Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 14

* Introduction to Denotational semantics

Describing a Programming Language

Syntax, semantics and pragmatics
Semantics defines the meaning of programs

Various kinds of semantics
— Operational

— Algebraic / Axiomatic

— Denotational

— Game Theoretical

Used for:

— Unambiguous specification of meaning of programs
e Correctness of implementations

— Proving properties or equivalence of programs
— Evaluating alternative constructs in design phase

Denotational Semantics

Developed by Dana Scott and Christopher Strachey (~1970)
Topic of course MOD (Models of Computations) [summer
semester]

— Mathematical foundations (Domain theory)

— Complete semantics of simple programming languages: IMP
(imperative) and HOFL (functional)

Our presentation is orthogonal
— Foundations: almost none and informally
— “Descriptive” use of semantics:

* tounderstand programming constructs
* to compare them across different programming languages

— We follow
“R.D. Tennent: The denotational semantics of programming
languages, Communications of the ACM, Volume 19 Issue 8, Aug.

1976”

Abstract syntax of the LOOP language [Tennent76]

Basics and Syntax of LOOP

The denotational semantics of a programming language map programs
to mathematical objects (denotations) representing the meaning of the

programs

This is done compositionally on the syntax of the program

The abstract syntax of a language defines

— a collection of syntactic domains, corresponding to non-terminal symbols

* Example: Prog, Exp, Com, Var, ...

— a collection of operations on syntactic domains corresponding to productions

Exp ::= O | succ Exp | Var

Com ::= Var:=Exp | Com; Com | to Exp do Com

Prog ::= read Var ; Com ; write Exp

A LOOP program computes a function on
natural numbers

Productions as operations

0: 2Exp

succ: Exp =2 Exp

in: Var = Exp

seq : Com x Com = Com
assign: Var x Exp = Com

rep: Exp x Com = Com

prog : Var x Com x Exp = Prog

Denotational Semantics of LOOP

For each syntactic domain a corresponding semantic domain

is defined, and the meaning is given by a semantic

interpretation function

* P:Prog 2 N2> N (> associates right, read “Prog = (N > N)”)
— The meaning of a program is a function from N to N

* Since Prog ::= read Var ; Com ; write Exp, to define P
compositionally we need the semantics of Var, Com and
Exp

* For evaluating variables, we introduce the domain of
states:

— S=Var—2> N thus a state s € S is a function from Var to N
— forastates € S, s{v}is the content of variable v

— Def: s[n/v] is a state s.t. s[n/v]{x} = nif v = x, else s[n/v]{x} = s{x}
Note: we use {_} instead of [[_]], the classical notation

Denotational Semantics of LOOP:

Expressions and Commands

We define E and C by induction:
e E:Exp2>S—2>N

_ E{O} s=0 ,é\bstraa;) S)Intax oEf thelLSOP language [Tennent76]
Xp ::= succ Exp ar
—_— - +
E{SUCC 8} > E{E} s+1 Com ::= Var:=Exp | Com; Com | to Exp do Com
— E{V} S = S(V) Prog ::= read Var ; Com ; write Exp

Commands change the state:

e C:Com—>S—>S
— C{v:=e}s=s[n/v] where n=E{e}s
— Ccg; b s= (et *Cegt)s [= eyt (Hegls)]
— C{toedoc}s= ((C{c})") s wheren =E{e}s

* Note: fO(x) = x, f"*1(x) = f(f"(x))

Denotational Semantics of LOOP:
Programs
* P:Prog 2 N2> N

— The meaning of a program is a function from N to N
 P{read v ; c; write e}n = E{e}s
where s = C{c}s,[n/V]
where s {w}=0 for each variable w
Just a simple example to stress compositionality
* Language LOOP is total

 There is no conditionally controlled iteration
* More complex domains are needed in general

