Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 13

e Scoping rules and their implementation

Summary

Scope rules

Static versus dynamic scoping
Modules

Implementation of scope

— LeBlanc & Cook symbol tables
— A-lists

— Central Reference Tables

Scope of a binding

The scope of a binding is the textual region of a program
in which a name-to-object binding is active

“Scope”: textual region of maximal size where bindings
are not destroyed

— Module, class, subroutine, block, record/object

Statically scoped language: the scope of bindings is
determined at compile time

— Used by almost all but a few programming languages

— More intuitive to user compared to dynamic scoping
Dynamically scoped language: the scope of bindings is
determined at run time

— Used e.g. in Lisp (early versions), APL, Snobol, and Perl
(selectively)

Static (lexical) scoping

 The bindings between names and objects can be
determined by examination of the program text

* Scope rules of the language define the scope of
bindings

— Early Basic: all variables are global and visible everywhere
— Fortran 77:

» scope of local variables limited to the subroutine (unless “save”-
ed, like “static” in C);

* scope of global variable is the whole program text unless hidden
— Algol 60, Pascal, Ada, ... : allow nested subroutine
definitions
— Java, ... : allow nested classes
* Adopt the closest nested scope rule

Closest Nested Scope Rule

procedure P1(Al1l:T1)

var X:real;

procedure P2 (A2:T2);

 To find the object

rocedure P3(A3:T3); .
procedure PS{RI:T) referenced by a given
begin Nname:

(* body of P3: P3,A3,P2,A2,X of P1,P1,Al are visible *) — Look for a declaration in
end; \

L. the current innermost
begin scope

(* body of P2: P3,P2,A2,X of P1,P1,Al are visible ¥*) - Ifthereisru)ne,locﬂ<for
end; R a declaration in the
procedure P4 (A4:T4) immediately

function F1(A5:T5) :T6; surroundmg SCOpE, etc.

var X:integer; ° Built_ins Or
begin predefined objects as
(* body of F1: X of F1,F1,A5,P4,A4,P2,P1,Al are visible *) deﬁned in Outermost
d;
= scope, external to the
begin “global” one
(* body of P4: F1,P4,A4,P2,X of P1,P1,Al are visible *)]
end: — 1/0O routines,
... mathematical functions
begin

(* body of P1: X of P1,P1,Al1,P2,P4 are visible ¥*)
end

Static Scope Implementation
with Static Links

Access to global variable: compiled using constant address

Access to local variable: compiled using frame pointer (stored in a
register) and statically known offset

Access to nonlocal variable?

Scope rules are designed so that we can only refer to variables that
are alive: the variable must have been stored in the activation
record of a subroutine

If a variable is not in the local scope, we are sure there is an
activation record for the surrounding scope somewhere below on
the stack:
— The current subroutine can only be called when it was visible
— The current subroutine is visible only when the surrounding scope is
active

Each frame on the stack contains a static link pointing to the frame
of the static parent

Nesting

Example Static Links

Cells
A celtsE
E cettsB
B cualls D

Steick freames

C
static link —

D
static link —

B

static link —

v

E
static link —

D callsC)

A

Subroutines C and D are
declared nested in B

— B is static parent of Cand D

B and E are nested in A
— A is static parent of Band E

The fp points to the frame
at the top of the stack to
access locals

The static link in the frame
points to the frame of the
static parent

A Typical Calling Sequence

e The caller

Saves (in the dedicated area in its activation record) any registers
whose values will be needed after the call

Computes values of actual parameters and moves them into the stack
or registers

Computes the static link and passes it as an extra, hidden argument

Uses a special subroutine call instruction to jump to the subroutine,
simultaneously passing the return address on the stack or in a register

* Inits prologue, the callee

allocates a frame by subtracting an appropriate constant from the sp
saves the old fp into the stack, and assigns it an appropriate new value

saves any registers that may be overwritten by the current routine
(including the static link and return address, if they were passed in

registers)

A Typical Calling Sequence (cont’d)

e After the subroutine has completed, the callee

— Moves the return value (if any) into a register or a
reserved location in the stack

— Restores registers if needed
— Restores the fp and the sp
— Jumps back to the return address

* Finally, the caller
— Moves the return value to wherever it is needed
— Restores registers if needed

Static Chains

How do we access non-local objects?

The static links form a static chain, which is a
linked list of static parent frames

When a subroutine at nesting level j has a
reference to an object declared in a static parent
at the surrounding scope nested at level k, then
j-k static links form a static chain that is traversed
to get to the frame containing the object

The compiler generates code to make these
traversals over frames to reach non-local objects

Nesting

Example Static Chains

v

Steick freames
C
fp—™ static link —
D
static link —
B
static link —
Culls
R
A cullsE E
static link —
E cultsB
B cullsD A

D callsC)

Subroutine A is at nesting level 1
and C at nesting level 3

When C accesses an object of A, 2
static links are traversed to get to
A's frame that contains that
object

11

Displays

Access to an object in a scope k levels out
requires that the static chain be dereferenced k
times.

An object k levels out will require kK + 1 memory
accesses to be loaded in a register.

This number can be reduced to a constant by use
of a display, a vector where the k-th element
contains the pointer to the activation record at
nesting level k that is currently active.

Faster access to non-local objects, but
bookeeping cost larger than that of static chain

Declaration order and use of bindings

Scope of a binding
1) Inthe whole block where it is defined
2) From the declaration to the end of the block
e Use of binding
a) Only after declaration
b) In the scope of declaration

 Many languages use 2—-a. Java uses 1-b for methods in a class. Modula
uses 1-b also for variables!

 Some combinations produce strange effects: Pascal uses 1) — a).

const N = 10;
procedure foo;
const
M = N; (* static semantic error! *)
var
A : array [1..M] of integer;
N : real; (* hiding declaration *)
Reported errors: “N used before declaration”

“N is not a constant”

Declarations and definitions

“Use after declaration” would forbid mutually
recursive definitions (procedures, data types)

The problem is solved distinguishing declaration and
definition of a name, asin C

Declaration: introduces a name
Definition: defines the binding

struct manager; // Declaration only
struct employee {

struct manager *boss;

struct employee *next employee;

}i
struct manager ({ // Definition
struct employee *first employee;

-}

Ada

C++

Java
C#

Nested Blocks

declare t:integer

begin
t := a;
a := b;
b := t;

end;

{ int a,b;
int t;
t=a;
a=b;

In several languages local
variables are declared in a block
or compound statement

— At the beginning of the block (Pascal,
ADA, ...)

— Anywhere (C/C++, Java, ...)
Blocks can be considered as
subroutines that are called where
they are defined

Local variables declared in nested
blocks in a single function are all
stored in the subroutine frame
for that function (most
programming languages, e.g. C/C
++, Ada, Java)

Out of Scope

* Non-local objects can be hidden by local name-
to-object bindings

* The scope is said to have a hole in which the non-
local binding is temporarily inactive but not
destroyed

 Some languages, like Ada, C++ and Java, use

qualifiers or scope resolution operators to access
non-local objects that are hidden

— P1.X'in Ada to access variable X of P1
— ::X to access global variable X in C++
— this.x or super.x in Java

Out of Scope Example

procedure P1l;

var X:real;
procedure P2;
var X:integer

begin

end;
begin

end

(* X of P1 is hidden *)

P2 is nested in P1
P1 has a local variable X

P2 has a local variable X that
hides X in P1

When P2 is called, no extra
code is executed to inactivate
the binding of X to P1

Modules

* Modules are the main feature of a programming
language that supports the construction of large
applications

— Support information hiding through encapsulation: explicit
import and export lists

— Reduce risks of name conflicts; support integrity of data
abstraction

e Teams of programmers can work on separate
modules in a project

* No language support for modules in C and Pascal
— Modula-2 modules, Ada packages, C++ namespaces
— Java packages

Module Scope

* Scoping: modules encapsulate variables, data types,
and subroutines in a package
— Objects inside are visible to each other
— Objects inside are not visible outside unless exported

— Objects outside are visible [open scopes], or are not visible
inside unless imported [closed scopes], or are visible with
“qualified name” [selectively open scopes] (eg: B.x)

A module interface specifies exported variables, data
types and subroutines

 The module implementation is compiled separately
and implementation details are hidden from the user
of the module

Module Types, towards Classes

Modules as abstraction mechanism: collection of
data with operations defined on them (sort of
abstract data type)

Various mechanism to get module instances:

— Modules as manager: instance as additional
arguments to subroutines (Modula-2)

— Modules as types (Simula, ML)
Object-Oriented: Modules (classes) + inheritance

Many OO languages support a notion of Module
(packages) independent from classes

Dynamic Scoping

Scope rule: the “current” binding for a given name is the one
encountered most recently during execution

Typically adopted in (early) functional languages that are interpreted

Perl v5 allows you to choose scope method for each variable
separately
With dynamic scope:

— Name-to-object bindings cannot be determined by a compiler in general

— Easy for interpreter to look up name-to-object binding in a stack of
declarations

Generally considered to be “a bad programming language feature”
— Hard to keep track of active bindings when reading a program text
— Most languages are now compiled, or a compiler/interpreter mix
Sometimes useful:
— Unix environment variables have dynamic scope

Effect of Static Scoping

* The following pseudo-code
program demonstrates the
effect of scoping on variable
bindings:

Program execution:

a:lnteger \ binding ,

a:integer

main ()
2. =2 procedure first() {
second () a:=l}

a:integer procedure second() {
a:integer

first
= ()———"’/ first()}

a:=1
write integer (a) procedure main () {
- a:=2

_ - second ()
Program prints "1 write integer(a)}

Effect of Dynamic Scoping

Program execution:

a:integer

main ()
a:=2
second () L
a:integer *‘L-
first()
a:=1 —

write integer (a)

Program prints “2”

The following pseudo-code
program demonstrates the
effect of scoping on variable
bindings:
a:integer
procedure first() {
Binding depends on execution
procedure second() {
a:integer
first ()}
procedure main () {
a:=2
second ()
write integer(a)}

Dynamic Scoping Problems

In this example, function scaled score probably does not do what the
programmer intended: with dynamic scoping, max score in scaled scoreis
bound to foo's local variable max score after foo calls scaled score, which

was the most recent binding during execution:
max score:integer —— maximum possible score

function scaled score(raw_score:integer) :real({
return raw _score/max score*100

-}

procedure foo{
max score:real := 0 -- highest percentage seen so far

foreach student in class
student.percent := scaled score(student.points)
if student.percent > max score
max score := student.percent

Dynamic Scope Implementation with
Bindings Stacks

Each time a subroutine is called, its local variables are
pushed on a stack with their name-to-object binding

When a reference to a variable is made, the stack is
searched top-down for the variable's name-to-object
binding

After the subroutine returns, the bindings of the local
variables are popped

Different implementations of a binding stack are used
in programming languages with dynamic scope, each
with advantages and disadvantages

Implementing Scopes

The language implementation must keep trace of current bindings
with suitable data structures:

— Static scoping: symbol table at compile time

— Dynamic scoping: association lists or central reference table at
runtime

Symbol table main operations: insert, lookup

— because of nested scopes, must handle several bindings for the same
name with LIFO policy

— new scopes (not LIFO) are created for records and classes
— Other operations: enter_scope, leave_scope

Even with static scoping, the symbol table might be needed at
runtime for symbolic debugging

— The debugger must resolve names in high-level commands by the user
— Symbol table saved in portion of the target program code

LeBlanc & Cook Symbol Table

Symbol table implementation for static scoping, using a hash
table and a stack. Managed by the semantic analyzer at compile
time.
* Each scope has a serial number

— Predefined names: 0 (pervasive)

— Global names: 1, and so on
* Names are inserted in a hash table, indexed by the name

— Entries contain symbol name, category, scope number, (pointer to) type, ...
* Scope Stack: contains numbers of the currently visible scopes

— Entries contain scope number and additional info (closed?, ...). They are
pushed and popped by the semantic analyzer when entering/leaving a scope

* Look-up of a name: scan the entries for name in the hash table, and look
at the scope number n
— If n <> 0 (not pervasive), scan the Scope Stack to check if scope n is visible
— Stops at first closed scope. Imported/Export entries are pointers.

A Modula2 program

type
T = record

[1]

F1 : integer;
F2 : real;

[2]

end;
var V : T;

module M;

end P2;

export I; import V; [3]

var I : integer;

procedure P1 (Al : real;
A2t: integer) : real;

begin [4]

end P1;

procedure P2 (A3 : real);

var I : integer; 5]

begin

end M;

Hash table ’\\Q& e 0a 5 < Scope stack
Q@z’o %&Q O{’@% %&Q &\Q@ Ov“&@
—>|/| P2 |proc | 3 |/| parameters —’—1 &
[T Jporam] 5] 0] | &
> A3 |param| 5 | (2) —
2 record V
5
—>|/| M |m0d| 1 I/I — | p
1

= Ffed [2])] — |

—>|/| Al |param| 4 | (2) | — |

—>|/| P1 | func | 3 | (1) | parameters —’—1

sl s [s]o] =]

LT 3o —

L—>|/| I | var |1|(1)| export |

—>| | | A2 |param| 4 | (1) | — |

L+|||F2|ﬁe1d|2|(z)| —

L"|/| T | type | 1 |/| record scopeZ|

—>||| V|Var|3|/|import4’—1

ST [w [=

—>|/] integer |type| 0 I/I —

—>|/|rea1| type| 0 |/| —

with V
P2

M
Globals

LeBlanc & Cook lookup function

procedure lookup (name)
pervasive := best := null
apply hash function to name to find appropriate chain
foreach entry e on chain

if e.name = name —- not something else with same hash value
if e.scope = 0
pervasive := e
else

foreach scope s on scope stack, top first
if s.scope = e.scope

best := e —— closer instance
exit inner loop
elsif best !'= null and then s.scope = best.scope
exit inner loop —— won’t find better
if s.closed
exit inner loop —— can’t see farther

if best != null
while best is an import or export entry
best := best.real entry
return best

elsif pervasive !'= null
return pervasive
else

return null -- name not found

Association Lists (A-lists)

List of bindings maintained at runtime with dynamic
scoping

Bindings are pushed on enter _scope and popped on
exit_scope

Look up: walks down the stack till the first entry for the
given name

Entries in the list include information about types

Used in many implementations of LISP: sometimes the
A-list is accessible from the program

Look up is inefficient

A-lists: an example

Referencing environment A-list

l (newest declarations are at this end of the list)

| | param \

other info

J | local var]

other info

(\J

global proc

other info

P | global proc | other info
4

J | global var | other info
\4

| | global var | other info

l

(predefined names)

[, J :integer

procedure P (I : integer)

procedure Q
J 1 integer

P)
—— main program

Q

A-list after entering P in the exection of Q

-

Referencing environment A-list

l

J | local var] other info
Y (\J
| Q | global proc | other info

P | global proc | other info
4

J | global var | other info
4

| | global var | other info

l

(predefined names)

A-list after exiting P

Central reference tables

Similar to LeBlanc&Cook hash table, but stack
of scopes not needed (and at runtime!)

Each name has a slot with a stack of entries:
the current one on the top

On enter_scope the new bindings are pushed
On exit_scope the scope bindings are popped

More housekeeping work necessary, but
faster access than with A-lists

Central reference table
(each table entry points to the newest declaration of the given name)

P » global proc | other info
A
| > param other info >| global var | other info
Q > global proc | other info
A
J > local var other info >| global var | other info |, J - integer

procedure P (I : integer)

(other names) CRT after entering P in the exection of Q »

procedure Q
J rinteger
Central reference table

P ()

P > global proc | other info l

—— main program

I > global var | other info

Q

Q > global proc | other info
A

J > local var other info >| global var | other info

(other names) ~ CRT after exiting P

