
	 1	

Principles	of	Programming	Languages	[PLP-2015]		
Detailed	Syllabus		

This	document	lists	the	topics	presented	along	the	course.	The	PDF	slides	published	on	
the	course	web	page	(http://www.di.unipi.it/~andrea/Didattica/PLP-15/)	provide	a	
detailed	outline	of	the	topics	to	be	studied.		
The	presented	topics	are	based	mainly	on	selected	chapters	of	the	following	textbooks:	

• [ALSU]	Compilers:	Principles,	Techniques,	and	Tools	by	Alfred	V.	Aho,	Monica	
S.	Lam,	Ravi	Sethi,	and	Jeffrey	D.	Ullman,	2nd	edition	
Chapters	2	to	6	[excluding	sections	4.7.5	and	4.7.6],	8	[till	sec.	8.9],	9	[till	sec.	9.6]	

• [Scott]	Programming	Language	Pragmatics	by	Michael	L.	Scott,	3rd	edition		
Chapters	1,	3,	6,	7,	8	[Section	8.3	only],	9,	10,	13	

• [GM]	Programming	Languages:	Principles	and	Paradigms	by	Maurizio	
Gabbrielli	and	Simone	Martini		
Chapters	1,	4,	5,	6,	7	[till	section	7.2],	8	[till	section	8.10],	9,	10,	11	

• [Mitchell]	Concepts	in	Programming	Languages	by	John	C.	Mitchell		
Chapters	5,	6	and	7	on	Haskell	[these	are	not	included	in	the	printed	book]		

Some	additional	reading	material	is	indicated	below	where	relevant.	
	 	
List	of	topics	
1. Introduction.	Abstract	machines,	interpretation	and	compilation		

[GM],	Chapter	1;	[Scott],	Chapter	1	(sections	1-4	to	1-6)	
a. Abstract	machines	
b. Compilation	and	interpretation	schemes	
c. Cross	compilation	and	bootstrapping	
d. Structure	of	compilers	

2. Overview	of	a	syntax-directed	compiler	front-end	[ALSU],	Chapter	2	
a. (Context-Free)	Grammars,	Chomsky	hierarchy	
b. Derivations,	parse	trees,	abstract	syntax	trees		
c. Ambiguity,	associativity	and	precedence	
d. Syntax-directed	translation,	translation	schemes	
e. Predictive	recursive	descent	parsing	
f. Left	factoring,	elimination	of	left	recursion.		
g. Lexical	analysis		
h. Intermediate	code	generation	
i. Static	checking	

3. Lexical	analysis,	Implementing	critical	parts	of	a	scanner	[ALSU],	Chapter	3	
a. Tokens,	lexeme	and	patterns	
b. Regular	expressions	and	regular	definitions	
c. Transition	diagrams	
d. Code	of	a	simple	lexical	analyzer	
e. Lexical	errors	
f. Nondeterministic	and	deterministic	finite-state	automata	(NFA	and	DFA)	
g. From	regular	expressions	to	NFA	(Thompson	construction)	
h. From	NFAs	to	DFAs	(Subset	construction	algorithm)	
i. Minimization	(partition-refinement)	algorithm	for	DFAs,	Myhill-Nerode	

theorem	



	 2	

j. The	Lex-Flex	lexical	analyzer	generator	
k. From	RE	to	DFA	directly		

4. From	DFAs	to	regular	expressions	and	backwards		
[Reading	material	(see	course	web	page):	(1)	Selected	pages	of	of	Aiello,	
Albano,	Attardi,	Montanari:	Teoria	della	Computabilità,	Logica,	teoria	dei	
linguaggi	formali,	Materiali	didattici	ETS,	1979,	in	Italian.	
(2)	Ginsburg	and	Rice:	Two	Families	of	Languages	Related	to	ALGOL,	Journal	of	
the	ACM	Volume	9	Issue	3,	July	1962]	

a. From	a	DFA	to	a	right-linear	grammar	
b. Context-free	grammars	as	continuous	transformations	on	languages	
c. Kleene	fixed-point	theorem	
d. Generated	language	as	least	fixed-point	of	a	grammar	
e. REs	as	solutions	of	least-fixed	points	equations	

5. Parsing	[ALSU],	Chapter	4.	
a. Parser	as	string	recognizer	(acceptor)		
b. Left-recursion	elimination,	left-factoring,	LL(1)	grammars	
c. Recursive-descent	parsing,	table-driven	parsing	
d. Error	recovery	during	top-down	parsing.		
e. Bottom-Up,	shift-reduce	parsing:	handles	
f. Stack-implementation	of	shift-reduce	(driver)	
g. Shift/reduce	and	reduce/reduce	conflicts	
h. LR(0)	items,	LR(0)	automaton	and	LR(0)	parsing	table,	SLR	parsing		
i. LR(1)	items,	automaton	and	canonical	parsing	table,	LALR	parsing	tables	
j. LR	parsing	with	ambiguous	grammars		
k. Error	detection	during	shift/reduce	parsing	
l. Parser	generators:	Yacc/Bison,	dealing	with	ambiguous	grammars	in	Yacc	

6. *	Syntax-Directed	Translation		[ALSU],	Chapter	5	
a. Syntax-directed	definitions	(attribute	grammars)	
b. Synthesized	and	Inherited	attributes,	annotated	parse	trees	
c. S-attributed	definitions:	evaluation	with	postorder	depth-first	traversal	
d. Evaluation	order	of	attributes,	dependency	graph,	topological	sort		
e. L-attributed	definitions:	evaluation	with	depth-first,	left-to-right	traversal	
f. Syntax-directed	translation	schemes	
g. Postfix	translation	schemes	and	their	implementation	with	LR	parsing	
h. Translation	schemes	for	L-attributed	definition	schemes:	implementation	

with	top-down	and	bottom-up	parsing	
7. Programming	languages	and	abstraction:	names	and	bindings		[Scott]	Chapter	3,	

[GM]	Chapter	4	
a. Programming	language	concepts	as	abstractions	of	Abstract	Machine	

components	
b. Abstraction	by	naming,	by	parametrization	and	by	specification	
c. Names	as	abstractions,	binding	times	
d. Object	lifetime	vs.	binding	lifetime	
e. Static,	stack	and	heap	allocation	of	objects	
f. Stack	allocation:	Activation	records	and	stack	management	
g. Implicit	and	explicit	heap	allocation;	heap	allocation	algorithms	

8. Scoping	rules		[Scott]	Chapter	3,	[GM]	Chapter	4	and	5	
a. Static	vs.	dynamic	scoping	
b. Closest	nested	scope	rule	



	 3	

c. Resolving	non-local	references	with	static	scoping:	static	links	and	displays	
d. Implementation	of	dynamic	scope:	binding	stack	with	name-object	bindings	
e. Modules	as	abstraction	and	encapsulation	mechanism	
f. Modules	as	algebraic	data	types,	modules	as	classes		
g. Implementation	of	scopes		[Scott]	Section	3.4	

• Static	scoping:	LeBlanc	&	Cook	lookup	algorithm	
• Dynamic	scoping:	association	lists	and	central	reference	tables	

9. Denotational	semantics:	a	light	introduction	
[Reading	material:	R.D.	Tennent:	The	denotational	semantics	of	programming	
languages,	Communications	of	the	ACM,	Volume	19	Issue	8,	Aug.	1976]	

a. Syntactic	domains,	semantic	domains	and	semantic	interpretation	functions	
b. Denotational	semantics	of	LOOP	programs	
c. Complete	Partial	Orderings	(CPOs)	as	semantic	domains	for	recursive	

definitions	
d. Denotational	semantics	of	assignment,	blocks	and	parameterless	procedures	

10. More	on	management	of	bindings		[Scott]	Chapter	3	
a. Aliases	and	Overloading	
b. Deep	vs.	shallow	binding	for	procedural	parameters,	with	dynamic	or	static	

scoping	
c. Denotational	semantics	of	deep/shalow	binding:	intuition	
d. Returning	subroutines	as	closures	with	unlimited	extent	
e. Object	closures	in	Object	Oriented	languages.	

11. Control	flow	in	programming	languages		[Scott]	Chapter	6,	[GM]	Chapter	6	
a. Evaluation	order	of	expressions,	short-circuit	evaluation	
b. Assignment:	value	and	reference	memory	model	
c. Denotational	semantics	of	Value	and	Reference	Model	
d. Structured	and	unstructured	flow,	sequencing	and	selection	
e. Iteration:	enumeration	controlled	and	logically	controlled	loops	
f. Iterators	and	collections/containers,	iterators	in	Java	
g. True	iterators	and	iterators	based	on	higher	order	functions	

12. Intermediate	Code	Generation		[ASLU]	Chapter	6		
a. Intermediate	representations	
b. Syntax-directed	translation	to	three-address	code	
c. Handling	names	in	local	scopes	
d. Translation	of	declarations,	expressions	and	statements	in	scope	
e. Translation	of	short-circuit	boolean	expressions	
f. Translation	of	conditionals	and	iteration	
g. Use	of	backpatching	lists		

13. Type	systems		[Scott]	Chapter	7,	[GM]	Chapter	8,	[ALSU]	Chapter	6	
a. Data	types,	type	errors,	type	safety	
b. Static	vs.	dynamic	typing,	conservativity	of	static	typing		
c. Type	equivalence:	structural	vs.	name	equivalence	
d. Type	compatibility	and	coercion	
e. Discrete	types,	scalar	types,	composite	types	
f. Tuples,	records	and	arrays	
g. Generating	intermediate	code	for	array	declaration	and	access		
h. Disjoint	unions	types:	algebraic	data	types,	discriminated	records,	variants,	

objects,	active	patterns	in	F#	
i. Pointers	as	references	in	value	model	memory	stores	



	 4	

j. Preventing	dangling	pointers:	tombstones,	locks	and	keys	
k. Pointers	and	arrays	in	C	
l. Recursive	data	types:	lists	in	various	programming	languages	

14. Control	abstraction	[Scott]	Section	8.3,	[GM]	Chapter	7	
a. Parameter	Passing	Modes	and	Mechanisms	
b. Call	by	name/value/result/reference/sharing/need	
c. Closures	
d. Default	parameters,	named	parameters,	varargs	

15. Data	Abstraction	and	Object	Oriented	programming	languages		[Scott]	Chapter	9,	
[GM]	Chapter	9-10	

a. Abstraction	mechanisms	applied	to	data	
b. Object	Oriented:	Encapsulation	+	Inheritance	+	Dynamic	method	binding	
c. Visibility	rules	in	Java	and	C++	
d. Initialization	and	finalization	of	objects	
e. Dynamic	binding:	virtual	functions	in	C++,	methods	in	Java	
f. Multiple	inheritance	
g. Mix-in	inheritance	in	Java;	Classes,	Abstract	classes	and	Interfaces	

16. Functional	programming	languages		[Scott]	Chapter	10,	[GM]	Chapter	11,	
[Mitchell]	Chapter	5	

a. Historical	origins	and	main	concepts	
b. Functional	languages:	the	LISP	family,	the	ML	family,	Haskell	
c. Applicative	and	Normal	Order	evaluation	of	lambda-terms	
d. Overview	of	Haskell	

• Primitive	types,	Algebraic	Data	Types,	Lists	and	List	Constructors	
• Patterns	and	declarations,	functions	and	pattern	matching	
• List	comprehension	
• Higher-order	functions	
• Lazy	evaluation	

e. Implementation	of	Overloading	through	Type	Classes	and	Constructor	Classes	
in	Haskell			[Mitchell]	Chapter	7	

f. Monads	in	Haskell;	Monads	as	containers	and	as	computations,	the	IO	Monad		
g. Type	Inference:	the	Hindley-Milner	algorithm		

[Mitchell]	Chapter	6:	pages	118-136	
h. Type	Inference	with	Overloading:	generating	type	constraints	
i. Recursion	vs.	iteration,		tail	recursion		[Scott]	Section	6.6	
j. Continuation	passing	style	(CPS)	

• Making	argument	evaluation	order	explicit	
• Tail	recursion	and	CPS	

17. Scripting	languages		[Scott]	Chapter	13	
a. Origins	and	common	characteristics	
b. Problem	domains:	shell	languages,	text	processing	and	report	generations,	

“glue”	languages,	extension	languages,	WWW	(server	and	client	side)	
c. Innovative	features	(supported	in	various	ways)	

• Variable	declarations	not	needed,	thus	typing	is	dynamic	
• Various	original	nesting	and	scoping	rules	
• Rich	set	of	string	and	pattern	(regular	expressions)	manipulation	

operators	
• Data	types:	generic	numeric	types,	associative	arrays	(hash	tables)	
• Object	Orientation	



	 5	

18. Code	generation		[ALSU]	Chapter	8		
a. Instruction	selection,	register	allocation	and	assigment,	instruction	ordering		
b. Target	machine	architecture	and	instruction	set/addressing	modes	
c. Flow	graphs:	basic	blocks,	control	flow	graphs,	partition	algorithm	
d. Loops		
e. DAG	representation	of	basic	blocks,	equivalence	of	basic	blocks	
f. Local	Transformation	Techniques	
g. Next-use	and	liveness	informations	
h. Simple	code	generation	algorithm	
i. Simple	register	allocation	algorithm	
j. Peephole	optimization	
k. Global	register	allocation	with	graph	coloring	
l. Instruction	selection	using	tree	rewriting	 	

19. Dataflow	analysis		[ALSU]	Chapter	9	
a. Data	flow	analysis	frameworks	
b. Data	flow	iterative	algorithm	
c. Examples:	reaching	definitions,	live	variables,	constant	propagation	/	folding	
d. Accuracy,	Safeness,	and	Conservative	Estimations	
e. Determining	loops	in	flow	graphs:	dominators	
f. Data	flow	analysis	for	dominators	

		
	


