Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 5

* Lexical analysis: implementing a scanner

The Reason Why Lexical Analysis
is a Separate Phase

* Simplifies the design of the compiler

— LL(1) or LR(1) parsing with 1 token lookahead would
not be possible (multiple characters/tokens to match)

* Provides efficient implementation

— Systematic techniques to implement lexical analyzers
by hand or automatically from specifications

— Stream buffering methods to scan input

* Improves portability

— Non-standard symbols and alternate character
encodings can be normalized (e.g. UTFS8, trigraphs)

Main goal of lexical analysis:
tokenization

source code
y := 31 + 28*x J

<id, “y "> <assign, > <num, 31> <‘+’, > <num, 28> <‘*’, > <id, “x >

D
token

(lookahead) C
tokenval
(token attribute) 3

Additional tasks of the Lexical Analyzer

* Remove comments and useless white spaces /
tabs from the source code

* Correlate error messages of the parser with
source code (e.g. keeping track of line
numbers)

* Expansion of macros

Interaction of the Lexical Analyzer
with the Parser

Source
Program

Tokens, Patterns, and Lexemes

A token is a pair <token name, attribute>

— The token name (e.g. id, num, div, geq, ...) identifies the category of
lexical units

— The attribute is optional

— NOTE: most often, one refers to a token using the token name only
A lexeme is a character string that makes up a token

— For example: abc, 123, \, >=

A pattern is a rule describing the set of lexemes belonging to
a token

— For example: “letter followed by letters and digits”, “non-empty

n 777

sequence of digits”, “character ‘\””, “character >’ followed by ="

The scanner reads characters from the input till when it
recognizes a lexeme that matches the patterns for a token

Example

Token name

Informal description

Sample lexemes

if
else
relation
id
number
literal

Characters 1, f
Characters e, 1, s, €

<Oor>or<=or>=0r==0or!=

Letter followed by letter and digits
Any numeric constant

Anything but " sorrounded by "

if
else

<:, !:

p1, score, D2
3.14159, 0, 6.02¢23

"core dumped"

Attributes of tokens

Needed when the pattern of a token matches different
lexemes

We assume single attribute, but can be structured

Typically ignored by parsing, but used in subsequent
compilation phases (static analysis, code generation,
optimization)

Kind of attribute depends on the token name

Identifiers have several info associated (lexeme, type,

position of definition,...)

— Typically inserted as entries in a symbol table, and the
attribute is a pointer to the simbol-table entry

Reading input characters

Requires I/O operations: efficiency is crucial
Lookahead can be necessary to identify a token

Buffered input reduces I/O operations

Naive implementation makes two tests for each
character

— End of buffer?
— Multiway branch on the character itself

Use of “sentinels” encapsulate the end-of-buffer
test into the multiway branch

Buffered input to Enhance Efficiency
/—/%Current token

E = M * Ci*x =x |2 leof

AN

lexeme beginning

if forward at end of first half then begin
reload second half ; Block 1/0O

forward : = forward +1
end

else if forward at end of second half then begin
reload first half ; Block I/0
move forward to beginning of first half

end

else forward : = forward +1;

forward (scans
ahead to find
pattern match)

Executed for each
input character

10

Algorithm: Buffered I/O with Sentinels
/—/%Current token

E = M * ieoff C | * | * 2

eof

eof

lexeme beginning

AN

forward : = forward +1;
if forward is at eof then begin
if forward at end of first half then begin
reload second half ; Block I/0
forward : = forward +1
end
else if forward at end of second half then begin
reload first half; Block I/O

move forward to beginning of first half
end

terminate lexical analysis
end 2nd eof = no more input !

else / * eof within buffer signifying end of input * /

forward (scans
ahead to find
pattern match)

Executed only is next
character is eof

11

Specification of Patterns for Tokens:
Recalling some basic definitions

An alphabet X is a finite set of symbols (characters)

A string s is a finite sequence of symbols from 2

— | s| denotes the length of string s
— ¢ denotes the empty string, thus || =0
— 2* denotes the set of strings over

A language L over X is a set of strings over alphabet 2
Thus L EX* orlL € 2
— 2%is the powerset of X, i.e. the set of all subsets of X

The concatenation of strings x and y is denoted by xy
Exponentiation of a strings: s’=¢ s'=s"1s fori>0

12

Operations on Languages

* Languages are sets (of strings) thus all
operations on sets are defined over them

— Eg. Union: LUM={s | s€ELors€& M}
* Additional operations lift to languages
operations on strings
— Concatenation LM={xy | x€Landy € M}
— Exponentiation L°={e}; L'=L"1
— Kleene closure L"=U_, L
— Positive closure [Y=Ug oL

13

Language Operations: Examples

Assuming
L={a, b,ab, b D={1,2,ab, b
3, b, ab, ba J i1, 2,ab, by b1y
e LUD={a,b,ab, ba, 1, 2}

e LD =1{al, a2, aab, ab, b1, b2, bab, bb, ab1, ab2, abab,
abb, bal, ba2, baab,bab}

 L2={aq, ab, aab, aba, ba, bb, bab, bba, abb, abab, abba,
baa, bab, baab, baba}

e L*={¢,1,2,ab,b,11,12,..,111,112, .., 1111, 1112,
e]

¢ L'=L*-{¢)

14

Regular Expressions:
syntax and semantics

Given an alphabet X, a regular expression over 2 denotes
a language over 2 and is defined as follows:

Basis symbols:
— € is a regular expression denoting language {¢}
—a is a regular expression denoting {a}, foreacha € X

If r and s are regular expressions denoting languages L(r)
and M(s) respectively, then

— (r) | (s) is aregular expression denoting L(r) U M(s)
— (r)(s) is a regular expression denoting L(r)M(s)

— (r) is a regular expression denoting L(r)*

— (r) is a regular expression denoting L(r)

A language defined by a regular expression is called a
regular language

15

Regular Expressions:
conventions and examples

e Syntactical conventions to avoid too many brackets:

— Precedence of operators: ()" > ()(.) > ()|()
— Left-associativity of all operators
— Example: (a)|((b)"(c)) can be writtenas a|b*c
 Examples of regular expressions (over 2 = {a, b}):
— alb denotes {a, b}
— (a|b)(a|b) denotes {aa, ab, ba, bb }
— a” denotes {¢,a, ag, aaa, aaaa, ... }
— (a|b)” denotes {e,a,b, aa, ab, ..., aaa, aab, ... } = X°
— (a”b”)" denotes ?
 Two regular expressions are equivalent if they
denote the same language. Eg: (a|b)” =(a’bh’)"

16

Some Algebraic Properties of
Regular Expressions

LAW

DESCRIPTION

r

s=s|r

iIs commutative

r

(s1t)=(r]s)|t

IS associative

(r s)t=r(st)

concatenation is associative

r(s|t)=rs|rt
(s|t)r=sr|tr

concatenation distributes over |

er=r
(e =t ¢ Is the identity element for concatenation
r*=(r|eg)* relation between * and ¢

r¥* = ¥ * is idempotent

* Equivalence of regular expressions is decidable

* There exist complete axiomatizations

17

Regular Definitions

Provide a convenient syntax, similar to BNF, for regular
expressions, introducing name-to-regular-expression
bindings.
A regular definition has the form
dy =1y letter — A|B|...|Z|a|b]...|z
d, =1, digit — 0|1 9
id — letter (letter | digit)"

d —r

n n

where each r; is a regular expression over2 U {d,, ..., d ; }
Recursion is forbidden! digits 2 digit | digit digits wrong!

Iteratively replacing names with the corresponding
definition yields a single regular expression for d,

18

Extensions of Regular Expressions

Several operators on regular expressions have been
proposed, improving expressivity and conciseness

Modern scripting languages are very rich

Clearly, each new operator must be definable with a
regular expression

Here are some common conventions

[xyz] match one character x, y, or z

[*xyz] match any character except x, y, and z
[a-2Z] match one of a to z

r* positive closure (match one or more occurrences)

i

r? optional (match zero or one occurrence)

19

Recognizing Tokens
* We described how to specify patterns of tokens
using regular expressions/definitions
* Let’s show how to write code for recognizing tokens

e Recall: in the CFG of a language, terminal symbols
correspond to the tokens the parser will use.

* Running example CFG: stmt — if expr then stmt

‘ if expr then stmt else stmt

* The tokens are: | €
if, then, else, expr — term relop term
relop, id, num term

term — id

num 20

Running example: Informal specification

of tokens and their attributes

Pattern of

Token Attribute-Value
lexeme

Any ws -
if if
then then
else else
Any id id pointer to table entry
Any num num pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE

relop GT
>= relop GE

21

Regular Definitions for tokens

* The specification of the patterns for the
tokens is provided with regular definitions

letter — [A-Za-2z]
digit — [0-9]
digits — digitt
if = if
then — then
else — else
relop—=< | <= | <> |>]>=| =
id — letter (letter | digit)"
num — digits (. digits)? (E (+ | -)? digits)?

22

From Regular Definitions to code

* From the regular definitions we first extract a
transition diagram, and next the code of the
scanner.

* |[n the example the lexemes are recognized
either when they are completed, or at the
next character. In real situations a longer
lookahead might be necessary.

 The diagrams guarantee that the longest
lexeme is identified.

23

Coding Regular Definitions in
Transition Diagrams

relop%<|<=‘<>‘>|>=‘=

start <

= return(relop, LE)
2—>@) return(relop, NE)
other return(relop, LT)
return(relop, EQ)
6 = return(relop, GE)
ather return(relop, GT)

id — letter (letter | digit)" yetter or digit

tart lett 0 th
star >@ crler >@ other >@*return(gett0ken(),

install_id()) 24

Coding Regular Definitions in
Transition Diagrams (cont.)

Transition diagram for unsigned numbers
num — digit* (. digit*)? (E (+ ‘ -)? digit*)?

digit digit digit

25

From Individual Transition
Diagrams to Code

e Easy to convert each Transition Diagram into code

* Loop with multiway branch (switch/case) based on
the current state to reach the instructions for that
state

e Each state is a multiway branch based on the next
input channel

26

Coding the Transition Diagrams for Relational Operators

tart < =
sta return(relop, LE)

>
ﬁ> return(relop, NE)
other

. return(relop, LT)

return(relop, EQ)

>. return(relop, GE)
TOKEN getRelop()

{ TOKEN retToken = new(RELOP); return(relop,GT)
while(1l) { /* repeat character processing
until a return or failure occurs */
switch(state) {
case 0: c¢ = nextChar();
if(c == '<') state = 1;
else if (c '="') state = 5;
else if (c '>’) state = 6;
else fail() ; /* lexeme is not a relop */
break;
case 1:

case 8: retract();
retToken.attribute = GT;
return(retToken);

Putting the code together

token nexttoken()
{ while (1) {
switch (state) {
case 0: ¢ = nextchar();

if (c==blank || c==tab || c==newline) {
state = 0;
lexeme beginning++;
}
else if (c==‘<’) state = 1;
else if (c==‘=") state = 5;
else if (c==‘>") state = 6;
else state = fail();
break;
case 1:
case 9: c = nextchar();
if (isletter(c)) state = 10;

else state = fail();
break;

case 10: ¢ = nextchar();
if (isletter(c)) state =1
else if (isdigit(c)) state
else state = 11;
break;

0;

= 10;

The transition diagrams
for the various tokens
can be tried sequentially:
on failure, we re-scan
the input trying another
diagram.

int fail ()
{ forward = token beginning;

switch (state) {

case 0: start = 9; break;
case 9: start = 12; break;
case 12: start = 20; break;
case 20: start = 25; break;

0

ase 25: recover(); break;
default: /* error */

}

return start;

Putting the code together:
Alternative solutions

* The diagrams can be checked in parallel

 The diagrams can be merged into a single
one, typically non-deterministic: this is the
approach we will study in depth.

Lexical errors

* Some errors are out of power of lexical
analyzer to recognize:

fi (a == £(x)) ..

* However, it may be able to recognize errors
like:
d = 2r
e Such errors are recognized when no pattern
for tokens matches a character sequence

30

Error recovery

Panic mode: successive characters are ignored
until we reach to a well formed token

Delete one character from the remaining input

Insert a missing character into the remaining
input

Replace a character by another character
Transpose two adjacent characters

Minimal Distance

31

