Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 7

* From DSA to Regular Expression
* From Regular Expressions to DSA, directly

Motivations: yesterday’s exercise 7(b)

* Write a regular expression over the set of symbols {0,1} that

describes the language of all strings having an even number of 0’s
and of 1’s

— Not easy....

— Asolution: (00]11)*((01]10)(00]|11)*(01]10)(00]|11)*)*
— How can we get it?

* Towards the solution: a deterministic
automaton accepting the language

* But how do we get the regular expression
defining the language accepted by the
automaton?

Regular expressions, Automata, and all that...

Thompson
algorithm
Regular > Non-Deterministic
Expressions Finite Automata
A
? Subset

construction

Deterministic
Finite Automata

Right-linear
(Regular) Grammars

Minimization
(Partition/Refinement)

From automata to Regular Expressions

 Three approaches:

— Dynamic Programming [Scott, Section 2.4 on CD]
[Hopcroft, Motwani, Ullman, Introduction to
Automata Theory, Languages and Computation,
Section 3.2.1]

— Incremental state elimination [HMU, Section
3.2.2]

— Regular Expression as fixed-point of a continuous
function on languages

DFAs and Right-linear Grammars

* Inaright-linear (reqular) grammar each production
isoftheform A—wB or A—=w (wW&T*

* From a DFA to a right-linear grammar

A— €| 1B | OD
B— 1A | OC
C— 0B | 1D
D— 0A| 1C

* The construction also works for NFA

e Asimilar construction can transform any right-linear
grammar into an NFA (productions might need to be
transformed introducing new non-terminals)

Kleene fixed-point theorem

* A complete partial order (CPO) is a partial
order with a least element _L and such that
every increasing chain has a supremum

 Theorem: Every continuous function F over a
complete partial order (CPO) has a least fixed-
point, which is the supremum of chain

F(<sF(F(L)=..=sF"(L)<..

Context Free grammars as functions
on the CPO of languages

Languages over 2 form a complete partial order under
set inclusion

A context free grammar defines a continuous function
over (tuples of) languages

— A->a | bA F(L)y={a}U{bwlweE L}
The language generated by the grammar is the least-
fixed point of the associated function

— @ C{a}CH{a,ba} C{a,ba,bba} C...C{b"aln=0}
In the case of right-linear grammars we can describe
the least fixed-point as a regular expression

— Lang(A) = b*a

Example: from right-linear grammar to
regular expression

A— €| 1B | OD 1) Substitute Din Aand C
B— 1A | OC A— g| 1B | O(0A | 1C)
C— OB | 1D B— 1A | 0OC
D— 0A|1C C— OB | 1(0A | 1C)
2) Substitute Bin A and C 3)PutCinform C=a | BC
A— €| 1(1A | 0C) | O(0A | 1C) A— e | 1(1A | 0C) | O(0A | 1C)
C— O(1A | 0C) | 1(0A | 1C) C— 01A | 10A | (00 | 11)C
4) Solve C: C = (00 | 11)*(01A | 10A)

5) Factorize Cin A

A— €| 11A | 00A | (10 | 01)C

6) Substitute Cin A

A—¢c|11A | 00A | (10| 01) (OO | 11)*(01A | 10A)

7) Put Ainform A=a | BA

A— €| (11]00| (10| 01)(00 | 11)*(01 | 10))A

8)Solve A: A=(11]00 | (10| 01) (00 | 11)*(01 | 10))*

The other solution: (00]|11)*((01]10)(00|11)*(01]|10)(00|11)*)*

Regular expressions, Automata, and all that...

Thompson
algorithm
Regular > Non-Deterministic
Expressions Finite Automata
A
Directly!

Least fixed-point Subset
of function on construction
languages

Deterministic
Finite Automata

Right-linear
(Regular) Grammars

Easy!

Minimization
(Partition/Refinement)

From Regular Expression to DFA
Directly

* The “important states” of an NFA are those
with a non-¢ outgoing transition,
— if move({s}, a) # & for some a then s 1s an
important state

* The subset construction algorithm uses only
the important states when 1t determines
e-closure(move(T, a))

10

What are the “important states” in the
NFA built from Regular Expression?

start
€ ""*“1|P'ii*>CiD

a start

Fi17s EEEE>‘l'::::::::::::::::::fi:@ib

start
Firy

€

e 11

From Regular Expression to DFA
Directly (Algorithm)
The only accepting state (via the Thompson
algorithm) 1s not important

Augment the regular expression r with a
special end symbol # to make accepting states
important: the new expression 1s r#

Construct a syntax tree for r#

Attach a unique integer to each node not
labeled by ¢

12

From Regular Expression to DFA
Directly: Syntax Tree of (a|b)*abb#

: @
concatenation

PN

()
closure / \
“star—nod\ ® \ 131

#
6
b t
5

% a \
alternation |) \
“or-node” \ | position
/ \ number
13 a 1; (for leafs =€)

1

From Regular Expression to DFA
Directly: Annotating the Tree

* Traverse the tree to construct functions nullable,
firstpos, lastpos, and followpos

* For a node n, let L(n) be the language generated by
the subtree with root n

* nullable(n): L(n) contains the empty string €

* firstpos(n): set of positions under n that can match the
first symbol of a string in L(n)

* lastpos(n): the set of positions under n that can match
the last symbol of a string in L(n)

* followpos(i): the set of positions that can follow
position i 1n any generated string

14

From Regular Expression to DFA
Directly: Annotating the Tree

Node n nullable(n) firstpos(n) lastpos(n)
Leaf ¢ true %, %
Leaf i false {i} {i}
| nullable(c,) firstpos(c,) lastpos(c,)
/\ or U U
C, C, nullable(c,) firstpos(c,) lastpos(c,)
. nullable(c,) if nullable(c,) then | if nullable(c,) then
/A and firstpos(c,) U lastpos(c,) U
llable(c,) firstpos(c,) lastpos(c,)
“ ©2 nutanele; else firstpos(c,) else lastpos(c,)
%
| true firstpos(c,) lastpos(c,)

15|

From Regular Expression to DFA
Annotating the Syntax Tree of (alb)*abb#

{1,2,3} @ {6}

N

{1,2,3} @ {5} (6} # {6}

SN 1

{1,2,3} @ {4} {5} b {5}
5

nullable / \

{1,2,3} @ {3} {4}131{4}

{1,2}{',]5‘::{1,2} Gra

firstpos lastpos

{1,23 | {1,2}

PN

(ayan {2} 13 {2} y

From Regular Expression to DFA
followpos on the Syntax Tree of (alb)*abb#

{1,2,3} @ {6}
{19 ® {5} {6} 12{6}
{1,2,3} @ {4} {5} b {5}
nullable / \ S
{1,2,3} @ {3} {4}131{4}
/ \3a ; NODE n | followpos(n)
{1,2} %:{1,2} {3} 3{ } 1 1.2.3]
| 2 {1,2,3}
3 {4}
N 5 (6
6 0

{1}511{1} {2}1;{2} 17

From Regular Expression to DFA
Directly: followpos

for each node 7 in the tree do
if 1s a cat-node with left child ¢, and right child ¢, then
for each i in lastpos(c,) do
followpos(i) := followpos(i) U firstpos(c,)
end do
else if » 1s a star-node
for each i in lastpos(n) do
followpos(i) = followpos(i) U firstpos(n)
end do
end if
end do

18

From Regular Expression to DFA
Directly: Example

Node followpos

a 1 {1,2,3}

{1,2,3}

14}

b 2

a 3

b 4 {5}
b 5 {6}
6 -

From Regular Expression to DFA
Directly: The Algorithm

Sy :=firstpos(root) where root 1s the root of the syntax tree for (r)#
Dstates = {s,} and 1s unmarked
while there is an unmarked state 7 in Dstates do

mark T

for each input symbol ¢ € 2 do
let U be the union of followpos(p) for all positions p in T
such that the symbol at position p 1s a
if U 1s not empty and not in Dstates then
add U as an unmarked state to Dstates
end if
Dtran|T, a]l :=U
end do
end do

20

