Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 16

* Shallow and deep binding
* Returning subroutines
* Object Closures

III

Non-loca

7 (ll

“Referencing) Environments

If a subroutine is passed as an argument to another
subroutine, when are the static/dynamic scoping rules
applied?
1) When the reference to the subroutine is first created (i.e. when it is
passed as an argument)

2) Or when the argument subroutine is finally called
That is, what is the referencing environment of a subroutine
passed as an argument?

— Eventually the subroutine passed as an argument is called and may
access non-local variables which by definition are in the referencing
environment of usable bindings

The choice is fundamental in languages with dynamic scope:
deep binding (1) vs shallow binding (2)

The choice is limited in languages with static scope

Effect of Deep Binding in
Dynamically-Scoped Languages

Program execution:

main (p)
bound:integer Deep
bound := 35 binding
show (p,older)

bound:integer
bound := 20
older (p)
return p.age>bound
if return value is true
write (p)

Program prints persons
older than 35

The following program
demonstrates the difference
between deep and shallow binding:

function older (p:person) :boolean
return p.age > bound
procedure show (p:person,c:function)
bound:integer
bound := 20
if c(p)
write (p)
procedure main (p)
bound:integer
bound := 35
show (p,older)

Effect of Shallow Binding in
Dynamically-Scoped Languages

Program execution:

main (p)
bound:integer
bound := 35
show (p,older) Shallow
bound:integer binding
bound := 20
older (p) >
return p.age>bound

if return value is true
write (p)

Program prints persons
older than 20

The following program
demonstrates the difference
between deep and shallow binding:

function older (p:person) :boolean
return p.age > bound
procedure show (p:person,c:function)
bound:integer
bound := 20
if c(p)
write (p)
procedure main (p)
bound:integer
bound := 35
show (p,older)

Implementing Deep Bindings with
Subroutine Closures

Implementation of shallow binding obvious: look for
the last activated binding for the name in the stack

For deep binding, the referencing environment is
bundled with the subroutine as a closure and passed as
an argument

A subroutine closure contains
— A pointer to the subroutine code
— The current set of name-to-object bindings

Possible implementations:

— With Central Reference Tables, the whole current set of
bindings may have to be copied

— With A-lists, the head of the list is copied

Closures in Dynamic Scoping
implemented with A-lists

Central Stack Referencing environment A-list
procedure P(procedure C)
declare |, J I
call C y
F oo J
procedure F
declare | Q
J
procedure Q o v
declare J P |
C==Qe---_ -
call F ~~_
- . 4—/
QT TT T === F
—— main program | Main program |
call P(Q) AR v
Q
Each frame in the stack has a pointer to the current beginning of the A-lists. #L
When the main program passes Q to P with deep binding, it bundles its A-list
pointer in Q’s closure (dashed arrow). When P calls C (which is Q), it restores P
the bundled pointer. When Q elaborates its declaration of J (and F elaborates
its declaration of 1), the A-list is temporarily bifurcated. v
M

Denotational semantics for deep/shallow
binding with dynamic scoping (1)

Syntax

Procedures have at most one parameter, which is a procedure name
Decl ::=...| proc Ide {Com} | proc |de (Ide) {Com} // Declaration
Com ::=...| {Decl; Com} | call Ide | call Ide (Ide) // Block, invocation

Semantic domains
Procedures without parameters
ProcO = Env - Store - Store

Procedures with one proc parameter Semantics: no parameter
Procl = ProcO = Env = Store = Store | D{proc p{c}}rs = (r[C{c} /p], s)
Dval = ... + ProcO + Procl... C{call p} r = (r(p) as ProcO) r

Semantic interpretation functions
D: Decl = Env = Store =2 (Env x Store)
C: Cmd = Env = Store - Store

Denotational semantics for deep/shallow
binding with dynamic scoping (2)

Syntax

Procedures have at most one parameter, which is a procedure name
Decl ::= ...| proc Ide {Com} | proclIde (Ide) {Com} // Declaration
Com ::=...| {Decl; Com} | call Ide | call Ide (Ide) // Block, invocation

Semantic domains

Procedures without parameters
ProcO = Env - Store - Store
Procedures with one proc paramg
Procl = ProcO - Env > Store 2 §

Semantics: one procedural parameter,
dynamic scoping

Dval = ... + ProcO + Procl... D{proc p(g){c}} rs = (r[k /p], s)
Semantic interpretation function: where k = Ad:Proc0. Ar’.C{c} r’'[d/q]
D: Decl = Env = Store =2 (Envx 3 Shallow binding

C: Cmd = Env = Store = Store | c{call p(h)} = (r(p) as Proc1) (r{h} as ProcO)
Deep binding
C{call p(h)}r =

(r(p) as Procl) (Ar’.(r{h} as ProcO)r)r

Deep/Shallow binding
with static scoping

Not obvious that it makes a difference. Recall:

Deep binding: the scoping rule is applied when the subroutine is passed as
an argument

Shallow binding: the scoping rule is applied when the argument
subroutine is called

In both cases non-local references are resolved looking at the static
structure of the program, so refer to the same binding declaration

But in a recursive function the same declaration can be executed several
times: the two binding policies may produce different results

No language uses shallow binding with static scope

Implementation of deep binding easy: just keep the static pointer of the
subroutine in the moment it is passed as parameter, and use it when it is
called

Deep binding with static scoping:
an example in Pascal

program binding_example (input, output);
procedure A(I : integer; procedure P);

procedure B;
begin

writeln(I);
end;

begin (*x A *)
if T > 1 then
P
else
A(2, B);

end;

procedure C; begin end;

begin (* main *)
A(1, C);
end.

When B is called via formal parameter P, two instances of | exist. Because the closure
for P was created in the initial invocation of A, B’s static link (solid arrow) points to the
frame of that earlier invocation. B uses that invocation’s instance of | in its writeln
statement, and the output is a 1. With shallow binding it would print 2.

Denotational semantics for deep binding
with static scoping

Syntax like before

Procedures have at most one parameter, which is a procedure name
Decl ::= ...| proc Ide {Com} | proclIde (Ide) {Com} // Declaration
Com ::=...| {Decl; Com} | call Ide | call Ide (Ide) // Block, invocation

Semantic domains
Procedures without parameters
Proc0O = Store - Store

Procedures with one proc paramg

Procl = Proc0O - Store = Store
Dval = ... + ProcO + Procl...

Semantics: no parameter, static scoping

D{proc p{c}} r s = (r[a,/p], s) recursion
where o, = p o . C{c}rlo/p]

C{call p} r = (r(p) as ProcO)

Semantics: one procedural parameter

Semantic interpretation function{ D{proc p(qg){c}} r s = (r[o,/p], s)
D: Decl = Env - Store = (Env x § where a,= pa.Ad.C{c}r[d/q][a/p]

Deep binding

C: Cmd = Env = Store = Store

C{call p(h)} r = (r(p) as Proc1) (r(h) as Proc0)
Shallow binding
Requires redefinition of semantic domains

Returning subroutines

* |n languages with first-class subroutines, a
function f may declare a subroutine g,
returning it as result

e Subroutine g may have non-local references
to local objects of f. Therefore:

— g has to be returned as a closure
— the activation record of f cannot be deallocated

(define plus-x (lambda (x) i L :*‘7\\\\
(lambda (Y) (+ X Y)))) : plus_x ritn = anon 0—’:’// anon y = 3
(let ((£ (plus-x 2))) ' mainprogram || | mainprogram |

(£ 3)) . returns 5 1 t-------mmmmm---o--- ! .

* (plus-x 2) returns an anonymous function which refers to the local x

First-Class Subroutine
Implementations

 |n functional languages, local objects have unlimited
extent. their lifetime continue indefinitely
— Local objects are allocated on the heap
— Garbage collection will eventually remove unused objects
* |n imperative languages, local objects have limited
extent with stack allocation
« To avoid the problem of dangling references,
alternative mechanisms are used:
— C, C++, and Java: no nested subroutine scopes
— Modula-2: only outermost routines are first-class

— Ada 95 "containment rule": can return an inner subroutine
under certain conditions

Object closures

Closures (i.e. subroutine + non-local enviroment) are
needed only when subroutines can be nested

Object-oriented languages without nested subroutines
can use objects to implement a form of closure

— a method plays the role of the subroutine

— instance variables provide the non-local environment
Objects playing the role of a function + non-local
enviroment are called object closures or function
objects

Ad-hoc syntax in some languages

— In C++ an object of a class that overrides operator() can be
called with functional syntax

Object closures in Java and C++

interface IntFunc ({ //Java
public int call(int i),
}
class PlusX implements IntFunc {
final int x;
PlusX(int n) { x = n; }
public int call(int i) { return i + x; }

}

IntFunc £ = new PlusX(2);

System.out.println(f.call(3)); // prints 5
class int func ({ // C++
public:
virtual int operator () (int i) = O0;

};
class plus _x : public int func ({
const int x;
public:
plus_x(int n) : x(n) { }
virtual int operator () (int i) { return i + x; }

};

plus x £(2); // £ is an instance of plus x
cout << £(3) << "\n"; // prints 5

