t he  m i n i m a l  f ixed p o i n t  of h. L e t  a = 

( a  (~), a(~)) .  L e t  a~ = (a~ 1), (~)~ • . .  , . . .  , a~ : a n d  ~ = (/~l), . . .  , f l~) )  h a v e  t h e i r  
u s u a l  s igni f icance .  T o  p r o v e  t h e  l e m m a  i t  suffices to  show t h a t  a (~) ~ /~(~) a n d  
/~(~) ~ a (~) for  e a c h  ~. T h e  p r o o f  of t he  l a t t e r  is s t r a i g h t f o r w a r d  a n d  is le f t  to  t h e  
r e a d e r .  T h e  p r o o f  of t he  f o r m e r  is d e h c a t e  a n d  is n o w  g iven .  

C l e a r l y  a0 (~) = /~ ')  ~/~(~) for  e a c h  i. L e t  D = g~(~(2), . . .  , ~(~>). T h e n  a0 (l) 
D.  As  f~ is a f ixed p o i n t  of h, rio) = g~[D, ~(~), . . .  , /~(~)]/~(1) + D,  w h e n c e  D 
/~(~). S u p p o s e  t h a t  a~ (~) c /~(~) fo r  e a c h  i ,  a n d  t h a t  a~)f~ (~) c D:~ (~). F o r  i ~ 2, 
O~k(~+)i f t (o~)  ~ f,(/~) /~(~). I t  r e m a i n s  to  show t h a t  (1) C/~(1) [for t h e n  a (1) 
U (1) (1) ~(i) ta~ _~ f~(~)] a n d  t h a t  (~k--1/o D/~ (1). 

L e t  51(((1), . . .  , ~( ' ) ) ,  . . .  , &(~(1), . . .  , ~(~)) be  a n y  f in i te  s equence ,  w h e r e  
", (I) ~ < n ) )  . o ,  ' ~(~t) e a c h  ~ ( ~  , • • • , is e i t h e r  a c o n s t a n t  in  A or  one  of t he  v a r i a b l e s  ~(1), 

r e s t r i c t e d  to  A. Def ine  v(~(i), . . .  , ~(~)) as  the  p r o d u c t  v(~(~), . . -  , ~(~)) = 
/t, . . .  ~ t .  T h e n  

' *'O(I' 0 " 3~(1) 0 fit (O~k) 3" (1) ~-(o~: , = ~-(o~)/~ = al(O~)'... 
s=0 ~ 0  

F o r  each  i def ine  V~ to  be  t he  se t  & ( a t )  if 3,(~) ~ ~(1) a n d  D if ~ ( ~ )  ~ ~(1). B y  
c o m m u t a t l v i t y  a n d  r e p e a t e d  a p p l i c a t i o n  of t he  i n d u c t i o n  h y p o t h e s i s  a~l)~ a) _C 
D 5  °), i t  fo l lows t h a t  

= , . ( n ) ~  , f l ( i )  ~,(o~)'... ~(o~0'~ (" ~ U ~/....y,':> ~-(D, ,~" .., o~ , . 
3~0  3 

T h u s  
r(o,~ ') , .-., o~('% *~<~), _c r(D, o~ ~) , • • • , o~ <")~ *~('), . (7) 

C o n s i d e r  the  f u n c t i o n  gi(~ (~), - . .  , ~(~)). S ince  gl is a ba se  p o l y n o m i a l  a c t i n g  
o n  ~ ,  g l ( ~  <' ,  ~(")) ~ :~1  "°(" - . . ,  ~(~)) = • - .  , = H,L~ , . . -  , ~(~>), w h e r e  IL (~  (1), 
~1 . - -  ~, ( r  v a r y i n g ) .  H e r e  e a c h  ~: is e i t h e r  a c o n s t a n t  in  A; or  one  of t h e  v a r -  
i ab le s  ~(1), . - .  , ~(~) r e s t r i c t e d  to  A; or  a f u n c t i o n  r (~  °), - . .  , ~(~))*, r (~  a), . . -  , 
~(~)) b e i n g  de f ined  as  in  t he  p r e c e d i n g  p a r a g r a p h .  T h e n  

• ' '  ---- l l ~ l ~ ,  ~ " ' "  ~ o~k ) p  

~ n , ( D ,  ai2), . . .  , a~ ' ) ) f l  (1) 

(~)ao) c D/~ (1), t h e  com-  b y  r e p e a t e d  a p p l i c a t i o n  of t he  i n d u c t i o n  h y p o t h e s i s  ak ~, _ 
m u t a t i v i t y  of t he  se ts ,  a n d  (7 ) .  T h u s  

/ (1) ( n ) ~ o ( 1 )  (2) (n)'~°(i) C g l ( D ,  /3 (e), " ,  fl(~))/~(l) g~(a~ , " "  , a ~  ) p  C g ~ ( D ,  a~ , " "  , a~ ) p  __ "" 

_c lain. 
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Consider  (1) O ~ k + :  • I t  follows t h a t  
0(I) / (1) (n),, (1) . . k + l  = gl(O~,~, , " ' "  , O/k )OLL + g2(o~k (2>, " , Oak ( n ) )  

gl(~k)~(1) + g~(~(2), . . . ,  ~ > )  

_C_ f~(1) + ~(1) = ~(1), 
one of the  desired relations.  

Final ly,  

~k+1. = g l ( ~ )  + g : ~ k  , " ' "  

Dgl(ak)fl(1) + g:(/~(2), . . .  , fl(n))f~(1) C D3(1) + D3(:) 

= Df~ (1). Q .E .D.  

LEMMA 9. Let a be the min imal  fixed point of f (~  (1), . . .  , ~(')) = ( f l ,  "'" , fn) 
where each f~ is a base polynomial acting on `5. Suppose that f: = g:(~(2), . . .  , 
~(~))~(1) + ge(~(.o), . . .  , ~(,)), where g: and g~ are base polynomials acting on h. 
Let  hl(~ (2), . . .  , ~(~)) = g2g:*. For i ~ 2, let h, = f~(hl ,  ~(2), . . .  , ~(,,)). Then a 
is the minimal  f ixed point of (h: ,  • • • , h~). 

The  proof  of the above  l e m m a  involves  the,  by  now, famil iar  line of reasoning.  
Accordingly,  i t  is omi t t ed .  

THEOREM 4. Let f = ( f l ,  "'" , f~),  where each f ,  = f,(~(1), . . .  , ~(~)) is a 
polynomial. Suppose that all coeffwients are sequentially definable and commute 
with each other. Then each coordinate in the minimal  f ixed point o f f  is a sequentially 
definable set, and, moreover, can be constructed f rom the coefficients zn f together 
with e by using the operations of + ,  ., and * a finite number of times. 

PROOF. Le t  `5 be the  smal les t  fami ly  of sets which conta ins  all the  coefficients 
if f toge ther  wi th  e, and  is closed under  the  opera t ions  of p roduc t  and  denumer -  
able union. Since c o m m u t a t i v i t y  is p reserved  under  p roduc t  and  denumerab l e  
union, b y  transfini te  induct ion it  is readi ly  seen t h a t  each  two sets in ,5 com-  
mute ,  i.e., `5 is a base. 

Deno te  by  a = ( a  (~), . . -  , a ( ')) the  min ima l  fixed poin t  of f. F r o m  the dis- 
cussion pr ior  to L e m m a  8 it  m a y  be assumed  t h a t  each  f~ is a base  po lynomia l  
ac t ing  on `5. Consider  the  following s t a t e m e n t :  

L e t f  = (f~ , . . .  , f , ) ,  where each f ,  = f,(~(:), .-. , ~(~)) is a base polynomial 
acting on A. Then each coordinate in the minimal fixed point o~ = (a (~), . . .  , 
a(,o) of f is a sequentially definable set, and, moreover, can be constructed from (P,) 
the coefficients in f  together with e by using the operations of + ,  ", and * a finite 
number of times. 

To  p rove  the  t heo rem it  is sufficient to show t h a t  ( P . )  is t rue  for  all n. A 
proof  of (Pn) will now be given b y  m a t h e m a t i c a l  induct ion.  

Suppose  t h a t  n = 1, i.e., f(~(1)) = (f l ) .  B y  L e m m a  7, f l (~ (1)) = g1(~(1))~ (1) -~- 
K ,  w h e r e  gl(~ (1)) is a base po lynomia l  ac t ing  on `5; and  K and the  coefficients 
of g: are fo rmed  f rom the coefficients in f :  toge the r  wi th  e b y  using the  opera t ions  
of + , . ,  and  * a finite n u m b e r  of t imes.  B y  L e m m a  8, o~ (1) is the  min ima l  fixed 
poin t  of h:(~(i)), where  h:(~ (1)) = g l (K)~  (1) + K.  T h e n  a (I) = g : ( K ) * K .  Since 
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the  f ami ly  of sequent ia l ly  def inable  sets is closed u n d e r  + , . ,  a n d  *, t h e  set  
a (~) is sequen t ia l ly  definable.  F u r t h e r m o r e ,  a (1) is c o n s t r u c t e d  f r o m  the  coefficients 
of f l  in the  desired form.  The re fo re  (P1) is t rue.  

C o n t i n u i n g  b y  i nduc t i on  suppose  t h a t  (P~) is t rue  for  all in tegers  less t h a n  
r. Cons ide r  the  case when  n = r. B y  L e m m a  7 the re  exist  base p o l y n o m i a l s  

. .  /~ . (2}  . , , } ( n ) )  g~(}(1}, • , }(~)) a n d  g2~¢ , "" such  t h a t  

f,(}(1), " ,  }{~)) g ~  , ' "  , + g2(~ , " "  • 

F u r t h e r m o r e ,  the  coefficients of gl a n d  g2 are  f o r m e d  f r o m  the  coefficients in f 
t o g e t h e r  w i th  e b y  us ing  the  ope ra t ions  of + , . ,  a n d  * a finite n u m b e r  of t imes .  
B y  L e m m a  8, c~ is the  min ima l  fixed po in t  of ( f~+l ,  f2 ,  • • • , f~) ,  where  
A+i(}(,) ,  . . .  , ~{~)) = g , [g : (~2 , . . . ,  }(~)), ~(2), . . .  , }{,,}]}{~) + g:(}{2), . . .  , }{~}). 

B y  L e m m a  7 it m a y  be a s s u m e d  t h a t  (i) g~(g2, }{2), . . .  , }(,,}) is a base  po ly -  
nomia l  g3(} (2), . . .  , }{'~)), a n d  (ii) the  coefficients of g~ are  de r ived  f r o m  those  of 
g~ a n d  g2, t h u s  f r o m  those  of f~,  in the  desired m a n n e r .  T h e n  

A + 1 ( ~ ( i ) , . . . ,  }(~)) = g3(~(2) , . . .  , }{~))~{1) + g : ( } { 2 } , . . . ,  }{~}). 

B y  L e m m a  9, ~ is the  min ima l  fixed p o i n t  of ( h i ,  -. • , h~,), where  h, = ga*g2 
• }(2}, • , }{~}) for  i > 2. B y  L e m m a  7, i t  m a y  be a s s u m e d  a n d  h, = f~(g3 g2, "" = 

- ° ( : )  ~(~))  t h a t  each  h~(~ , - . .  , is in the  f o r m  of a base p o l y n o m i a l  the  coefficients 
of wh ich  are  f o r m e d  f r o m  those  of f~ ,  g2, g~, t h u s  f r o m  the  coefficients in f ,  
in the  desi red m a n n e r .  

Cons ide r  the  min ima l  fixed p o i n t / 3  = (/3(2), . . .  ,/3(,,)) of h(}  {~), . - .  , ~{'~}) = 
(h2, . . .  , h , ) .  Since c~ is the  min ima l  solut ion to the  e q u a t i o n  

. .  ~ ~ ( 2 )  " " ,  ~ ( ~ ) ) ]  = ( ~ < , ,  . . .  , ~(,~>), [h~(} (~), • , }{")), , ~  , - . .  , }(")), . . .  , h , (~  (~), 

it follows t h a t  (i) a{a) " (~) - - .  , a ( '))  = hl(c~ , - . .  , a{")), a n d  (ii) (c~ (2), is a fixed 
p o i n t  of h(}  (~), - . .  , }(~)). There fo re  (/3(2}, . . .  , /3(,)) c (a{e), . . .  , c ( , ) ) .  Since 
h4/~ , . . . .  for i >= 2, it follows t h a t  (h~(/3 (~), . ,/3{,)),/3{2}, 
is a fixed po in t  of (h~, • • • , h , ) .  T h u s  a (~) ~ /3('), whence  a (~) = /3{~), for  i ~ 2. 
I n  o t h e r  words ,  ( a  (~), • • • , a (")) is the  min ima l  fixed po in t  of (h~, • • • , h , ) .  

N o w  h(}(2), . . .  , }(")) involves  fewer  t h a n  r func t ions ,  each  of wh ich  is a 
base p o l y n o m i a l  ac t ing  on ,5. B y  induc t ion ,  ( P , )  is t rue  for  n < r. Hence ,  for  
i ~ 2, each  a (') is sequent ia l ly  def inable  a n d  der ived  f r o m  the  coefficients in h 
t o g e t h e r  w i th  e, t h u s  f r o m  the  coefficients in f t o g e t h e r  w i th  e, in the  desi red 
fashion.  As  a (a) = h~(a (2), . - .  , a(")) ,  the  same  is t rue  for  a (~). There fo re  (P~) 
is t rue  and  the  t h e o r e m  is p roved .  

I f  the  coefficients in f are  powers  of the  same  set  t hen  the  coefficients com-  
mute .  T h u s  

COROLLARY 1. I f  f = (fa , • • • , f , )  is a n-tuple standard function in  whwh all 
the coefficients are powers of the same set, say A ; then each coordinate in the min imal  
f ixed point of f is sequentially definable and is obtainable f rom A together wzth e 
by using the operations of + , . ,  and * a finite number of times. Thus each coordinate 
is a regular set. 

Coro l l a ry  1 is obv ious ly  satisfied if t he  a l p h a b e t  Z consists  of  j u s t  one  le t ter .  



370 S. GINSBURG AND H. G. RICE 

Thus each definable set is a regular set. The reverse, of course, is also true. Now 
it is a well-known but unpublished result that  a set A = {a" I n in X} is regular 
if and only if X is an ultimately periodic set of non-negative integers. 1°. From 
this there occurs 

COROLLARY 2. I f  the alphabet ~ consists of just one letter then the (sequentially) 
definable sets are equivalent to the regular sets, i.e., {aWl n in ~} ,s (sequenhally) 
definable if and only i f  ~ is an ultimately periodic set of nonnegatwe integers. 

Remark. A careful examination of Theorem 4 and the lemmas upon which 
it depends will reveal that  the coordinates of the minimal fixed point are con- 
structed only from the coefficients in f which are not ~. In fact, the entire paper 
could have been developed without introducing the empty word E. This would 
mean, of course, that  no (sequentially) definable set would contain the empty 
word ~; and would necessitate several minor changes, such as defining A* to 
be I.I~=iA ~. 

To illustrate Theorem 4 let 

fl--= AS~ 2 +  A 3 ~ +  A 4and f2 ~ A 4 ~ + A 3 ~ u +  A2~ ' + A  2, 

where A is some finite set of words and ~ and v represent ~(1) and ~(2) respectively. 
We shall determine the minimal fixed point (~, ~) of f = (f~, f2). 

Now fl becomes 

(A2~ + A3v)~ + A'. (8) 

The function in (1) is transformed into 

[ASA ' + A3~,]~ + A'.  (9) 

Then (~, ~) is the minimal fixed point of (f3, f4), where 

f3(~, z,) ~ (A3~ + Ar)*A 4 

and 

f4(~') ~ A4(A~ , + Ar)*A 4 + A3t,(A3~ , + Ar)*A 4 + A2~ , + A 2. 
Then ~ is the minimal fixed point of f4(v). Rewriting/4(~) in the form gl(v)v + 
K, we have 

f~ = AS(AS~,)*(A~) * + AT(ASs, + A~)*~, + A:v + A ~ 
= AS(AS) * + AS(A~)*A~v(A~v) * + AT(AZ~, + Ar)*~, + AS~, + A s (10) 
= [A11(A~)*(AS~,) * + AT(ASt, + Ar) * + A~]v + AS(AS) * + A 2. 

The function in (10) is transformed into 
f~ = Hv + K, 

where H = AH(A6)*(Aa[AS(Ar) * + A~]) * + AT(AS[AS(A6) * + A s] + A~) * + 
A ~ a n d K  = AS(AS) * + A ~. Then ~ = H * K a n d  ~ = (AaH*K + A~)*A ~. If  
so desired, Lemma 7 could be employed to reduce the depth and width of the 
nests appearing in ~ and ~ (considering powers of A as variables of course). 

~0 A p roof  of t h i s  f a c t  e a s i l y  fo l lows f rom t h e  l a s t  s e n t e n c e  in  f o o t n o t e  7. 
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There  is ano the r  sys t em of func t ions  of in te res t  which  y ie lds  s equen t i a l ly  
def inable  sets  whereas  i ts  form suggests  def inable  sets.  Th is  is the  case when  
f(}(1), . . .  , }(~)) = (f~, . . .  , f~),  where  each  f~ is l inear  on the  r ight ,  i.e., f~ = 
E n  A ~(3) j=l ~ . ~  --k A~,  and  all  coefficients are  sequen t i a l ly  definable.  I t  can  be 
shown t h a t  each  coord ina te  in the  min ima l  fixed p o i n t  ~ = ( a  (1), - . .  , a (~)) 
of f is s equen t i a l ly  def inable  and,  moreover ,  is cons t ruc ted  f rom the  coefficients 
in f b y  us ing the  opera t ions  of ' b ,  , and  * a f in i t e -number  of t imes .  A proof  
can be given which  involves  the  no t ion  of self-embedding as defined in [6]. A n o t h e r  
proof  can be given which  depends  upon  a resul t  in [3]. The  out l ine  of an  a l t e rna -  
t ive  proof ,  which  involves  e l imina t ing  the  va r iab les  one a t  a t ime,  is as follows. 
F r o m  f~ one gets  

}(1) A l l (  A ~(,) ~ A*  A ~(') = ~'1,3q + A1) = z.., 1.1 1,3~ + A~iA1 .  
3=2 3=2 

Replac ing  }(~) b y  z_~=2 ~.1 ~.~¢ + A ~ A ~  in f2 ,  " ' "  , f ~ ,  one ob ta in s  n - -  1 
func t ions  g2(} (2), . - .  , ~(~)), - . .  , g,(}(2), . . .  , }(~)), each  g~ being l inear  on  the  
r igh t  and  hav ing  al l  coefficients sequen t i a l ly  definable.  The  m i n i m a l  fixed p o i n t  
of (g:,  . . .  , g,) is ( a  (~), - . .  , a(~)). This  e l imina tes  one of the  va r i ab le s  and  one 
of the  funct ions .  The  p rocedure  is con t inued  un t i l  the re  is j u s t  one va r i ab le  and  
one funct ion .  Then  a (~) is de t e rmined .  B y  r e p e a t e d  subs t i tu t ion ,  a (~-~), • • • , a (~) 
are  ob t a ined  in turn .  

T h e  resul t  and  the  out l ine  of proof  descr ibed  in the  p reced ing  p a r a g r a p h  are  
also val id ,  w i th  m i n o r  changes  of course,  if in f = (f~, • • • , f . )  each  f~ is l inear  
on the  left,  i.e., f~ = V '~  ~(~)~ ~._,~=i ~ ~ . 3  ~ A~.  

There  are  no func t ions  in ALGOL which  i l lus t ra te  e i ther  T h e o r e m  4 or  the  
s i tua t ions  considered in the  two preced ing  pa rag raphs .  
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