Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 12

* Concepts of Programming Languages
— Programming languages and Abstraction
— Names, bindings and scope

Up to now...

* We have seen:
— Abstract Machines, compilation and interpretation
— Structure of compiler
— Lexical analysis
— Parsing
— Syntax-Directed Translation: foundations
=>» Topics based on syntax only
* Following phases of compilation:
— Intermediate code generation, e.g. control structures
— Semantic analysis, e.g. type checking
— Target code generation and optimization

=>» Topics requiring knowledge of programming language concepts /
semantics

e We will see them in future lectures...

Summary

PL’s as defining Abstract Machines
Abstraction mechanisms

Names and abstractions

Binding time

Object lifetime

Object storage management
— Static allocation
— Stack allocation
— Heap allocation

Definition of Programming Languages

 APLis defined via syntax, semantics and pragmatics

 The syntax is concerned with the form of programs:
how expressions, commands, declarations, and other
constructs must be arranged to make a well-formed
program.

 The semantics is concerned with the meaning of (well-
formed) programs: how a program may be expected to
behave when executed on a computer.

* The pragmatics is concerned with the way in which the
PL is intended to be used in practice. Pragmatics

include the paradigm(s) supported by the PL.

Paradigms

A paradigm is a style of programming, characterized by a
particular selection of key concepts

Imperative programming: variables, commands,
procedures.

Object-oriented (OO0) programming: objects, methods,
classes.

Concurrent programming: processes, communication.

Functional programming: values, expressions,
functions.

Logic programming: assertions, relations.

Classification of languages according to paradigms is
misleading

Implementation of a
Programming Language L

* Programs written in L must be executable

* Language L implicitly defines an Abstract
Machine M, having L as machine language

* Implementing M, on an existing host machine
M, (via compilation or interpretation or both)
makes programs written in L executable

(Recap) Abstract Machine for a Language L

* Given a programming language L, an Abstract Machine
M, for L is a collection of data structures and algorithms

which can perform the storage and execution of programs
written in L

e Structure of an abstract machine:

Memory Interpreter

Operations and Data Structures for:

< > ¢ Primitive Data processing
Sequence control

* Data Transfer control

* Memory management

Programs

Data

Programming Languages and Abstraction

e PL’s are born to abstract from machine
languages

* Each PL generation abstracts more

* Modern languages include abstraction
mechanisms to be used by programmers

* The study of PL’s focuses on the study of
abstractions, abstraction mechanisms, and
how they can be implemented (efficiently...)

Abstraction mechanisms

Abstraction Mechanisms are independent of the
concept to be abstracted

* Naming
— Associate a name with a possibly complex entity

* Abstraction by Parametrization

— Abstracts from identity of data by using parameters
* Procedures with parameter
* Generic types, ...

* Abstraction by Specification

— Abstracts from implementation details
* Interfaces
* Function prototypes, ...

PL's defining Abstract Machines

The definition of a PL mainly consists of defining
* the Abstract Machine components, and

* the abstraction mechanism [abs] to extend them:

— Primitive Data processing [DP]
 Data types and operations
* Procedures, ...
— Sequence control [SC]
 Control structures, ...
— Data Transfer control [DTC]
* Parameter passing mechanisms
e Scopingrules, ...
— Memory management [MM]
e Static / stack / heap allocation mechanisms, ...

Programming Language Concepts

* The proposed view allows us to relate the typical
concepts of Programming Languages in a unifying
framework

— Names, bindings and scope [abs]

— Values and data types [DP]

— Variables and storage management [MM]
— Control abstraction [abs, SC]

— Data abstraction [abs, DP]

— Generic abstraction [abs, DP]

— Concurrency [SC]

 We will discuss them in generality, making
reference to concrete examples when useful

Names and abstraction

* Used by programmers (but also by language designers)
to refer to variables, constants, operations, types, ...

* Names are fundamental for abstraction mechanisms
* Their use applies to all components of abstract machines

— Control abstraction:

» Subroutines (procedures and functions) allow programmers to focus
on manageable subset of program text, hiding implementation
details

* Control flow constructs (if-then, while, for, return) hide low-level
machine ops

— Data abstraction:

* Object-oriented classes hide data representation details behind a set
of operations

Binding Time

* Abinding is an association between a name and an entity

* An entity that can have an associated name is called
denotable

* Binding time is the time at which a decision is made to create

a name <> entity binding (the actual binding can be created
later):

— Language design time: the design of specific program constructs
(syntax), primitive types, and meaning (semantics)

— Language implementation time: fixation of implementation constants
such as numeric precision, run-time memory sizes, max identifier

name length, number and types of built-in exceptions, etc. (if not fixed
by the language specification)

Binding Time (2)

— Program writing time: the programmer’s choice of
algorithms and data structures

— Compile time: the time of translation of high-level
constructs to machine code and choice of memory layout
for data objects

— Link time: the time at which multiple object codes
(machine code files) and libraries are combined into one
executable (e.g. external names are bound)

— Load time: when the operating system loads the
executable in memory (e.g. physical addresses of static
data)

— Run time: when a program executes

Binding Time Examples

Language design:
— Syntax (hames <> grammar)
« if (a>0) b:=a; (Csyntaxstyle)
e if a>0 then b:=a end if (Adasyntax style)
— Keywords (names <= builtins)
* class (C++andJava), endif or end if (Fortran, space insignificant)
— Reserved words (names <= special constructs)
* main (C), writeln (Pascal)
— Meaning of operators (operator <= operation)
* + (add), $ (mod), ** (power)
— Built-in primitive types (type name < type)
* float, short, int, long, string

Binding Time Examples (cont’d)

* Language implementation
— Internal representation of types and literals
(type <= byte encoding, if not specified by language)
e 3.1 (IEEE 754) and "foo bar" (\O terminated or embedded
string length)

— Storage allocation method for variables (static/stack/
heap)

 Compile time

— The specific type of a variable in a declaration
(name<>type)

— Storage allocation mechanism for a global or local
variable (name<=allocation mechanism)

Binding Time Examples (cont’d)

 Linker
— Linking calls to static library routines (function<=address)
 print£ (inlibc)
— Merging and linking multiple object codes into one executable
 Loader

— Loading executable in memory and adjusting absolute
addresses

* Mostly in older systems that do not have virtual memory

 Run time
— Dynamic linking of libraries (library function<=library code)
e DLL, dylib
— Nonstatic allocation of space for variable (variable<>address)
e Stack and heap

The Effect of Binding Time

* Early binding times (before run time) are associated with greater
efficiency and clarity of program code
— Compilers make implementation decisions at compile time
(avoiding to generate code that makes the decision at run time)

— Syntax and static semantics checking is performed only once at
compile time and does not impose any run-time overheads

* Late binding times (at run time) are associated with greater
flexibility (but may leave programmers sometimes guessing what’s
going on)

— Interpreters allow programs to be extended at run time

— Languages such as Smalltalk-80 with polymorphic types allow
variable names to refer to objects of multiple types at run time

— Method binding in object-oriented languages must be late to
support dynamic binding

e Usually “static” means “before runtime”, dynamic “at runtime”

Binding Lifetime versus Object Lifetime

 Key events in object lifetime:
— Object creation
— Creation of bindings
— The object is manipulated via its binding
— Deactivation and reactivation of (temporarily invisible) bindings
— Destruction of bindings
— Destruction of objects
* Binding lifetime: time between creation and destruction of binding
to object
— Example: a pointer variable is set to the address of an object
— Example: a formal argument is bound to an actual argument

* Object lifetime: time between creation and destruction of an
object

Binding Lifetime versus
Object Lifetime (cont’d)

creation of binding to destruction of
binding to object binding to
object temporarily object

i l invisible i T

T T

object object
création in destruction
memory fime — >

« Bindings are temporarily invisible when code is executed where the
binding (name <= object) is out of scope

20

Object Storage

Objects (program data and code) have to be stored in memory during
their lifetime

Static objects have an absolute storage address that is retained
throughout the execution of the program

— Global variables and data

— Subroutine code and class method code
Stack objects are allocated in last-in first-out order, usually in conjunction
with subroutine calls and returns

— Actual arguments passed by value to a subroutine

— Local variables of a subroutine
Heap objects may be allocated and deallocated at arbitrary times, but
require a storage management algorithm

— Example: Lisp lists

— Example: Java class instances are always stored on the heap

Typical Program and Data Layout

Upper addr

Virtual memory address space

0000

In Memory
 Program code is at the bottom
stack _
of the memory region (code
section)

— . .

A — The code section is protected
from run-time modification by
the OS

heap » Static data objects are stored
In the static region
« Stack grows downward
static data
 Heap grows upward
code

Static Allocation

Program code is statically allocated in most
implementations of imperative languages

Statically allocated variables are history sensitive
— Global variables keep state during entire program lifetime

— Static local variables in C functions keep state across function
invocations

— Static data members are “shared” by objects and keep state
during program lifetime
Advantage of statically allocated object is the fast access
due to absolute addressing of the object
— So why not allocate local variables statically?

— Problem: static allocation of local variables cannot be used for
recursive subroutines: each new function instantiation needs
fresh locals

Static Allocation in Fortran 77

Temporary storage
(e.g. for expression
evaluation)

Local variables

Bookkeeping
(e.g. saved CPU

registers)

Return address

Subroutine
arguments and
returns

Typical static subroutine
frame layout

Fortran 77 has no recursion

Global and local variables are
statically allocated as decided by
the compiler

Global and local variables are
referenced at absolute addresses

Avoids overhead of creation and
destruction of local objects for
every subroutine call

Each subroutine in the program
has a subroutine frame that is
statically allocated

This subroutine frame stores all
subroutine-relevant data that is
needed to execute

Stack Allocation

e Each instance of a subroutine that is active has a
subroutine frame (activation record) on the run-
time stack

— Compiler generates subroutine calling sequence to
setup frame, call the routine, and to destroy the
frame afterwards

— Method invocation works the same way, but in
addition methods are typically dynamically bound

e Subroutine frame layouts vary between

languages, implementations, and machine
platforms

Lower addr

Typical Stack-Allocated
Activation Record

Temporary storage
(e.g. for expression
evaluation)

Local variables

Bookkeeping
(e.g. saved CPU
registers)

Return address

fp .
Subroutine
arguments and
Higher addr returns

Typical subroutine
frame layout

A frame pointer (fp) points to
the frame of the currently
active subroutine at run time

Subroutine arguments, local
variables, and return values
are accessed by constant
address offsets from the fp

Activation Records on the Stack

] [Stack growth

Sp—

lemporaries

Local variables

Bookkeeping
Return address

Higher addr

Arguments

lemporaries
Local variables

Bookkeeping
Return address

Arguments

lemporaries
Local variables

Bookkeeping

Return address
Arguments

lemporaries
Local variables

Bookkeeping
Return address

Arguments

Activation records are pushed and
popped onto/from the runtime stack

The stack pointer (sp) points to the
next available free space on the stack
to push a new activation record onto
when a subroutine is called

The frame pointer (fp) points to the
activation record of the currently
active subroutine, which is always the
topmost frame on the stack

The fp of the previous active frame is
saved in the current frame and

restored after the call

In this example:
M called A
A called B
B called A

Lower addr

Example Activation Record

Temporaries

fp-32

-36: foo (4 bytes)
-32. bar (8 byvtes)

| -24: p (4 bytes)

Bookkeeping
(16 bytes)

Return address
to the caller of P

fo , (4 bytes)
0; a (4 bvtes)
fp+4 4:b (4 bvtes)

Higher addr

The size of the types of local
variables and arguments
determines the fp offset in a frame

Example Pascal procedure:

procedure P (a:integer,
var b:real)
(* a is passed by value
b is passed by reference,
= pointer to b's wvalue

*)

var
foo:integer, (* 4 bytes *)
bar:real; (* 8 bytes *)

p:“*integer; (* 4 bytes *)
begin

end

Heap Allocation

* Implicit heap allocation:
— Done automatically
— Java class instances are placed on the heap

— Scripting languages and functional languages make
extensive use of the heap for storing objects

— Some procedural languages allow array declarations with
run-time dependent array size

— Resizable character strings

* Explicit heap allocation:

— Statements and/or functions for allocation and
deallocation

— Malloc/free, new/delete

Heap Allocation Algorithms

Heap allocation is performed by searching the heap
for available free space

Deletion of objects leaves free blocks in the heap
that can be reused

Internal heap fragmentation: if allocated object is
smaller than the free block the extra space is wasted

External heap fragmentation: smaller free blocks
cannot always be reused resulting in wasted space

Heap Allocation Algorithms (cont’d)

Maintain a linked list of free heap blocks

First-fit: select the first block in the list that is large enough

Best-fit. search the entire list for the smallest free block that is large
enough to hold the object

If an object is smaller than the block, the extra space can be added
to the list of free blocks

When a block is freed, adjacent free blocks are merged

Buddy system: use heap pools of standard sized blocks of size 2k

— If no free block is available for object of size between 2x1+1 and 2% then
find block of size 2k*1 and split it in half, adding the halves to the pool of

free 2% blocks, etc.
Fibonacci heap: use heap pools of standard size blocks according
to Fibonacci numbers
— More complex but leads to slower internal fragmentation

