Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 15

* More on Denotational semantics
* Not 1-1 bindings: Aliases and overloading
* Shallow and deep binding

Semantic Domains in
Denotational Semantics

* Semantic domains must allow to model partiality and
potentially infinite computations

* They must provide solutions to two kinds of recursive
definitions
— Definition of interpretation functions on iterative
constructs, like “while Exp do Com”

C{while e do c}s =
if E{e}s = false then s else C{while e do c} (C{c}s)
— Recursive definitions of domains

For example, if we add parameterless procedures as expressible

values in LOOP, we get the recursive domain equations shown
below

P=S—->S procedures
E=N+P expressible values
S=Var—2>E states

Kleene fixed-point theorem

Complete Partial Orders satisfy all the listed requirements

— A complete partial order (CPO) is a partial order with a least
element and such that every increasing chain has a supremum

An element x€D is a fixed point of a function F: D =2 D if
F(x) = x

Theorem: Every continuous function F over a complete
partial order (CPO) has a least fixed-point, which is the
supremum of chain

F()<F(F(L)<..<F'(L)=<..

This can be exploited to solve recursive domain equations
and recursive definitions of interpretation functions

In the following: Domain = CPO

Defining CPO’s

e Several operators can help defining domains

— Given a set X, its lifting X is XU {1}, where L <y
forallyin X (simply add Lto X as least element)

* we obtain primitive domains (Bool ;, Nat ,Ide , Loc, ...)

— Domains are closed under the following operations

1. D,xD, product (pairs)

2. D,+D, sum (disjoint union)
3. D,=2D, continuous functions
4. D"=DxDx..D lists of length n

5. D’=D%+D'+..+ DK+ ... finite lists

Notation

 Product: AxB={(a,b) | a € A, b € B}

Projections: n,((a,b)) =a n,((a,b)) =b

e Sum (Union): A+B= {(a,0) | a € A} U {(b,1) | a € B}
Injections: iny(a) = (a,0) in,(b) = (b,1)
Case analysis: ((x,y): A+B as A) = (y=0 — x, error)

Note: we do not describe error handling and propagation

* Function space: A—=> B = {f | f: A— Bis a continuous
function}

Application: if f:A—=>Band a € A, then f(a) € B
Often brackets are omitted: f(a) becomes fa

* For defining functions we use as metalanguage
the A-notation

A-notation

A-terms: to=x|Mt|tt]|tett] ()

* X variable

* M.t abstraction, defines an anonymous function
e tt” application of function t to argument t’

* tmt, t, =t, if t=true conditional
=t, if t=false
* [A-abstraction] x: A t(x):B
function definition At A>DB

* [B-conversion]
function application (Ax.t) t' =t [t'/x]

Introducing semantic domains

Syntactic and semantic domains depend on the language

Often, main syntactic domains: Exp, Com, Decl for Expressions,
Commands, Declarations

Representation of memory as domain S: Var 2 N too simplistic.
Needs to model:

— same variable declared in multiple scopes

— aliases

— different effects of assignment (copy of value/reference)

— pointers/references, ...
Typical solution: indirect binding of variable names to values.

— lIde (identifiers): syntactic domain for program variables, formal

parameters, ...
— Loc (locations): semantic domain for storage variables, references,
pointers, _
— Env=Ide > Dval (environments) Example: “variable x contains 5”
— Store = Loc = Sval (stores) r(x) =1 r:Env x:lde

X| 3| s()=5 s:Store I:Loc

Environments, Stores and Values

Env =Ide 2 Dval (environments)
Several domains for values: Store = Loc > Sval (stores)

— Sval (storable values) values that can be stored in memory
* Includes at least N, Bool, ...

— Dval (denotable values) values that can be bound to variables
* Includes Loc

— Eval (expressible values) results of evaluation of expressions
* Typically includes Sval

Domains of values can differ greatly among languages

Eg: in Pascal Sval = Num + Bool and Dval = Loc + Arrays + Proc
+ Label + ...

Stores are equipped with primitive operations
— content : Loc = Store =2 Sval
content(l)(s) = s(l) content|s=s1
content = Al.As.s |
— update : (Loc x Sval) = Store =2 Store
update = Ax. As. Al (I =my(x) = m,(x), s 1)
update (I’,v)sl= (I=I'~v,sl)

Semantic interpretation functions

* The semantic interpretation functions are
D: Decl 2 Env = Store = (Env x Store)

— A declaration can modify both the env. and the store

C: Cmd = Env = Store = Store

— Assumes that commands cannot change the env.

E: Exp = Env - Store - Eval
— Assumes absence of side effects

OR
E: Exp = Env - Store - (Eval x Store)

— Allows for side effects during expr. evaluation

Example: Declaration of variables and assignment

Syntax

Decl ::= var Ide = Exp |
Exp ::=...

Com ::= Exp :=Exp | ...

Semantics: declaration
D{var x = e} r s =(r[l/x], s[n/I])
where | = newloc(s)
and n=E{e}rs
Allocates a new location
bound to x and containing n

Semantics: assighment with side effects
C{el :=e2}rs=update(x as Loc, v as Sval) s2

where (x, s1) = E{el}rs
and (v,s2) = E{e2}rsl
Evaluates first el then e2: store
changes are propagated

Semantics: assighment

C{el :=e2}rs=update(x, v)s
where x = E{el} r s as Loc
and v = E{e2}rsas Sval

No side-effects, no coercion

Semantic interpretation functions

D: Decl = Env = Store = (Env x Store)
C: Cmd = Env - Store = Store

E: Exp = Env - Store = Eval no side eff
E: Exp = Env > Store - (Eval x Store)
Env = Ide = Dval

Store = Loc = Sval

Dval =...+ Loc +...

Eval = ... + Loc + Sval + ...

Example: Parameterless procedures and blocks
with static and dynamic scoping

Syntax Semantic domains
Decl ::=...| proc |de {Com} |Declarations Decl

D: Decl = Env = Store = (Env x Store)
Com ::=... | call Ide Dynamic scoping

| {Decl; Com} Proc = Env = Store = Store
Static scoping

Semantics: blocks

C{ {d, C} } rs= C{C} rt S) PrOC - Store 9 Store
Where (r’,S') — D{d} rs Dval = .t PrOC
Semantics: no parameter static scoping
Semantics: parameterless, D{proc p{c}}rs=(r,s) norecursion!

dynamic scoping where r’ = r[As’.C{c} rs’ / p]
Diproc p{ct}rs=(rlk/pl,s) | cfcall p}rs = (r(p) as Proc) s
where k = Ar’. As”.C{c}r’ ¢’

D{proc p{c}} r s = (r[a,/p], s) recursion
C{call p} r s = (r(p) as Proc) r s

where o, minimal fixed point of
a =As’.C{c} r[a/p] s’

ALIASES AND OVERLOADING
DEEP AND SHALLOW BINDING

Not 1-to-1 bindings: Aliases

Aliases: two or more names denote the same object

Arise in several situations:

e Pointer-based data structures

Java:

Node nl = n;

Node n = new Node("hello", null);

 common blocks (Fortran), variant records/unions

(Pacal, C)

e Passing (by name or
by reference) variables
accessed non-locally

double sum, sum of squares;

void accumulate (doubleé& x)

{

sum += X;
sum of squares += x * x;

}

accumulate (sum) ;

Problems with aliases

 Make programs more confusing
 May disallow some compiler’s optimizations

int a, b, *Pl *q;
a = *p; /* read from the variable referred to by p*/

q = 3; / assign to the variable referred to by g */

b = *p; /* read from the variable referred to by p */

e Cause for a long time of inefficiency of C
versus FORTRAN compilers

Not 1-to-1 bindings: Overloading

A name that can refer to more than one object is said to be overloaded
— Example: + (addition) is used for integer and floating-point addition in most
programming languages
Overloading is typically resolved at compile time
Semantic rules of a programming language require that the context of

an overloaded name should contain sufficient information to deduce the
intended binding

Semantic analyzer of compiler uses type checking to resolve bindings

Ada, C++ Java, ... function overloading enables programmer to define
alternative implementations depending on argument types (signature)

Ada, C++, and Fortran 90 allow built-in operators to be overloaded with
user-defined functions

— enhances expressiveness

— may mislead programmers that are unfamiliar with the code

First, Second, and Third-Class
Subroutines

First-class object: an object entity that can be passed as a parameter,
returned from a subroutine, and assigned to a variable

— Primitive types such as integers in most programming languages

= The object is in Sval, Eval and Dval
Second-class object. an object that can be passed as a parameter, but
not returned from a subroutine or assigned to a variable

— Fixed-size arrays in C/C++
=>» The object is in Dval

Third-class object. an object that cannot be passed as a parameter,
cannot be returned from a subroutine, and cannot be assigned to a

variable
— Labels of goto-statements and subroutines in Ada 83

Functions in Lisp, ML, and Haskell are unrestricted first-class objects

With certain restrictions, subroutines are first-class objects in Modula-2
and 3, Ada 95, (C and C++ use function pointers)

Scoping issues for first/second
class subroutines

* Critical aspects of scoping when
— Subroutines are passed as parameters
— Subroutines are returned as result of a function

* Resolving names declared locally or globally is
obvious
— Global objects are allocated statically (or on the stack,
in a fixed position)
* Their addresses are known at compile time

— Local objects are allocated in the activation record of
the subroutine

* Their addresses are computed as base of activation record +
statically known offset

III

Non-loca

7 (ll

“Referencing) Environments

If a subroutine is passed as an argument to another
subroutine, when are the static/dynamic scoping rules
applied?
1) When the reference to the subroutine is first created (i.e. when it is
passed as an argument)

2) Or when the argument subroutine is finally called
That is, what is the referencing environment of a subroutine
passed as an argument?

— Eventually the subroutine passed as an argument is called and may
access non-local variables which by definition are in the referencing
environment of usable bindings

The choice is fundamental in languages with dynamic scope:
deep binding (1) vs shallow binding (2)

The choice is limited in languages with static scope

Effect of Deep Binding in
Dynamically-Scoped Languages

Program execution:

main (p)
bound:integer Deep
bound := 35 binding
show (p,older)

bound:integer
bound := 20
older (p)
return p.age>bound
if return value is true
write (p)

Program prints persons
older than 35

The following program
demonstrates the difference
between deep and shallow binding:

function older (p:person) :boolean
return p.age > bound
procedure show (p:person,c:function)
bound:integer
bound := 20
if c(p)
write (p)
procedure main (p)
bound:integer
bound := 35
show (p,older)

Effect of Shallow Binding in
Dynamically-Scoped Languages

Program execution:

main (p)
bound:integer
bound := 35
show (p,older) Shallow
bound:integer binding
bound := 20
older (p) >
return p.age>bound

if return value is true
write (p)

Program prints persons
older than 20

The following program
demonstrates the difference
between deep and shallow binding:

function older (p:person) :boolean
return p.age > bound
procedure show (p:person,c:function)
bound:integer
bound := 20
if c(p)
write (p)
procedure main (p)
bound:integer
bound := 35
show (p,older)

