603AA - Principles of Programming
Languages [PLP-2015]

Andrea Corradini
Department of Computer Science, Pisa

Academic Year 2015/16

Admins

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
9 CFU/ECTS

Students enrolled till AY 2013/14 have to
integrate the course with a 3 CFU activity

— To be agreed upon with me

Office Hours: (was Monday, 15:30-17:30)

Evaluation

2 midterms
— November 2-6, 2015
— December 16-18, 2015

Written proof
Oral examination

Pre-evaluation:
— Starter kit test: Thu October 1 at 17:00

Course Topics and Goals

The course presents principles and techniques for the
implementation and usage of programming languages.

First part:

— formal definition of the syntax of programming languages
— main phases of a compiler with emphasis on the lexical, syntactical
and semantical analysis phases of the front-end.

Second part:

— main topics of the structure of programming languages from the

viewpoint of the runtime support of its abstract machine and of the
expressiveness of the supported linguistic constructs

— focus on constructs of imperative, functional, object-oriented, and
scripting languages

Textbooks

[Scott] Programming Language Pragmatics
by Michael L. Scott, 3" edition

Compilers
Principles, Techniques, & Tools

[ALSU] Compilers: Principles, Techniques, and
Tools

by Alfred V. Aho, Monica S. Lam, Ravi Sethi, and
Jeffrey D. Ullman, 2"¢ edition

[GM] Programming Languages: Principles and

Paradigms b
by Maurizio Gabbrielli and Simone Martini

CONCEPTS IN
PROGRAMMING
LANGUAGES

[Mitchell] Concepts in Programming Languages
by John C. Mitchell

Credits

* Slides freely taken and elaborated from a
number of sources:

— Marco Bellia (DIP)
— Gianluigi Ferrari (DIP)
— Robert A. van Engelen (Florida State University)

— Gholamreza Ghassem-Sani (Sharif University of
Technology)

Abstract Machines

Abstract Machine for a Language L

* Given a programming language L, an Abstract Machine
M, for L is a collection of data structures and algorithms
which can perform the storage and execution of programs
written in L

* An abstraction of the concept of hardware machine
e Structure of an abstract machine:

Memory Interpreter

Operations and Data Structures for:
< > ¢ Primitive Data processing
Sequence control

Data Transfer control

Memory management

Programs

Data

General structure of
the Interpreter @

Sequence control Fetch next instruction <
Decode
Data control Fetch operands
— '
Operations Execute op, Execute op, Execute op, Execute HALT

.

Data control Store the result @

The Machine Language of an AM

Given and Abstract machine M, the machine language L,, of M
— includes all programs which can be executed by the interpreter of M

Programs are particular data on which the interpreter can act

The components of M correspond to components of L,,, eg:
— Primitive data types
— Control structures
— Parameter passing and value return
— Memory management

Every Abstract Machine has a unique Machine Language
A programming language can have several Abstact Machines

An example the Hardware Machine

e e e e e e e e e e e e e e e e e e e -

The language? Main memory
The memory?
The interpreter?
Operations and Data Structures for:

* Primitive Data processing?

 Sequence control?

* Data Transfer control?

e Memory management? 11

Implementing an Abstract Machine

Each abstract machine can be implemented in hardware or in
firmware, but if it is high-level this is not convenient in general

An abstract machine M can be implemented over a host
machine Mg, which we assume is already implemented

The components of M are realized using data structures and
algorithms implemented in the machine language of M,

Two main cases:
— The interpreter of M coincides with the interpreter of Mg
* M is an extension of M,
e other components of the machines can differ
— The interpreter of M is different from the interpreter of M,
* Mis interpreted over M,
e other components of the machines may coincide

Hierarchies of Abstract Machines

* |Implementation of an AM with another can be
iterated, leading to a hierarchy (onion skin model)

e Example:

E-Business machine (on-line commerce applications)

Web Service machine (languages for web services)

Web machine (browser etc.)

HL machine (Java)

Intermediate machine (Java Bytecode)

Operating System machine

Firmware machine

[Hardware machine J

Implementing a
Programming Language

L high level programming language
M, abstract machine forL

M, host machine

Pure Interpretation

— M| is interpreted over M,

— Not very efficient, mainly because of the interpreter (fetch-decode
phases)

Pure Compilation

— Programs written in L are translated into equivalent programs
written in Ly, the machine language of M,

— The translated programs can be executed directly on M,
* M, is not realized at all
— Execution more efficient, but the produced code is larger

Two limit cases that almost never exist in reality

