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Introduction

A sericus drawhack in the application of modern data processing systems is the
cost and time consumed in programming these complexes. The user’s problems
and their solutions are described in a natural language such as English. To utilize
the services of a data processor, it is necessary to convert this language descrip-
tion into machine language, fo wit, program steps. Recently, attempts have
arisen to bridge the gap between these two languages. The method has been to
construct languages (called problem oriented languages, or POL) that arve

(i) rich enough to allow a description of a set of problems and their solutions;
(i) reasonably close to the uger’s ordinary language of description and solu-
tion; and

(i1t) formal enough to permit a mechanical translation into machine language.

Cosor and Ancor are two examples of POL.

The purpose of this investigation ig to gain some insight inte the syntax of
POL, in particular Arcor [1]. Speecifically, the method of defining constituent
parts of ALGoL 60 is abstracted, this giving rise to a family of sets of strings; and
mathematical facts about the resuliing family deduced. Now an ALcoir-like
definable language (we hesitate to use the inclusive term “POL”) may be viewed
either as one of these sets (the set of sentences); or else, as a finite collection of
these sets, one of which is the set of sentences, and the remaining, the constituent
parts of the language used to construet the sentences. This is in line with one
current view of natural languages [4, 5, 6]. The defining scheme for Arcorn turns
out to be equivalent to one of the several schemes described by Choemsky [6] in
his attempt to analyze the syntax of natural languages. Of course, POL, as special
kinds of languages, should fit into a general theory of language. However, it is
reasonable to expect that IPOL, as artificial languages contrived so as to be
capable of being mechanically translated into machine language, should have a
syntax simpler than that of the natural languages.

The technical results achieved in this paper are as follows. Two families of sets
{of strings), the family of definable sets and the family of sequentially definable
sets, are described. Definable sets are obtained from a system of simultaneous
equations, all the cquations being of a certain form. This system, essentially
parallel in nature, is an abstraction of the ALgoL method of description. Defina-
ble sets turn out to be identical to the type 2 languages (with identity) intro-
duced by Chomsky [6]. Sequentially definable sels are obtained from a system

* Received February, 1961; revised August, 1961.
t Present address: Computer Seiences Corp., Palos Verdes, Calif

350



TWO FAMILIES OF LANGUAGES RELATED TO ALGOL 351

of equations which are solved sequentially, that is, one at a time. The second
system is a special case of the first, namely, when elimination of variables is
possible. The two families of sets are not identical (Section 4), It is known that
if @ is a definable set and 3 iz a regular set, then o— 8 is also definable. This result
is shown not to be true if « is sequentially definable. However, if a is sequentially
definable and 8 is finite, then a— 3 is sequentially definable (Theorem 3). Finally,
if in & system of equations deriving a definable set, each equation is linear on the
right or if the coefficients in all the equations eommute, then the derived set is
sequentially definable (Seetion 5).

1. Definable and Sequentially Definable Sets

Consider the following three equations from AncoL:
(identifier) ::= {letter)|(identifier) {letter}{identifier} (digit)
{unsigned integer) ::= (digit}|{unsigned integer) {(digit}) 1)
(label) ::= (dentifier}|{unsigned nteger).

These three equations arve typical of the equations used to define the various
constituent parts comprising Ar.cor. Rewrite (1) as follows. Let Iy be the set. of
identifiers, i.e., I; = {identifier}, let L, be the set of letters (finite), D; the set of
digits (finite), U, the set of unsigned integers, and Ly the set of labels. Replace
i:= by = and | by 4. Then (1) assumes the more compact form:

Il = L1 -+ I1L1 + I1D1
Ul = Dl + Ul 1 (2)
L5 == Il ‘|“ [fl.

Implied in (1), and thus in (2), is that I3, Uy, and Ly are generated by L and
D, . Ignoring the finite sets, {(2) may be represented in functional form by either

L = fitly, Ux, L)
Us = folIr, Ur, Ly) (3)
Ls = fs(I, Uy, Ls)

or
Iy = fully)
Up = fs(L1, 0) (4)
Ly = fs(I1, Uy, L),

Now there are systems of equations in ALGoL which have the form (3) buf not
(4), such as that used in defining the arithmetic expressions, In this paper we
shall consider both types of systems, (3) because of its generality and (4) he-
cause of its inherently simple form.
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The remainder of this section is devoted to formalizing the above concepts in
order to subject them to mathematical analysis.

Notation. Let = = {a, b, - - -} be s finite nonempty alphabet, i.e., a finite set of
primitive symbols or letiers. Let 4(Z), or ¢ for short, denote the set of all words,
ie., strings, formed from the letters in Z, including the empty word e.

Consider functions f (Em, R ) which are constructed from a finite number
of set variables £, --- | £ each £ ranging over all subsets of 0, and a finite
number of subsets of # (called coefficients) ; using the operations of “4* (addi-
tion or set union) and ““-”* (multiplication or complex product') a finite number
of times. Since multiplication is distributive over addition, each of these fune-
tions may be regarded as in polynomial form, ie., f = > i1, , where each 1I,
is a product of set variables and constants.

Each of the functions described in the preceding paragraph is increasing, that
iS, if2 (E(n: T E(n)) = (7"(1)! B} V(n)) t’henf(E(n) T E(n)) g-f( p(n: Tt V(H))'
More generally, suppose that f; , - - , f, is a sequence of functions of £7, --- |
£™ each of the type described above. Let 2 be the family of all subsets of 8. Let
f = (fi, -, f.) be the mapping f of (2")" (Cartesian product of 2° taken n
times) into (2°)™ defined by

JEP oo JEMY = (UED, - EM), e (BY  EY).

Fach function f = (fi, -+ ,fa) is an increaging function in the sense that if
E= P8 Co = GU ™), then f(E) S 7(0).

Now the functions in (2), and more generally, the defining functions in
ALcoL have an additional restriction, namely that all coeflicients are finite sets.

Definition. A function f (of the type described above) is said to be a standard
funciion if each coefficient is a finite set.

For our purposes, a system of functions fi, - - -, fu such as appearing in (2)
may be considered as the single function f = (1, -+, ).
Definition. Let fi,---,f. be a sequence of n standard functions of

£= (£, - £ each. Then f(£) = (f, -+ - ,fx) is called a n-tuple standard
function.

We are now ready to discuss the solution to a system of equations such as (2).
Theorem 1 below shows that the formal definition next to be given coingides with
the meaning intended for these systems in ArGoL.

Definilion. A subset v of @ is said to be definable if there exists an n-tuple stand-

tLet Ay, - -+ , An be a sequence of sets of words. The (complex) product Ay Ay -+ - A, ,
or Ay -+ A, for short, iz the set of words {z, -+ zm l each z, in A.}, @1 +++ zs being the
word formed from the concatenation of the words z, in the given order. Ii one or more of
the 4, ,8ay A5y, - , A,y consist of just a single word, say a;q) , -+ , &) respectively,
then a,¢. i3 written instead of A, at each occurrence. For example, Ab is written instead
of A{b} and e 18 writien instead of {e}.

By (£, ... , £} is meant the set of n-tuples [{z;, ~-- , 2,0 |z, in £, 1 = i = =}.
W, -+ ) will be referred to as an n-tuple of sets. Each £ will be called a coordinate.
Observe that (U, - | £ C (1, -« @) if and only if £+ C »™ for each .
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ard function f such that one of the coordinates of the minimal fixed point of
fisty.

Oeccasionally, as when specifying an equation for illustrative purposes, we shall
write f(£%, -+ &) = (&%, .-+, £ as the system of » equations

E(l) — f(E(n —_ E(n))
(2) f (E(l) e E(”))

"" = L (§%, - E™)

The previous discussion dealt with systems of the type (3). It is now a simple
matter to discuss systems of the type (4).

Definition. The n-tuple standard function 7(¢%, -+ &™) = (i, -+, fn)
said 1o be an n-tuple sequentially standard function i f, = f.(§, - é“) for
1 = ¢ £ m. A set is said to be sequenizally definable if it is definable by an n-tuple
sequentially standard function,

Let T, be the finite subsets of 6. For n = 0 let T, be the family of sets which
are & minimal fixed point to at least one polynomial in one set variable with co-
efficients in T . A set ¥ is sequentially definable if and only if v is in one of the
families' 7, .

Having specified two families of sets, namely, the family of definable sets and
the family of sequentially definable sets, it is natural to inquire as to whether or
not the two families are equivalent. It would be helpful if the two families were
the same since the structure of sets in the latter family intuitively appears stmpler
than that in the former. However, as remarked in the Introduction, it is shown
in Section 4 that there exist definable sets which are not sequentially definable.

It is a well-known mathematical result that each n-tuple (sequentially) stand-
ard function has a minimal fixed point [10]. The minimal fixed point of an
n-tuple (sequentially) standard function will now be found by the recursive pro-
cedure for calculating the variables in systems of equations having the form of
(3) or (4) that is indicated in Argor [1, p. 301]. This shows that »-tuple standard
functions and their minimal fixed points serve as a model for the defining systems
of equations in ALGorL.

Notation. Let ¢ denote the empty set.

Tazorem 1. For 1 < i = nlet f, be @ polynomsal in the variables t©, - - - s £,
Lot (£, -+ JE) = (fi, -+ fo). Let o = (af”, -+, ™) = flg, -+, 0),
and let each apy = (e, -+, all) = fla). Let @ = (&, -« , &™) be the

minemal fized point of f. Then a("’) U]cs(] o for each j and o = Upey a .

Proor. By induction it is easily seen that o T oy for each k. Tet 8 =

P o= (aW), -+, a™) is said to be a fixved point of F(EW, -~ | EM™) = (fy, -+- , fu) if
fla) = «. In addition, if @ C 6 for cach n-tuple of sets g = (B, -- - , 3) such that f(8) =
8, then « is said to be a minémal fixed point. Clearly there is 2l most one minimal fixed
point.

¢ Bee Lemma 6 of Section 4.
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(8%, -+, 8™), where 87 = Uiy al? for each j. Tt will be shown that a =
3 = k QX .

Letz = (@1, -+, z.) be an element of 3. For each integer 7 there is an integer
k(4) such that 2 is in ey . Let £ = max {k¢:)/4}. Then z is an ¢, . Since oy,
a1 = fle) S F(B), xisin £(B), ie., BS f(B). Also, 8 € U, a; . Since o, S 3
for each k, Uy e C 8. Therefore 8 = U; o f(B).

Let « = (%1, --+,2.) be an element of f(8). Let £ = (£, -.- | £™). For
each integer 7 let 7.(£) = 2 i, I, .(£), where I1, . (£) is the product of coefficients
and set variables £7. Since z, is in the set Y, IL, {8), z, is in II, , (8) for some
integerr, . Let I, . (£) = ~,,; - .00 , Where each v, .(£) is either a coefficient,
set or one of the variables £, Then there exist elements Y4 107, o (8) such that
Te = Yu1 - Youn - Henee x, is in 10, (oury) Tor some integer k(z) sufficiently
large. Then z is in f( ), where & = max {£(7) /7). Asf(w) = apsa 8 it follows
that f(8) & B, whence f{8) = B. Therefore 3 is a fixed point of f. It remains to
show that 8 is the minimal fixed point of f.

To this end observe that as = f(p, --- , ) € f{a) = a Continuing by in-
duction, suppose that a; < . Then aq = f(ar) S f{a) = o. Therefore 8 =

U., € a. Due to the minimality property of o, 8 = a. Q.E.D.

Notation. Let f(¢%, .-« &™) = (fi, - -+, fa), where each f, is a polynomial
in the variables ¢, -+, £™: and let « = (a®, --- , &™) be the minimal fixed
point of f. This is abbreviated by “Let f(£) = (f, -+ , f.), each f, a polynomial
in the variables £, ... £ and let « be its minimal fixed point.” Whenever
this occurs in the sequel it will be understood that ey = (&, + -, ab™) =
fle, - ,¢),and foreach & = 0, aru= (af”, -+, ai™) = fles).

Except in the simplest of examples, the sets af” become complicated rather
quickly. To illustrate, consider the system of two equations:

s(l) —_ 5(1)8 __'__ f(?)d + a
£ = £V 4 e 4 b,

Here of = {a}, oi’= (b}, o’ = g, ac, bd}, o = |b, ad, be}, & =
la, ac, bd, ac®, bde, ad®, bed), etc.

As mentioned in the Introduction, the nth coordinate «™ of the minimal fixed
point, of the n-tuple standard function f(£) = (fi, ---,f.) may be considered
a language, «'™ being the set of “sentences” and the other coordinates the con-
stituents of the language. The constituents correspond to verbs, noun-phrases,
ete. This conforms with one current view of language [4, 5, 6]. In fact, it is shown
in Theorem 2 that definable sets is equivalent to the family of type 2 languages
with ¢ deseribed in [6].

Following the exposition in (2], a simple phrase structure sysitem is an ordered
couple (V, P), where V is a finite alphabet, and P is a finite set of productions
of the form

X—zXinV, ziné(V)).
Write y = z il y = uXv, 2 = uzv, and X — z is a production of P. Write y = 2
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if either y = 2z or if there exists a sequence of elements z;, - - - , 2. such that
¥y = 2,8 = z and z, = 2,4, for each 7. A type 2 grammar with e is an ordered
4-tuple {V, P, Z, S5), where (V, P) is a simple phrase structure system; = is a
subset of V, none of whose elements oceur on the left side of a production of P;
and S is a distinguished element of V— Z. If @ = (V, P, Z, §8) isa type 2
grammar with e then the set,

LGy ={z|zin 6(Z), 8= a}
is called a type 2 language with €, or a stnple phrase structure language.

TuroreM 2. The fumaly of definable sels is ideniieal with the family of simple
phrase structure languoges with e.

Proor. Let f(£) = (fi, ---,f.) be an n-tuple standard function and « its
minimal fixed point. Tet V' = TU{Y, ... | £}, Since multiplication is dis-
tributive over addition, each standard function f, may be written ag
fo = 22, M0,(8), where T ,(§) = ¥4 - ¥imen each 7). being either a
variable or a word, For each { and 7 associate the production £ —s IT, ;(£) and
let P be the set of all these productions. Tet G = (V, P, T, £™). Suppoge that
£ — w for each 1 and each word w in ai”. This ig certainly true for & = 0. Let
w be a word in of}) . Then w is in f,(e), thus in I, ,{a;) for some j. Thus w =
X1t Tmge,y Where, for each a, 2, = v if 45, is & word and z, is in of® if
vs .. 18 a variable £ Tn the latter case, £l g, by induction. Since £ =
II, ,(£) is a production in P, it follows that £ — 2; -+ Zme.n = w. Thus
£ = w for each word w in o™, Letting 1= n, it results that L(G) = a™. To
see that L(G) C o™, whence L(G) = «'™, it suffices to demonstrate that

if #; and z, are any two words in (V) and z; = x5, 5

then 2;(a) = 22(a) -+ g(a) for some set g{a). ()
For if w is any word in L(6) then £ =3 w. Then o™ = w + g(a), so that w is
o™, Consider those words z, and x, in #(V) for which &, = ;. For each such
two words x; and 2z let 2¢, -+ - , 2, be a sequence such that z;, = 2y, 2 = 2., and
Z, = Z,41 for each i. Suppose that » = 1. Then for z; and z; there exist words
wy, we , Wy, 20d wy in (V) such that x; = wwwswe , 2 = wWwan. , and wy — wy
is in P. Since wy; — ws is in P, wi(a) = wda) + gi(a). Then zi(a) =
w{a)ws(a)wz(a) = wila)w(a)w:(e) + wila)plw(a) = wla) + gla),
where g{a) = wi(a)g:{a)we{a). Continuing by induction, suppose that (5) holds
fore all words =;and z, when r = k. Let 2: and 2, be two words for which r =
k -+ 1. Then 71 = 2y = z, and 2= z, = 22 . By the induction hypothesis
2u(a) = 2a(a) + gi(a) and 2u(a) = () + ga(a). Then aa(a) = ma(a) + g(a),
where g(a) = gi(a) + g:(a). Thus (5) holds in general, and L{G) = a™. There-
fore each definable set is a simple phrase structure language.

Finally, let & = (V, P, Z, 8) by a type 2 grummar with e. Label the elements
of V. — Z by £V, -+ &™) with ¥ = 8. For each £, let £ — w’, -+,
£ — w},y be the productions in P for which £ occurs on the left. Consider the
n-tuple standard function f = (f;, -+, fa), where f, = 2 +& w,’. The type 2



356 S. GINSBURG AND H. G. RICE

grammar with e generated by f, by the procedure of the preceding paragraph, is
G = (V,P, 2, 8). Thus I{(G) = a', where (o', -+ - , &™) is the minimal fixed
point of f, that is, each simpie phrase structure language is a definable set. This
completes the proof of Theorem 2.

TIet @ = (V, P, 2, £) be a type 2 grammar with ¢ Let V — T =
{7 (1= ¢ < n). For each £ and each production £ - w, suppose that each
variable £ appearing in w is such that j< ¢. Then L(G) is a sequentially de-
finable set. Furthermore, every sequentially definable set may be generated in
such a way.

Because of Theorem 2 and the preceding paragraph, in dealing with definable
and sequentially definable sets either the equation or the production point of
view may be used, whichever is the more convenient.

2. Parallel Results

A nurnber of known facts about definable sets are also true for sequentially
definable sets. Several of these are now presented.

It is known that the family of definable sets is closed under +, , and * [2]5
The family of sequentially definable sets is closed under the same operatiouns.
For suppose that v and 3 are sequentially definable sets, oceurring as the mth and
nth coordinates of the minimal fixed points of the m-tuple and n-tuple sequen-
tially standard functions f(£) = (fi,--+,fu) and g™, - ") =
(g1, * ", ga) Tespectively. Then 48, v -4 &, and ~* are the (m -+ n + 1)-th co-
ordinates in the minimal fixed points of (fi, -, m, $1, """ ,0n, Gn4),
(o, Ty iy e, Gnae), aod (fu, oo fuy g1, 000 5 gn, gnia) TESPEC-
tively, where ng1 = S(m)v(u)’ Grin = E(m) + z‘(n)’ and Guis = s(n+3)£(m) 4 e

Two important famiiies of sets which have heen extengively studied are the
regular sets,® associated with finite automata’, and the “recursively enumerable’”
seta [7], associated with “Turing machines” [7]. Chomsky [6] has observed that
the definable sets properly include the regular sets and are properly included in
the recursively enumerable sets. The family of sequentially definable sets satisfies
the same inclusion. The sequential definability of the regular sets follows from
the closure properties of the family. On the other hand, the set {a"co”/n 2 0} is
sequentially definable, being the minimal fixed point of gtz + ¢, and is known

5 The operation “*” js defined by A* = |J;2o A*for each set A, where A% = ¢cand A =
A*A forz = 0.

¢ The family of regular sets is the smallest family of sets which contains the finite sets
and which is closed under the aperations of +, -, and * [§].
Gal. 1 ACM 963 p 164 Take 5-23-6b 18—5-16-62

7 An aufomaton is a 5-tuple (K, Z, 8, ¢ , I}, where K is a finite nonempty set (of ‘‘states’’),
Z iz a finite nonempty set (of “inputs’’), § is a (“next state”) function of X X Z into K,
qo 15 a (“start”’} state in K, and F is a subset (the “final states”) of K [B]. A word (= se-
quence of inputs) is said to be accepfed by the automaton if the word takes (by successive
application of §) the automaton from g, to one of the states in F. It is known that a set
is regular if and only if it is the set of words aceepted by some automaton [8].
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not to be regular [8]. Another example is from AvcoL. Let P; be the variable for
the set of proper strings and 0. the variable for the set of open strings. Then

Pi=PH+H
and
0, = P+ :Oz"‘f‘OzOz,

where H is a finite set containing neither of the two symbols ‘and’. By a method
similar to that given in [8] it can be shown that ;' is not regular, where (£, 0y')
is the minimal fixed point. This implies that Oy’ is not the set of words accepted
by some automaton, that is, an automaton cannot be found which discerns when
an arbitrary word in ¢ is a word in Oy’.

It is known that the family of definable sets is not closed under set, intersection
(thus not under set complemeniation) [2, 9]. The family of sequentially definable
sets i also not closed under set intersection (thus not under set complementa-
tion). In fact, the same example used in [9] is valid here. Let &y = {a"/n = 1}
and e = {b"a"/n = 1}. « and a are the minimal fixed points of a¢ + @ and
bta + ba, respectively. Therefore a; and «p are sequentially definable sets. The
rest of the argument is the same as in [9].

The following result, in slightly different form, is known [9, Lemma 3] for
definable sets. The same proof is valid for sequentially definable sets.

TuroreM A. If & is an infinite sequentially definable set, then there exist se-
quentially definable sets 8, B, v, u, and v such that
(1) & is infinite;
(2) either u or v is not the unit set «;
(8) wbv < §;
and 1) poy & o

One more known result about definable sets carries over, with the same proof,
to sequentially definable seis. This result, appearing as Theorem 3.3 of [2] for
definable sets, is the following:

TuroreM B.  Let « be a sequenlially definable sel. IT h{x) is a sequentioily de-
finable sel for each element © in =, then W in mywms, . o0 Blxs) -+ - B{x,) i5 @
sequentiolly definable sel,

In view of Theorem 2 an equivalent formulation of Theorem B is

TueokeMm C. Let f(£%, - ™) = (fi, -+ ,1a), where each f: s @ poly-
nomaal in the variables £2, -+« | £ and each coefficient is segquentially definable.
Then each coordinate o' in the minimal fived point & = (o, -+ | &™) s sequen-
tially definable. Furthermore, let the different coefficients be Ay, -+, d.. Let
a;, -+, a be s abstract symbols and let hia,) = A, for each j. Denote by g =
(n,  , 0n) the n-tuple sequentially standard function obtazned by replacing each
A, bya,. Let 8 = (8Y, -+, B™) be the minimal fized point of g. Then for each 7,
Cfm = U(w in BLt))(w=2y.. z,) h/(xl) e h(ﬁ:,) .
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3. Sublraction

Section 2 dealt with results which were true for both definable and sequentially
definable sets. We now show that the parallelism does not carry over to sub-
traction.

In Theorem 8.1 of [2] it is shown that if a set ' is definable and B is regular
then o' — B is also definable. This result is not true for sequentially definable sets.

Erample. Let n’ be the set consisting of all words having the symmetric form

"I g g - - db e ea™db™d - - - da™t

where k, my, - - -, M are positive integers. It is shown in Section 4 that 4 is
definable but not sequentially definable. Let 3 = ey’e. Uging Theorem B it is
readiy verified that M is not sequentially definable (although it is definable).
Let &’ be the set of those words having the symmetric form

exi® - - 23ty ewr est - - it
where k, 113, - -+ , % are positive integers, ; = 2 = a, &, = a, b, or d, and

T # .. Let JEP £ ED) = (A1 fs), where fy = at¥a + 070 + dgVd+
aca, f2 = 0tVa 4 at%e, and fi = ei%e The set o is the third coordinate
in the minimal fixed point of f. Thus o' is sequentially definable. Let A =
(K,Z.5, i) be the automaton® defined thusly. K = {p.|1 < ¢ £ 6} and
Z = {a,b,e,de}. The function & is defined by é(pr,e) = p, 8(pa,b) = s,
5(174 :d) = Pz, 5(?32. ,6) =", 5(p3 ,G) = 5(173 ;d) = Ds, 6(133 ;b) = P,
6(p‘l ,G}_) = De, 6(2’)4 )d) =y 5(Pb ,a) =1, 5(1’5 :b) = 6(1’)5 )d) = Ps and
é(p, Iy = p for all other p and I. The set H of words accepted by A is a regular
set.® It is readily seen that for each word X in o', 8(p1 ,X) = moré(p: ,X) = ps
aceording as X does or does not belong to M. Thus o' N H = M. Let B be the
complement of H. As H is a regular set, so is B. Now o’ — B = M. Thus o’ is
sequentially definable, B is vegular, and o' — B is not sequentially definable.

Tn Theorem 3 below, we present some conditions on B which guarantee that
a' — B is sequentially definable when &' is. First we need two lemmas.

Lamma 1. Let A be a set such that for each standard function g(£©, -+ - | ™)
and each sequenice p"), oo, '™ of sequentially definable sets; all of the sets (™0 4)
and g(v*N A4, -, 7N 4) — N 4) are sequentially definable. In addition,
let A have the property that for all words x, y, and z, if xyz s tn A then yis in A.
Then o — A is sequeniially definable for each sequentially definable set o',

Proor. Let ¢ be any sequentially definable set. Let f(£) = (i, -+ ,fu) bea
n-tuple sequentially standard function, with ¢ its minimal fixed point and o™ =
& Forl =iz nletF,=AN o, G =f(F, - ,F),andD, = G — F,.
By hypothesis all of the zetz F, and D, are sequentially definable. For each ¢,
write f,(£V+Fy, -+, E4F) in the form g,(¢7, -, £) 4+ G, , where g, is a
polynomial in £V, - - - , £ with the constant term missing. For each 4 the poly-
nomial &, = g, + D, hasonly F, , --- , F., D, , and the finite sets as coeflicients.
Let § = (8%, -+, 8) be the minimal fixed point of A(™, - ™) =

8 See footnote 7.
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(ht, -+, k). Then g = U, 8., where 8, = (8", - -- 6w)—h@,',@am
each By = (B, -+, Bi%) = h(B:). By Theorem C each 87 is a sequentially

definable set. We shall show that 8= o' — F, = o« — 4 for each 7. Since
B is sequentially definable this will prove the lermna

Now 8§ = D, € o' — F,. Proceeding by induction, suppose that 85 <
o' — F,, thus, as F, € o™, B(" + F. C o", for each . Then

Bih = gu.(8%, -+, 8) + Ds
C g (B2, ... 8 + 6,
= f.(8 + Fl; Y S &
wa(a:m, ,a“))
@

- .

Suppose that 85N A4 is non—empty, that is, contains some word 2. As g5, o'
visin &N A. Then ¢ is not in D, since D, = G, — (a'” N 4). Since 851, =

7.(8%, m) + D, v is in g.(8Y, - 'y, From the definition of
00, G (B(” o+, BEYY s the sum of terms each of which is a product with at
least one set ,6',,, as a factor. Therefore » = zy2, where y is a word in one of the
sets 85, e 0 say 85, From the hypothesis, y is in A since 2 isin A. Hence

y is in 8% n A. But

N AC (@ —FHN A=
From this contradiction it follows that ﬁ,f,'l; 1 A is empty. Thus Bf,:ll C oW -
4 = o — P, . By mathematical induction, therefore, g’ < «' — F; for each

¢ and each m. Then 8 = U, 8 S & — F, for each .
As to the reverse inequality, for each ¢

al’ - F, S G, —F, =D, <"

Again by induction, for each 7 suppose that o) — F, C 8. Then of < 8@ +
F,. Then

__F —f(am “‘,Olr(f:)) “F.
CfEY+F,-- 89+ F) - F,
= [g.(8Y, - ,8") + G — F,
S g8Y, - B + (G — F)
= g,

Thus & — F, € 8 for all m, whence oW — F. C Y. Therefore o — F, =
8. QED
LeEmMa 2. Lel o be a sequentially definable sel and T, o subsel of the basic alpha-
bet T1. Then o' N 8(Z,) s sequentially definable.
Proor. For each element z in 2, let f(2) = {z}. For each element z in =, —
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Sletf(x) = ¢. Let 8 = Upin ancomey .op F(@1) -+~ f(2). Clearly o' N 0(Z:) =
8. By Theorem B, 8 is sequentially definable.

TaroreEM 3. Lel B be either a fintle set, or a sequentially definable set of words
all generated by the same one letler. Then o' — B is sequentially definable for every
sequentiolly definuable sel o

Proor. First suppose that B is a finite set consisting of words wy, - -+, w,.
For each word z in 8 let L{x} denote the length of z. (In pariicular L{e) = 0.)
Let b = max {L(w.) |1 £ ¢ 5 v} and let 4 = {x |z in 8, L(z) = h}. Clearly
A satisfies the hypotheses of Lemma 1. Therefore o' — A is sequentially de-
finable. Since o' N A and B are both finite, the set (o' 1 4) — B is sequentially
definable. Then o' — B = (&' — A) 4 [(&'1 4) — B] is sequentially definable.

Now suppose that B is a sequentially definable set of words, all generated by
the same one letter, say a. Then B = {a° | s in A} where, as is shown in Corollary 2
of Theorem 4, ) is an ultimately periodic set of non-negative integers.” Denote
by A the set 4 = {a' |t = 0}, where ¢’ = e By Lemma 2, if v is a sequentially
definable set then so0 is v N A. By Coroliary 2 of Theorem 4, the family of all
sequentially definable sets of words of the same one letter coincides with the
family of regular sets. Let g(¢©, -+, &) be any standard function. Denote by
v N A the ntuple PN 4, -, 2™ N A). Bach »” N A4 is regular. Then
g(»N A) is the sum and product of regular sets. Since the family of regular seis
is closed under multiplication, addition, and subiraction, g(»N 4) — ("N 4)
is regular, thus sequentially definable. Therefore A satisfies the hypotheses of
Lemma 1. Therefore o' ~— A is sequentially definable. Furthermore, (o' A) —
B is sequentially definable since o’ N 4 and B are both regular. Then o’ — B =
(o — A) + [(«/ 1 A) — B] is sequentially definable, Q.ED.

4. An Eromple

The question arises: Is the family of definable sets identical with the family
of sequentially definable sets? The answer is in the negative. For we shall exhibit
a definable set »” which is not sequentially delinable.

We {irst prove sorue preliminary lemmas,

LemMa 3. Let f(&) = (f1, -+, fn) be an n-tuple sequentially standard funciion
and o iis minimal fized poind, Let w(1), - - - , u(s) be o subsequence of 1, -+ , n,
For each i let g (£, -, E“‘”” ) be the funclion §, with each variable £, § not
one of the ulk), replaced by o', Then the minimal fized point of the function
g(s;-(’w(l))’ Tty E(u“))) = (gu(lb th ’gu(ﬂ)) sy = ( (u(l)), v ’a(u " }

Proor. Since a is a fixed point of f, &' = f,(a) for each j. Thus o™ =
Fuw{®) = guw(y). Therefore v is & ﬁxed point of g. It remains to show that
v is the mingmal fixed point of g.

¢ Let A be a set of non-negative integers and let {z.}.>1 be the sequence of its elements,
ordered by magnitude. Then A is zaid to be uléémately periodec if the auxiliary sequence
{¥nlnz1, where g1 = 2y and Y,y = 241 — Z., 18 ultimately periedie, i e., there exist in-
tegers no and p 80 that Ymyp = ynm for all m = ng .
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Tet g = (8", ..., 8™y be the minimal fixed point of ¢. By Theorem
1,8 = Ui, where 8o = (8™, -+, 85") = glp, -+, ¢) and By =
(B, -, BEH™) = g(8) for each k. Then for each u(y),

af™ = Fuin (@) © Fun{o, -, w) = 3(3)’

where », = p if 7 = u(z) for some 2 and », = &' otherwise. Tor each ¢ < n
and each k, let #” = B{” if ¢ = w(2) for some z, " = o otherwise, and #», =
(", ---, #™). Continuing by induction, suppose that (at*, -+, ")

B & B. Then for each u(7):
(u(n
arit’” = fun(oa) S fuon(m)
= gyt
< g,

Thus U_af*? = o™ C g™ whenee v C 8. From the minimality property
of 8, it follows that vy = 8. Thus v is the minimal fixed point of ¢.

As a corollary we obiain
TeMma 4, Letf(g) = (fi, -, fs) be an ntuple sequentially standard function
and « its minimal fized point. Suppose thai o' iz finite for some integer i. Lei

9= (g1, "y G1, Gur1, * ", Gn) Where for cach integer § # i, g, 15 the function
g (Eﬂ) . E(ifl) E(l'{’l) e 2(")) _ f (E(l) - s(l—” a(!) E(i‘*‘l) . E(n))
2 ’ 2 ) b ? K H > ? b ? H .
Ther g is a (n — 1)-tuple sequentiolly standard function and 4 = (ozm, e,
ar GO ™Y ds dls minimad fized poind.
Lemma 5. Lel J(&) = (i, - -, fu) be an n-tuple sequentially standard func-
tion and a ils mindmal fized point. For some indeger © let f.(8) = &% + k(£). Then
the funiction g(£) = (g1, , ga), where g.(£) = k{§) and jor j # 1, g,(§) =

1.(8), 15 an n-tuple sequentiolly standard funchon and o 13 its minimol fizxed poind.
The proof of Lemima 5 follows from Theorem 2 and the fact that a production
of the form £ — £ is not needed.

Another consequence of Lemma 3 is the next result.

Lemma 6. Let (a, -+, &™) be the menimal fived point of the n-tuple se-
quentially stondord function (fy, -, fa). Then o s the minimal fived poini
Of jz(a(”: Tty a(lil)y E“))'

Tet 2 = {0, b,¢,d} and ¢{», 7) = (g1, gz}, whore gy = bvb + bdydb and ¢» =
advda + ane + aca. Denote by (v, 7’) the minimal fixed point of (g1, ¢2). It
is readily verified that %" is the set of those words having the symmetrie form

My, ooy Rey] = o™ ' - db™da™ea™db™d - - - B2 o,

where k, i, , - - - , and ny_; are positive integers. Therefore %" is a definable set.

Suppose that 7' is sequentially definable. Let f(5, -+ , &™) = (fy, -+, f)
he an w-tuple sequentially standard function whose minimal fixed point
(2, .-+, a'™) is such that &' = #’. By Lemma 4 we may assume that each
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o is infinite. Let m be the smallest integer satisfying the following two condi-
tions.

(a) There exists a pair (u, v) of words such that ua'™ is a subset of ™.

{b) The set ua™» contains an infinite number of words [n, - - - , 7sl, with

different r, r< s, such that »; < --- < m,.

Since 7 is an integer satisfying (a) and {b), the integer m exists. We shall show
that ' is not sequentially definable by proving that the existence of the integer
m leads to a contradiction.

We first prove that

for any o, if W and Y are two sets such that Wa''Y C o; then

W and Y each contain just one word, say w and y respectively. (6)

To see this let w and y be any words in W and ¥, respectively. Let 2, and
be two words in the infinite set «'”. Suppose that w contains the letter ¢. Then
wryy and wayy are two words in g’ with ¢ in w. Clearly one of these two words
cannot be symmetric. However, this contradicts the symmetry of each word
in %', Thus 2 does not contain ¢. Similarly y does not. contain ¢. Hence each
word in ' contains the letter c. Suppose that W containg a sccond word w, .
Then wqzy and wey are two words in 4" with ¢ in z;. One of these two words
cannot be symmetrie, again contradicting the symmetry of each word in 7.
Thus W contains just one word. Similarly ¥ contains just one word. This proves

(6).
Consider the set ™. By assumption, (&, - -+, &™) is a flixed point of f.
Thus ™ = fula®, -+, &"™). As fum is a polynomial in £, -+, £ we may

write fm in the form

FulER, B = AE™B 4 -+ AE™B, + K,

where K = fu (£7, -+, £ ¢) and, for each 7, 4,= A4,(¢%, ..., £™) and
B, = B.(t®, -, £™). By Lemma 5 we may assume that £€™ is not identical
with any one of the summands A.8™B, . Let K' = fn(a®, -+, a™ ", ¢) and,
for each 7, let 4/ = A,(a®, ---, &™) and B = B,(a™, -+, «™). Thus

o™ = fula®, -, @)= AV o+ ASTBS A+ K
Sinee ud./a"™ By © ua'™y C o', by (), ud,’ and B.'» cach contain one word.
b4 ’

We are now in a position to show that the existence of the integer m leads to
a contradiction. We do this by examining the set K’. In particular, we shall
see that K’ must satisfy one of two alternatives; and that each alternative
effects a contradiction.

Case 1. Buppose that the set wK'v contains an infinite number of words
[#, -+ -, ne, with different r, r < s, such that n; < -+ < =, . Write the func-
tion K = f.(¢", -+, £ ¢) in the form

K = (Y, 67 o 2 LY, e 57T,

where each II, is a product of finite sets and variables £, - - - | £, Replacing



TWO FAMILIES OF LANGUAGES RELATED TO ALGOL 363

each £ by &' we have
K =P+ + P,

where each P, = I(a™, -+, ™). The set K’ is the sum of a finite number
of P,. Hence for one of the terms, call it P, , uPw contains an infinite number
of words [ny, - - -, 5], with different r, r < s, such that n, < --- < n,. The
set P, is the product of finite sets and o, -, a™ ™. One of the factors of

’
P, must be one of the sets a™, -+, ™™, say «”’. For if not, then Py would

be the product of finite sets, and thus {inite, contradicting the fact that wPw
is infinite. Thus P, may be written as Qa®@: . As u@a™Qw < #', by (6),
46, and Qzv each contain just one word, say w and y respectively. Then wa®y =
uPw. Then p is an integer smaller than m which satisfies (a} and (b). This
contradicts the minimality property of m. Therefore Case 1 does not arise.

Case 2. Suppose that the set wK'v contains just a finite number of words
[71, -+, ng], with different r, v < s, such that », < .-+ < n,. By Lemma
6, a"™ is the minimal fixed point Off,,.(am, e a(’"_n, £y = Zi AJE™R) +
K’. Tt has already been shown that for each 7 there exist words w, and y, so that
A, = {w} and B, = {y.}. Thus «"™ is the minimal fixed point of Zw.t™y, +
E'. Therefore o™ is the set union of all sets of the form z, - - - 2:.K"2./2, -+ 2.,
and wa'™v is the set union of all sets of the form uz, -« - z:K'z'2 -+ - 2,'v, where
g varies, each g, is one of the words w,, and 2z’ the corresponding word vy, .
Now «K'v contains just a finite number of words n:, + -+, n, with differcnt
r,r < 8, such that n; < -+ < 7, ; and ua'™» contains an infinite number of
such words. Thus words of the form wuz, - -+ 2, must contain arbitrarily long
strings of a’s respectively &’s as subwords. Thus one of the words w,, say
is of the form o for some ¢ > 0. Similarly one of the words w. , say w; is of the
form &°, ¢ > 0. Let 2y be a word in K'. Then the word wwrowwsyw is in g’
and contains a subword ba, This is impossible. Hence Case 2 cannot occur.

Since the sct K’ is cither in Case 1 or Case 2, and hoth alternatives yield
contradictions; it follows that the set K’ eannot exist. Therefore the integer
m does not cxist. Thus the definable set 4’ is not sequentially definable.

Tt would be interesting {o select one of the definable sets occurring in AncoL
and show that it is not sequentially definable. We do not know if such a set
exists because of the massive structure of ALcor. We strongly suspect thai the
set of arithmetic expressions in ALGoL is not sequentially definable. Since it
requires more than 15 equations to define the set of arithmetic expressions, we
have been unable to explicitly determine this set preliminary to showing if is
not sequentially definable.

5. Functions Which Produce Sequentiolly Definable Sets

We have just seen that there exist definable sets which are not sequentially
definable. In Theorem 4 below we shall show that if all the coefficients in a
n-tuple standard function f commute with each other, then each of the co-
ordinates in the minimal fixed point of [ is sequentially definable. We shall
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accomplish this by showing that we may (i} restrict the variables to a family
of sets in which commutativity holds; (ii)} replace a function by one in which
one of the variables is linear; (iil) “solve” the function obtained in (ii), i.e.,
express one of the variables in terms of the remaining; (iv) replace one of the
variables in each of the remaining functions by the “solution” obtained in (iii),
thereby obtaining one less function and one less variable; (v) repeat (1)—(iv)
until there is just one function and one variable left; (vi) solve this last function,
thereby obtaining the last coordinate in the minimal fixed point of the original
n~tuple function; and (vii) evaluate each of the remaining coordinates of the
origingl n-tuple function by repeated substitution.

In order to carry out this seven step program we shall need some aguxiliary
concepts and resulis.

Notation. As in footnote 5, for each set 4 let 4™ = U2, 4"

Defindtion. A star polynomial f(£7, -~ -, £™) is a function constructed from

the finite number of set variables £ R £ cach £ ranging over all subsets
of 4, and having the following form: f is the sum of a finite number of terms,
f = 2 %I, each term II, having the form II, = & - .- 3, (r varying). Here
each 8, is either a sequentially definable set; or 3, is one of the variables £, - .-,
£ or 5, = 77, where r has the form r = 7, « - - 4, (t varying), each v, being
either a sequentially definable set or one of the variables £, -+, £, Kach
of the &, or v, which is sequentially definable is called a coefficient of f.

For example, f = AGVBE™)* 4+ 4 is a star polynomisl, but f =
A[(EYB)*t®1* + B is not, 4 and B being sequentially defimable sets.

Definition. A family A of subsets of 8 is called a base if
(i) eigin A;
(ii) for each pair of sets 4 and B in A, ABisin A and 48= B4; and
(iii) for each sequence {4} of setsin 4, U.4, is in A.
TFrom (iii) and (ii) it follows that for each pair A and B of setsin A, 4 + B
isin A as well as 4%,
In the sequel A will be a fixed base.

Definition. A function f(£%, - - -, £™) is said to be a base polynomial, acting
on A, if (i) f is a star polynomial, with each variable £ restricted to A, and
(ii) each coefficient of fis in A,

Lemsma 7. Let f(£Y, -+, &) be a funclion bwill up from the set variables
g1 E™ eaeh restricled to A, and constants in A, each sequentially definable;
by using the operations of +, -, and ™ a finite number of times. Then

f(ém; Tty E(u)) = gl(Em’ T, E(n)) ‘E(l) -+ gz(‘E(Z)J T, E(n));

where g1 and g. are base polynomials acting on A. Furthermore, the coefficients of
g1 and ge are formed from the cocfficients of § together with e by using the operations
of +, -, and * a finile number of times.

Proo¥. We first reduce f to a base polvnomial k(£ - -+, £™), acting on
A, by means af the identities:

(1) (AM™ = (ANH* = 4%,
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(2) (4 + B)* = A™B",
(3) (A*R)* = ¢ + A*BE",

where A and B are sets in A. These identities are easily derived from the defini-
tion A™ = UFA" and the commutativity of A and B.

The first step in reducing f to A is to apply identity (2} until no 4 appears
within the range of a *. The result is a sum, each term of which involves the
operations of - and * only.

We now introduce the idea of a ‘“nest” with its “depth” and “width.” The
* of a product of variables and constants is defined to be a nest of depth 0 and
width 0. An expression (p; - - p.»)”, where the u's are nests and » is a product
{perhaps empty) of constants and variables, is defined to be a nest of width ¢
and depth 1 4+ max {depth of g,/j}. Clearly the width is 0 if and only if the
depth is,

Now if a term of the sum has as a factor a nest of width greater than 1, or of
width 1 and a nonempty », we apply identfity (3) to replace the term
(- pat) Y by 7 4 mr o pav(p < - pa) ¥y, ie., by two terms, each a product
of nests, each nest (except v) of which has either smaller depth, or the same
depth and smaller width, than the original factor.

When no term containg as a factor a nest with width greater than or equal
to 1 and nonempty », then we apply identity (1) to all nests with width 1 and
empty », reducing their depth by 1. When no such nests remain, we repeat the
process of the preceding paragraph. The alternation of these processes must
end with no nests remaining of width or depth greater than 0. This is exactly
the form of a base polynomial AP, -- -, &™) over A.

We now form from k the two base polynomials g: and g . Due to the com-
mutativity of the sets in A, we can write each term of » which has t™ as a factor
as v£". Tor each such term, place the corresponding v in g, . Place each term of
h in which £ does not oceur in g. . This leaves only those terms of k in which
£* occurs only inside the nests (the nests being factors). Using the identity

(AB - )* = e+ (AB .- )(4AB .- ¥,

we generate from each such term in the obvious way two new terms. One of
these is of the form v:™ and we place v in g, ; the other {obtained from ¢) has
one fewer nests (as factors) containing ¢ than the original term. This process
continues until no nests remain, and this residue we place in g, . From the con-
struction it is clear that b = ¢ -+ (&%, .-~ , &), with g, and g. being
base polynomials acting on A. From the method of construction, it iz also clear
that the coefficients of g; and g; bave the asserted property. Q.E.D.

To illustrate the procedure given in Lemma 7, let f = [(A£)™ + (By)™* +
7%, where & and » represent £ and £® respectively, Applying identity (2)
twice we get

F= 1A + B 1 (") = (A8 [(B) " (™)™
Now [(Bn)*t*" is the only nest of width >1; and there is no nest of width 1
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and nonempty ». Applying identity (3) we get
(BT = ¢ + (B)"E* (N7,
whence
F = A + (AT () (B E ()™
There is no term which has as a factor a nest of either width greater than or

equal to 1 and nonempty ». Applying identity (1) to all nests with width 1 and
empty » we get

S = (A" " + (A8 'y* (B "EE
There is only one nest of width 1 and nonempty », and that is (4£%) % (oceurring
twice). Write (4£)* = (£*4)™. By identity (3),
(EA)" = e+ £44™
Then
F=n" b FAATY (B EE + 0N (B A4
This is the base polynomial 4.

We now determine ¢, and ¢, . Place 4™ in g» . Using the identity ¢* = ¢ +
g* replace £ AA " by Ad™y® + 544%0 . Place 44% 3" in ¢ and £* 445"
in gr. Replace » (Bn)*¢'6" by v (Bn)"&" + 7" (By) 6" Place v*(Bn) ¢
in g;. Replace #*(Bn)*t" by 2"(Bn)* + 7" (Bn) *&*. Place n*(Bn)* in g, and
2 (Bn)*t* in g, . Sumilarly the last term, o™ (Bn) *£ E**44%, in A is ultimately
replaced by n*(8n)*¢'¢"e" 44" + ' (Ba) Mt AAT L oN(By) AT +
7 (Bn)*AA*. This leads to the following forms for ¢, and g, :

g = £ AA" 4 T By) EE + " (B 4+ " (By) AT

+ (B EEAAT + 0 (By) ALY,
and
gy = 77* + AA*7*+ 1;*(377)* + ?]*{BT])*AA*.

These are not the “simplest” forms for g; and g, . I'or example, observing
that £6* = £* we get
AATE " + (Ba)*** 4 447 (B "

It

1
and

g = 1" 4+ AA" o (Bn)™p" 4+ AA™(By)™y",
If we had made this observation at an earlier stage we would have reduced the
computation considerably.

Let fi, -+, fu be n functions, each congtructed from sets in A and the var-

iables ¥, -+, £ each £ ranging over all subsets of 8; by using the opera-
tions of +, -, and ¥ a finite number of times. It is readily seen that Theorem

1 is still valid. Furthermore, each o.'” is in A&, whence so is each &'’ = Ua,'”.
Thus as far as fiinding minimal fixed points is concerned, each set variable may
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be restricted to sets in A. This is hereafter done. This enables us to use Lemma
7 and also to assume the commutativity of all sets under discussion.

LumMA 8. Let a bethe minimal fized pointof F(E7, < £ = (i, -+, 1),
where each 1, 18 a base polynomial actng on A. Suppose that f; = gi(£Y,
ENVEY 4o go(8%) oo £ where gy and go are base polynonirals acting on A.
Let hl(Em; L ,E('n)) — (h[gz(E(ﬂ), . ’E(ﬂ))’ 5(2)’ . t(ﬂ)]Ell) + (E(- . ;_-(71))’
and for 1 = 2let h, = f,. Then a1s the mmzmalﬁxed pont of h = (hy, -+, ha).

Proor. Let 8 = (8", ---, 8™) be the minimal fixed point of k. Let o =
(o, -+, &™), Let ax = (af”, -+, ™) and 8, = (8", -+, B™) have their
usual significance. To prove the lemma it suffices to show that o < 3% and
8 C &' for each 2. The proof of the latter is straightforward and is left to the
reader., The proof of the former is delicate and is now given.

Clearly of” = 85° € 8 foreach 7. Let D = g-z(ﬁm, <o, 8. Then o
D. As B is a fixed point of &, 8% = g[D, 8%, -+, 8V)3¢ w’ + D, whence D C
ﬁ(“ Suppose that o & B“) for each 7, and t,hat amBm < DRY. Tori = 2,
alty = flar) S 78) = B™. It remains to show that of¥) € 8% [for then « =
Ui’ C ,8“)] and that cx;(c.li.)lﬁm C Da®.

Let 6,(¢™, -+, &™), -+, 8,(&Y, .-+, ™) be any finite sequence, where
each 8,(£", - -, &%) iseither a constant in A or one of the variables ¢, «+ ., £™

restricted to A, Define (¢%, .., ) as the product (¢%, .-, £™)
LTI T Then

T(ak)*ﬁm _ :L(j) T(Q‘k)]BC“ _ g Bl(ak)J 5!(ak)]6(1)-

7

For each ¢ define v, to be the set &,(a) if 8.(8) # £ and D if 5.() = {V. B
commutativity and repeated application of the induction hypothesis of”8" <
D, it follows that

lcs

51(0%) ' 55(“}.) 3.3(1) = U 71] e 'chﬁm = T(Da C'fi(f)y Tty Olf(cm) *Bm
2

Thus
o, - al™) Y (D, ol o, al”) B, (7)
Consider the function gl(.E( }oooo ™). Since g; is 2 base polynomial acting
on A, g (87, - Y = FLILEY, - E), where IL(EY, -+ £7) =
# -+~ » (r varying). Here each v, is either a constant in A; or one of the var-
iables £, - -+, £ restricted to A; or a function #(§%, -+, £, #(8%, -+,
£ being defined as in the preceding paragraph. Then
gl(af(ﬂl)s Tt a;f,"))ﬁu) = ZH HW-(O[’EU; R al(cn))lBu)
C Z H;(D a(z) cee aéﬂ))ﬁ(n

by repeated application of the induction hypothesis 8" C D™, the com-
mutativity of the scts, and (7). Thus

gl(a(l) Y aliuj.)ﬁm < (D, al(:‘Z)’ T afcﬂm)ﬁm < a(D, -3(2): T ﬂ(n))ﬁ(n
c gv,
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Congider i}’ . It follows that
aity = g, 0, el + g, o, ™)
< nla)8Y + g2(8%, -, B7)
; ﬁ(l) + I'5.(1) — ﬁ(l),

one of the desired relations.

Finally,
aif? = gla)a8Y + ga(ad”, -, a™)BY
C D) 8P + g (89, -+, B8 C DE® + D™
= D", Q.E.D.
LumMa 9. Let a be the minimal fized point of F(£2, - &™) = (fi. -+, o)

where each f, is a base polynomial acting on A. Suppose that fy = g(£%, -,
ENVED - (89 oo E™), where g, and g. are base polynomials acting on A.
Let hy(£®, -+, E™Y = goug™ For i = 2, let by = fu(by, £9, -, &™), Then «
s the manimal fized point of (hy, -+, ha).

The proof of the above lemma involves the, by now, familiar line of reasening.
Accordingly, it is omitted.

TaroreM 4. Let f = (fi, -+, fa), where each f, = (£, -+, £} s a
polynomial. Suppose that oll coefficients are sequentially definable and commute
with each other. Then each coordinaie in the minimal fized point of f is a sequentially
definable set, and, moreover, can be consiructed from the cogflicients wn f logether
with ¢ by using the operations of +, -, and * a finite number of times.

Proor. Let A be the smallest family of sets which containg all the coefficients
if § together with ¢, and is ¢losed under the aperations of product and denumer-
able union. Since commutativity is preserved under product and denumerable
union, by transfinite induction it is readily seen that each two sets in A com-~
mute, i.e., A is a base.

Denote by & = (&, ---, ™) the minimal fixed point of f. From the dis-
cussion prior to Lemma 8 it may be assumed that each [, is a base polynomial
acting on A. Consider the following statement:

Letf = (i, -+ ,fu), where cach fu, = 7.(£9), - -+, £™) is a base polynomial
acting on A. Then each coordinate in the minimal fixed point o = (a3, «+-
«™) of f is a sequentially definable set, and, moreover, can be constructed from {(Pn}
the coefficients in f together with ¢ by using the operations of +, -, and * a finite
number of times.

To prove the theorem it is sufficient to show that (F.) is true for all . A
proof of (£,) will now be given by mathematical induction.

Suppose that = = 1, ie., f(£) = (f). By Lemma 7, £,(™) = (") ™ +
K, where ¢:(§") is a base polynomial acting on A; and K and the coefficients
of g1 are formed from the coefficients in f, together with ¢ by using the operations
of +, -, and * a finite number of times. By Lemma 8, o is the minimal fixed
point of A (), where hy((") = q(K)t® + K. Then «® = g,(K)"K. Since
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the family of sequentially definable sets is closed under <, -, and *, the set
o' is sequentially definable. Furthermore, o™ is constructed from the coefficients
of 71 in the desired form. Therefore () is true.

Continuing by inducticn suppose that (P,) is true for all integers less than
r. Consider the case when n = r. By Lemma 7 there exist base polynomials
a8, - E™) and (59, -+, £) such that

AED o Y = g EEY 4+ m® e E).

Furthermore, the coefficients of g, and g. are formed from the coefficients in f
together with e by using the operations of +, -, and * a finite number of times.
By Lemma 8, « is the minimal fixed pomnt of (fuq1, 2, -, fu), where

Faat (B oo JE) = gilge (8, - EM) EP, Y 4 (5 BT

By Lemma 7 it may be assumed that (i) g:(ge, £, - -+, ™) is a base poly-
nomial g (¢%, -+, £}, and (ii) the coefficients of g are derived from those of
g1 and gs , thus from those of fi, in the desired manner. Then

fﬂ+1(£(1)) ) 'S(n)) = 93(5(2)’ T E(n))éu) + gz(f(2’7 N ‘E(”‘)).

By Lemma 9, o is the minimal fixed point of (ks, -+ -, k,), where k; = 05 g
and b, = f.(gs'ge, £¥, .-+, £) for ¢+ = 2. By Lemma 7, it may be assumed
that each A.(£¥, - -+, £™) is in the form of a base polynomial the coeflicients
of which are formed from those of f,, g:, ¢, thus from the coeflicients in f,
in the desired manner.

Consider the minimal fixed point 8 = (8%, ---, 8™) of A(E?, --- , ) =
(hs, ++, hn). Since « is the minimal solution to the equation

[hl(ftﬂ)) T E(uj)’ hz(gtﬂ)’ T ‘E(n))’ Ty hn(g(m; Y E(“))] = (‘Em) T E(n))y

it follows that (i) a® = h(a®, - -, ™), and (i) (a®, ---, &™) is a fixed
point of A(¢®, -, £™). Therefore (8%, ---, 8™) C (a®, ---, a™). Since
h(89, -, 8™) =8" for ¢ = 2, it follows that (b, (8%, -+, 8), 8%,---.8'™)
is a fixed point of (A1, -+, k»). Thus & € 8, whence o = 8%, for i = 2.
In other words, (&, - -+, &'™) is the minimal fixed point of (s, + -+ , k).

Now A(t®, -+, ™) involves fewer than r functions, each of which is a
base polynomial acting on A. By induction, (P,) is true for n < r. Hence, for
¢ 2 2, each o is sequentially definable and derived from the coefficients in A
together with & thus from the coefficients in f together with ¢, in the desired
fashion. As &™ = Ry(a®, .-+, &™), the same is true for «. Therefore (P,)
is true and the theorem is proved.

If the coefficients in J arc powers of the same set then the coefficients com-
mute. Thus

CoroLLary 1. Iff = (fi, -+, fu) @5 a n-tuple standard funciion in which all
the coeflicients are powers of the same set, say A ; then each coordinale in the minimal
Jixed point of [ is sequentially definable and is oblainable from A together with e
by using the operations of +, -, and * a findte number of times. Thus each coordinate
s a regular sef.

Corollary 1 is obviously satisfied if the alphabet Z consists of just one letter.
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Thus each defimable sct is a regular set. The reverse, of courge, is also true. Now
it is a2 well-known but unpublished result that a set A = {&” | » in A} is regular
if and only if A is an ultimately periodic set of non-negative integers.””. From
this there ocours

Cororrary 2. [If the alphabet = consists of just ome letter then the (sequentially)
definable sels are equavalent o the regular sets, i.e., {a” | n in A} 28 (sequentiaily)
definable if and only if N is an wltemately periodic sei of nonnegatwe integers.

Remark. A careful examination of Theorem 4 and the lemmag upon which
it depends will reveal that the coordinates of the minimal fixed point are con-
structed only from the coefficients in f which are not e. In fact, the entire paper
could have been developed without introducing the empty word e. This would
mean, of course, that no (sequentially} definable set would contain the empty
word ¢; and would neecessitate several minor changes, such as defining A% to
be U:Q=1A1.

To illustrate Theorem 4 let

fr= A + A% 4 A'and fy = A% 4+ A% - AY o} A7

where 4 is some finite set of words and & and » represent £ and :® respectively.
We shall determine the minimal fixed point (£, #) of f = (f1, fu).
Now f; beecomes

(A% + APv)E + A* (8)
The function in (1) is transformed into
[A°4* + A%E + A% (9)

Then (£, 7} iz the minimal fixed point of (f;, fi), where
ol v) = (A% 4 A% *4"
and
falpy = ANAY + A% T4 4+ AN(A% + ARTAT + 4 + A%
Then 7 is the minimal fixed point of fu(v}. Rewriting f.(») in the form ¢:{(»)» -+
K, we have
fo= ANAW)HAHY + AT (A% + A 4+ A% + A7

= AANF 4 ARAYNFA (AT + AT (AP + A + A5+ 47 (10)

= [AMAHH AT * 4 AT (A% + AT 4+ A% + APAHF 4 A%
The function in (10} is transformed into

f5 = Hv + K,

Where H —_ AH(AG)*(AE‘[AS(AG)* + AED* "E_ 44.7(A3[A,8(A6)* _|__ AZ] _I_ Aﬁ)* +
A'and K = A%(A%* 4 A® Then 7 = H*K and E = (A*H*K 4+ A% A" Tf
so desired, Lemma 7 could be employed to reduce the depth and width of the
nests appearing in 7 and £ {considering powers of A as variables of course).

1 A proof of this fact casily follows from the last sentence in footnote 7.
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There is another system of [unctions of interest which vields sequentially
definable sets whereas its form suggests definable sets. This is the case when
FOED oo JE™Y = (fi, -+, fa), where each f, is linear on the right, i.e., f, =
2ora AP 4+ A, and all coefficients are sequentially definable. Tt ean be
shown that each coordinate in the minimal fixed point a = (&, - <+, &™)
of f is sequentially definable and, moreover, is constructed from the coefficients
in § by using the operations of 4, -, and * a finite-number of times. A proof
can be given which involves the notion of self-embedding as defined in [6]. Another
proof can be given which depends upon a result in [3]. The outline of an alterna-
tive proof, which involves eliminating the variables one at a time, is as follows.
From f; one gets

£ = Al*,l(z2 A7 4+ 4) = ZzAflfil.:E(” + ALAs.
1= 1=

Replacing " by 2.5y Afad, 2 + ABA, in fu, -+, f., one obtaing n — 1

funetions ¢, (%, -+, &™), o+, gu(E®, -+, £™), each g, being linear on the
right and having all coefficients sequentially definable. The minimal fixed point
of (g2, +,g.) is (a®, - -+, ™). This eliminates one of the variables and one

of the functions. The procedure is continued until there is just one variable and

one function. Then '™ is determined. By repeated substitution, ¢, - - , &
are obtained in turn.

The result and the outline of proof described in the preceding paragraph are
also valid, with minor changes of course, if inf = (fy, -- -, f») each f, is linear
on the left, ie., f, = 27 874, , + 4,.

There are no funetions in Ancor which illustrate either Theorem 4 or the
situations considered in the two preceding paragraphs.
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