Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/

Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 7

- From DSA to Regular Expression
- From Regular Expressions to DSA, directly

Motivations: yesterday's exercise 7(b)

- Write a regular expression over the set of symbols {0,1} that describes the language of all strings having an even number of 0's and of 1's
 - Not easy....
 - A solution: (00|11)*((01|10)(00|11)*(01|10)(00|11)*)*
 - How can we get it?

- Towards the solution: a deterministic automaton accepting the language
- But how do we get the regular expression defining the language accepted by the automaton?

Regular expressions, Automata, and all that...

From automata to Regular Expressions

- Three approaches:
 - Dynamic Programming [Scott, Section 2.4 on CD]
 [Hopcroft, Motwani, Ullman, Introduction to Automata Theory, Languages and Computation, Section 3.2.1]
 - Incremental state elimination [HMU, Section 3.2.2]
 - Regular Expression as fixed-point of a continuous function on languages

DFAs and Right-linear Grammars

- In a right-linear (regular) grammar each production is of the form $A \rightarrow w B$ or $A \rightarrow w$ ($w \in T^*$)
- From a DFA to a right-linear grammar

- The construction also works for NFA
- A similar construction can transform any right-linear grammar into an NFA (productions might need to be transformed introducing new non-terminals)

Kleene fixed-point theorem

- A complete partial order (CPO) is a partial order with a least element ⊥ and such that every increasing chain has a supremum
- Theorem: Every continuous function F over a complete partial order (CPO) has a least fixed-point, which is the supremum of chain

$$F(\bot) \le F(F((\bot)) \le \dots \le F^n(\bot) \le \dots$$

Context Free grammars as functions on the CPO of languages

- Languages over Σ form a complete partial order under set inclusion
- A context free grammar defines a continuous function over (tuples of) languages
 - A-> a | bA $F(L) = \{a\} \cup \{bw \mid w \in L\}$
- The language generated by the grammar is the leastfixed point of the associated function
 - $\varnothing \subset \{a\} \subset \{a,ba\} \subset \{a,ba,bba\} \subset ... \subset \{b^n a \mid n \ge 0\}$
- In the case of right-linear grammars we can describe the least fixed-point as a regular expression
 - $Lang(\mathbf{A}) = b*a$

Example: from right-linear grammar to regular expression

```
A \rightarrow \epsilon \mid 1B \mid 0D

B \rightarrow 1A \mid 0C

C \rightarrow 0B \mid 1D

D \rightarrow 0A \mid 1C
```

5) Factorize C in A

```
2) Substitute B in A and C

A \rightarrow \epsilon \mid 1(1A \mid 0C) \mid 0(0A \mid 1C)

C \rightarrow 0(1A \mid 0C) \mid 1(0A \mid 1C)
```

```
1) Substitute D in A and C
A \rightarrow \epsilon \mid 1B \mid 0 (0A \mid 1C)
B \rightarrow 1A \mid 0C
C \rightarrow 0B \mid 1(0A \mid 1C)
```

```
3) Put C in form C = \alpha \mid \beta C

A \rightarrow \epsilon \mid 1(1A \mid 0C) \mid 0(0A \mid 1C)

C \rightarrow 01A \mid 10A \mid (00 \mid 11)C

4) Solve C: C = (00 \mid 11)*(01A \mid 10A)
```

```
A \rightarrow \epsilon \mid 11A \mid 00A \mid (10 \mid 01)C
6) Substitute C in A
A \rightarrow \epsilon \mid 11A \mid 00A \mid (10 \mid 01) (00 \mid 11)*(01A \mid 10A)
7) Put A in form A = \alpha \mid \beta A
A \rightarrow \epsilon \mid (11 \mid 00 \mid (10 \mid 01) (00 \mid 11)*(01 \mid 10))A
8) Solve A: A = (11 \mid 00 \mid (10 \mid 01) (00 \mid 11)*(01 \mid 10))*
The other solution: (00 \mid 11)*((01 \mid 10)(00 \mid 11)*(01 \mid 10)(00 \mid 11)*)*
```

Regular expressions, Automata, and all that...

From Regular Expression to DFA Directly

- The "*important states*" of an NFA are those with a non-ε outgoing transition,
 - if $move(\{s\}, a) \neq \emptyset$ for some a then s is an important state
- The subset construction algorithm uses only the important states when it determines ε -closure(move(T, a))

What are the "important states" in the NFA built from Regular Expression?

From Regular Expression to DFA Directly (Algorithm)

- The only accepting state (via the Thompson algorithm) is not important
- Augment the regular expression *r* with a special end symbol # to make accepting states important: the new expression is *r*#
- Construct a syntax tree for *r*#
- Attach a unique integer to each node not labeled by ε

From Regular Expression to DFA Directly: Syntax Tree of (a|b)*abb#

From Regular Expression to DFA Directly: Annotating the Tree

- Traverse the tree to construct functions *nullable*, *firstpos*, *lastpos*, and *followpos*
- For a node n, let L(n) be the language generated by the subtree with root n
- nullable(n): L(n) contains the empty string ε
- firstpos(n): set of positions under n that can match the first symbol of a string in L(n)
- lastpos(n): the set of positions under n that can match the last symbol of a string in L(n)
- *followpos(i)*: the set of positions that can follow position *i* in any generated string

From Regular Expression to DFA Directly: Annotating the Tree

Node n	nullable(n)	firstpos(n)	lastpos(n)	
Leaf ε	true	Ø	Ø	
Leaf i	false	$\{i\}$	$\{i\}$	
$egin{array}{ccccc} & & & & & & & & & & & & & & & & &$	$nullable(c_1) \\ \text{or} \\ nullable(c_2)$		$\begin{array}{c} lastpos(c_1) \\ \cup \\ lastpos(c_2) \end{array}$	
, \ c ₁ c ₂	$\begin{array}{c} \textit{nullable}(c_1) \\ \text{and} \\ \textit{nullable}(c_2) \end{array}$	if $nullable(c_1)$ then $firstpos(c_1) \cup firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1) \cup lastpos(c_2)$ else $lastpos(c_2)$	
* c ₁	true	$firstpos(c_1)$	$lastpos(c_1)$	

From Regular Expression to DFA Annotating the Syntax Tree of (alb)*abb#

From Regular Expression to DFA followpos on the Syntax Tree of (alb)*abb#

From Regular Expression to DFA Directly: *followpos*

```
for each node n in the tree do
   if n is a cat-node with left child c_1 and right child c_2 then
        for each i in lastpos(c_1) do
           followpos(i) := followpos(i) \cup firstpos(c_2)
        end do
    else if n is a star-node
        for each i in lastpos(n) do
           followpos(i) := followpos(i) \cup firstpos(n)
        end do
    end if
end do
```

From Regular Expression to DFA Directly: Example

Node	followpos		
a 1	{1,2,3}		
b 2	{1,2,3}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	> (6)
a 3	{4}		
b 4	{5}		
b 5	{6}		
# 6	-		
	þ	b	
start		a 1,2, b 1,2, b 1,2,	
Start	1,2,3	3,4 3,5 3,6	
		a	19
		a	

From Regular Expression to DFA Directly: The Algorithm

```
s_0 := firstpos(root) where root is the root of the syntax tree for (r)#
Dstates := \{s_0\} and is unmarked
while there is an unmarked state T in Dstates do
   mark T
   for each input symbol a \in \Sigma do
       let U be the union of followpos(p) for all positions p in T
           such that the symbol at position p is a
       if U is not empty and not in Dstates then
           add U as an unmarked state to Dstates
       end if
       Dtran[T, a] := U
   end do
end do
```