603AA - Principles of Programming
Languages [PLP-2015]

Andrea Corradini
Department of Computer Science, Pisa

Academic Year 2015/16

Compilation and interpretation schemes
Cross compilation

Bootstrapping

Compilers

Implementing a
Programming Language

L high level programming language
M, abstract machine forL

M, host machine

Pure Interpretation

— M| is interpreted over M,

— Not very efficient, mainly because of the interpreter (fetch-decode
phases)

Pure Compilation

— Programs written in L are translated into equivalent programs
written in Ly, the machine language of M,

— The translated programs can be executed directly on M,
* M, is not realized at all
— Execution more efficient, but the produced code is larger

Two limit cases that almost never exist in reality

Pure Interpretation
* Program P in L as a partial function on D:
PP > 9
* Set of programs in L: gzmgci”

Program in L

' TTTTTTTTToon

Inte.rprete.r for L Output data i

written in LO | .

: ———————————————— l/' ———————————————— !
! Input data : lExecution on MO

MO

* The interpreter defines a function

f:’go ; (@rog‘g X 9)— % such that fgo(ﬁg, Input) = P (Input)

Pure [cross] Compilation

A compiler from L to LO defines a function
Cr Lo ,@rog”gf — erogiﬂo

such that if
Cp.p0(PZL)= Pc?,

then for every Input we have @< (Input) = P2cZ°(Input)

i Input data :
I________________I
Program Compiler Program ! .
—> E— Output dat |
written in L from L to LO written in LO : Hipt e .
lExecution on M A lExecution MO

Abstract macchine M A Host macchine MO

Compilers versus Interpreters

Compilers efficiently fix decisions that can be taken at compile
time to avoid to generate code that makes this decision at run
time

— Type checking at compile time vs. runtime

— Static allocation

— Static linking

— Code optimization

Compilation leads to better performance in general

— Allocation of variables without variable lookup at run time

— Aggressive code optimization to exploit hardware features

Interpretation facilitates interactive debugging and testing

— Interpretation leads to better diagnostics of a programming
problem

— Procedures can be invoked from command line by a user
— Variable values can be inspected and modified by a user

Compilation + Interpretation

e All implementations of programming languages
use both. At least:

— Compilation (= translation) from external to internal
representation

— Interpretation for I/O operations (runtime support)

* Can be modeled by identifying an Intermediate
Abstract Machine M, with language L,
— A program in L is compiled to a program in L,
— The program in L, is executed by an interpreter for M,

Compilation + Interpretation
with Intermediate Abstract Machine

I
I
I
I
I

P‘rogre}m Compiler ' Progrgm '
written in L from L to Li written in L7

I
|
|

TN Interpreter for L¢ |
written — Output data
o in Lo or RTS L
Rrogrgm Compiler . I'Drogr?lm '
written in L from L to Li written in Lz)
Execution on MO
lCompilation on M A
MA MO

* The “pure” schemes as limit cases
* Let us sketch some typical implementation schemes...

Virtual Machines as Intermediate
Abstract Machines

* Several language implementations adopt a compilation
+ interpretation schema, where the Intermediate
Abstract Machine is called Virtual Machine

 Adopted by Pascal, Java, Smalltalk-80, C#, functional
and logic languages, and some scripting languages

— Pascal compilers generate P-code that can be interpreted
or compiled into object code

— Java compilers generate bytecode that is interpreted by
the Java virtual machine (JVM)

— The JVM may translate bytecode into machine code by
just-in-time (JIT) compilation

Compilation and Execution on
Virtual Machines

 Compiler generates intermediate program

e Virtual machine interprets the intermediate
program

Source o Intermediate
ompiler
Program Program

Compile on X Run on VM

Virtual
 Portability! mmpur “ Output

RunonX,Y, Z, .

Pure Compilation and Static Linking

* Adopted by the typical Fortran systems

* Library routines are separately linked
(merged) with the object code of the program

Source ‘ o ‘ Incomplete
ompiler
Program Ob]ect Code

extern printf();

—?;_;i‘;tf Static Library ‘ e ‘ Binary
“fscan | Object Code Executable

Compilation, Assembly, and
Static Linking

* Facilitates debugging of the compiler

Source c Assembly
ompiler
Program Program

extern printf (),

Assembler

=

_printf

—:gi:n Static Library ‘
- Object Code

Binary
Executable

12

Compilation, Assembly, and
Dynamic Linking

* Dynamic libraries (DLL, .so, .dylib) are linked at
run-time by the OS (via stubs in the executable)

Source o Assembly
ompiler
Program Program

extern printf (),

Shared Dynamic Libraries

_printf, fget, fscan, ..

Input

- =

‘ Incomplete
“ .

13

Preprocessing

Most C and C++ compilers use a preprocessor
to import header files and expand macros

Source
Preprocessor
Program

Modified Source
Program

#include <stdio.h>
#define N 99

for (i=0; i<99; i++)

for (i=0; i<N; i++)

Assembly or
Compiler Object Code

14

The CPP Preprocessor

* Early C++ compilers used the CPP preprocessor
to generated C code for compilation

C++ CS
Cot ource
Source ‘ Preprocessor ‘ Code
Code
Assembly or
C Compiler Object Code

Compilers, graphically

Three languages involved in writing a compiler
— Source Language (S)

— Target Language (T)

— Implementation Language (l)

T-Diagram:
S T

If I =T we have a Host Compiler
If S, T, and | are all different, we have a Cross-Compiler

Composing compilers

 Compiling a compiler we get a new one: the
result is described by composing T-diagrams

S M S M

Example:

S Pascal
I C

M 68000

| ' M M

A compiler of S to M can be written in any
language having a host compiler for M

Composing compilers

 Compiling a compiler we get a new one: the result is
described by composing T-diagrams

* The shape of the basic transformation, in the most
general case, is the following:

S T S T

| ' N N

M

* Note: by writing this transformation, we implicitly
assume that we can execute programs written in M

Bootstrapping

Bootstrapping: techniques which use partial/inefficient
compiler versions to generate complete/better ones
Often compiling a translator programmed in its own
language

Why writing a compiler in its own language?

— it is a non-trivial test of the language being compiled

— compiler development can be done in the higher level
language being compiled.

— improvements to the compiler’s back-end improve not
only general purpose programs but also the compiler itself

— it is a comprehensive consistency check as it should be
able to reproduce its own object code

Compilers: Portability Criteria

Portability

— Retargetability
— Rehostability

A retargetable compiler is one that can be modified
easily to generate code for a new target language

A rehostable compiler is one that can be moved easily
to run on a new machine

A portable compiler may not be as efficient as a
compiler designed for a specific machine, because we
cannot make any specific assumption about the target
machine

Using Bootstrapping to port a compiler

* We have a host compiler/interpreter of L for M
 Write a compiler of Lto N in language L itself

L N
L N
_ L L M
Example: M
L Pascal
M P-code M
L N L N
L L N N

Bootstrapping to optimize a compiler

* The efficiency of programs and compilers:
— Efficiency of programs:
* memory usage
* runtime

— Efficiency of compilers:
* Efficiency of the compiler itself
 Efficiency of the emitted code

e |dea: Start from a simple compiler (generating
inefficient code) and develop more sophisticated

version of it. We can use bootstrapping to
improve performance of the compiler.

Bootstrapping to optimize a compiler

e We have a host compiler of ADA to M
 Write an optimizing compiler of ADA to M in ADA

ADA M*
ADA M*
ADA ADA M
M
M
ADA M* ADA M*
ADA| ADA M* M*

Full Bootstrapping

A full bootstrap is necessary when building a new
compiler from scratch.

Example:

We want to implement an Ada compiler for machine
M. We don’t have access to any Ada compiler

Idea: Ada is very large, we will implement the
compiler in a subset of Ada (call it Ada,) and
bootstrap it from a subset of Ada compiler in
another language (e.g. C)

Full Bootstrapping (2)

* Step 1: build a compiler of Ada, to M in another language, say C

Ada, M

C

e Step 2: compile it using a host compiler of C for M

Ada, M Ada, vi ™M

C C M M

M

* Note: new versions would depend on the C compiler for M

Full Bootstrapping (3)

 Step 3: Build another compiler of Ada, in Ada,

Ada, M

Ada,

* Step 4: compile it using the Ada, compiler for M

Ada, M Ada, v2 ™M

Adao Adao vi M M

M

* Note: C compiler is no more necessary

Full Bootstrapping (4)

* Step 5: Build a full compiler of Ada in Ada,

Ada M

Ada,

* Step 4: compile it using the second Ada, compiler for M

Ada M Ada M

Ada, Ada, v2 ™M M

M

e Future versions of the compiler can be written directly in Ada

Compilers

The Analysis-Synthesis
Model of Compilation

* Compilers translate programs written in a
language into equivalent programs in another

language
* There are two parts to compilation:

— Analysis determines the operations implied by the
source program which are recorded in a tree
structure

— Synthesis takes the tree structure and translates
the operations therein into the target program

Other Tools that Use the Analysis-
Synthesis Model

* Editors (syntax highlighting)

* Pretty printers (e.g. Doxygen)

e Static checkers (e.g. Lint and Splint)

* |Interpreters

* Text formatters (e.g. TeX and LaTeX)

* Silicon compilers (e.g. VHDL)

* Query interpreters/compilers (Databases)

Several compilation techniques are used in
other kinds of systems

Compilation Phases and Passes

 Compilation of a program proceeds through a
fixed series of phases

e A pass is one phase or a sequence of phases that
starts from a representation of the program and
produces another representation of it

e Passes can be serialized, phases not necessarily

— Pascal, FORTRAN, C languages designed for one-pass
compilation, which explains the need for function
prototypes

— Single-pass compilers need less memory to operate
— Java and ADA are multi-pass

The Many Phases of a Compiler

Source Proiram

' Lexical analyzer)
A
2 Syntax Analyzer Analyses
] AN
3 Semantic Analyzer K
Intermediate
Symbol-table 4 Code Generator — 1 Error Handler
Manager

|~

A

\

5 Code Optimizer

>‘ Syntheses

6 Code Generator

\

7 Peephole Optimization
1,2,3,4: Front-End l
5,6, 7 : Back-End Target Program

Compiler Front- and Back-end

Source program (character stream)

Scanner

(lexical analysis)

Tokens

Parser

(syntax analysis)

Parse tree

Front end

Semantic Analysis and

Intermediate Code
Generation

Abstract syntax tree or
other intermediate form

Abstract syntax tree or
other intermediate form

Machine-Independent
Code Improvement

Modified intermediate form

Target Code Generation

Back end
synthesis

Assembly or object code

Machine-Specific Code

Improvement

Modified assembly or object code

33

Scanner: Lexical Analysis

e Lexical analysis breaks up a program into tokens

program gcd (input, output);
var i, j : integer;
begin
read (i, 7J);
while 1 <> j do
if i > j then i :=1 - j else j := j - i;
writeln (1)
end.

program gcd (input , output) ;

var 1 , J : integer ; begin
read (i ,]) ; while
i <> 7 do if i > J
then 1 1= i -] else]

= i - i ; writeln (i

) end

Context-Free Grammars

* A context-free grammar defines the syntax of a
programming language

 The syntax defines the syntactic categories for
language constructs
— Statements
— Expressions
— Declarations

* Categories are subdivided into more detailed
categories

— A Statementis a
* For-statement
e |f-statement
* Assignment

<statement> .= <for-statement> | <if-statement> | <assignment>
<for-statement> .:= for (<expression> ; <expression> ; <expression>) <statement>
<assignment> ::= <identifier> := <expression>

Example: Micro Pascal

<Program> ::=program <id> (<id> <More ids>) ; <Block> .
<Block> .= <lariables> begin <Stmt> <More Stmts> end
<More ids> ::=,<id><More ids>

| €
<Variables> ::=var <id><More ids> : <Iype> 5 <More Variables>

| €
<More_ Variables> ::= <id> <More ids> : <Iype> ; <More Variables>
| €
<Stmt> = <id> = <Exp>
| 1f <Exp> then <Stmr> else <Stmt>
| while <Exp> do <Stmt>
| begin <Stmf> <More Stmts> end
<Exp> = <num>
| <id>
| <Exp> + <Exp>
| <Exp> - <Exp>

Parser: Syntax Analysis

* Parsing organizes tokens into a hierarchy
called a parse tree

e Essentially, a grammar of a language defines
the structure of the parse tree, which in turn
describes the program structure

* A syntax error is produced by a compiler when
the parse tree cannot be constructed for a

program

Semantic Analysis

Semantic analysis is applied by a compiler to discover the meaning
of a program by analyzing its parse tree or abstract syntax tree
Static semantic checks are performed at compile time

— Type checking

— Every variable is declared before used

— ldentifiers are used in appropriate contexts

— Check subroutine call arguments

— Check labels

Dynamic semantic checks are performed at run time, and the
compiler produces code that performs these checks

— Array subscript values are within bounds

— Arithmetic errors, e.g. division by zero

— Pointers are not dereferenced unless pointing to valid object

— Avariable is used but hasn't been initialized

— When a check fails at run time, an exception is raised

Semantic Analysis and Strong Typing

* Alanguage is strongly typed "if (type) errors are always
detected"

— Errors are either detected at compile time or at run time
— Examples of such errors are listed on previous slide

— Languages that are strongly typed are Ada, Java, ML,
Haskell

— Languages that are not strongly typed are Fortran, Pascal,
C/C++, Lisp

e Strong typing makes language safe and easier to use,

but potentially slower because of dynamic semantic
checks

* In some languages, most (type) errors are detected
late at run time which is detrimental to reliability e.g.

early Basic, Lisp, Prolog, some script languages

Code Generation and Intermediate
Code Forms

program Index

) /\m ;

(L) (5) var

Svinbot
integer
input
output
gcd

i

(5)/\(6) /\ l)
(5)/1(6) /Y\
27 AR
A

[T O T S P T s R

« Atypical intermediate form of
code produced by the
semantic analyzer is an
abstract syntax tree (AST)

 The AST is annotated with
useful information such as
pointers to the symbol table
entry of identifiers

Example AST for the
gcd program in Pascal

Target Code Generation and
Optimization

The AST with the annotated information is
traversed by the compiler to generate a low-level
intermediate form of code, close to assembly

This machine-independent intermediate form is
optimized

From the machine-independent form assembly
or object code is generated by the compiler

This machine-specific code is optimized to exploit
specific hardware features

Supporting Phases/
Activities for Analysis

* Symbol Table Creation / Maintenance

— Contains info (storage, type, scope, args) on each
“meaningful” token, typically identifiers

— Data structure created / initialized during lexical
analysis

— Exploited / updated during later analysis & synthesis

* Error Handling

— Detection of different errors which correspond to all
phases

— What happens when an error is found?

