Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 17

* Control Flow
— Expression evaluation

Control Flow: Ordering the
Execution of a Program

* Constructs for specifying the execution order:

1. Sequencing: the execution of statements and evaluation of
expressions is usually in the order in which they appearin a
program text

2. Selection (or alternation): a run-time condition determines the
choice among two or more statements or expressions

3. Iteration: a statement is repeated a number of times or until a
run-time condition is met

4. Procedural abstraction: subroutines encapsulate collections of
statements and subroutine calls can be treated as single
statements

Control Flow: Ordering the
Execution of a Program (cont’d)

5. Recursion: subroutines which call themselves directly or
indirectly to solve a problem, where the problem is typically
defined in terms of simpler versions of itself

6. Concurrency: two or more program fragments executed in
parallel, either on separate processors or interleaved on a
single processor

7. Exception handling: when abnormal situations arise in a
protected fragment of code, execution branches to a handler
that executes in place of the fragment

8. Nondeterminacy: the execution order among alternative
constructs is deliberately left unspecified, indicating that any
alternative will lead to a correct result

Expression Syntax and
Effect on Evaluation Order

* An expression consists of
— An atomic object, e.g. number or variable
— An operator applied to a collection of operands (or arguments) that
are expressions
e Common syntactic forms for operators:
— Function call notation, e.g. somefunc(A, B, C)
— Infix notation for binary operators, e.g. A+ B
— Prefix notation for unary operators, e.g. -A
— Postfix notation for unary operators, e.g. i++
— Cambridge Polish notation, e.g. (* (+ 1 3) 2) in Lisp
— "Multi-word" infix ("mixfix"), e.g.
* a>b?a:binC

* myBox displayOn: myScreen at: 100@50 in Smalltalk,
where displayOn: and at: are written infix with arguments mybox, myScreen,

and 100@50

Operator Precedence and Associativity

 The use of infix, prefix, and postfix notation sometimes lead
to ambiguity as to what is an operand of what

— Fortran example: a + b * c**d**e/f a+ ((b * (c**(d**e)))/f)

* Operator precedence: higher operator precedence means that
a (collection of) operator(s) group more tightly in an
expression than operators of lower precedence

* Operator associativity: determines grouping of operators of
the same precedence
— Left associative: operators are grouped left-to-right (most common)

— Right associative: operators are grouped right-to-left (Fortran power
operator **, C assignment operator = and unary minus)

— Non-associative: requires parenthesis when composed (Ada power
operator **)

Fortran Pascal

C

++, -— (post-inc., dec.)

Ada

*k not ++, -— (pre-inc., dec.), abs (absolute value),
+, - (unary), not, **
&, * (address, contents of),
I, ~ (logical, bit-wise not)

*, / *, /, * (binary), /, *, /,mod, rem

div, mod, and

% (modulo division)

+, - (unary +, - (unary and +, - (binary) +, = (unary)
and binary) binary), or
<<, >> +, = (binary),
(left and right bit shift) & (concatenation)
'eq') 'ne°)°1t') <)<=)>)>=) <)<=)>)>= =)/=)<)<=)>)>=
.le., .gt., .ge. =, <>, IN (inequality tests)
(comparisons)
.not. ==, I= (equality tests)
& (bit-wise and)
~ (bit-wise exclusive or)
| (bit-wise inclusive or)
.and && (logical and) and, or, xor
(logical operators)
.or. || (logical or)

.eqv., .neqv.
(logical comparisons)

?: (if...then...else)

Precedence levels

(assignment)

, (sequencing)

Operator precedence levels
and associativity in Java

Operatore | Descrizione Associa a
_ . _ | dotnotation sinistra
_ [_ 1 | accessoelemento array
_ (_) | invocazione di metodo
_ ++ | incremento postfisso
_ -- | decremento postfisso
++ _ | incremento prefisso
-- _ | decremento prefisso
! _ | negazione booleana
~ _ | negazione bit-a-bit
+ _ | segno positivo (nessun effetto)
- _ | inversione di segno
(Tipo) _ | castesplicito
new _ | creazione di oggetto
_ * _ | moltiplicazione sinistra
_ / _ | divisione o divisione tra interi sinistra
_ % _ | resto della divisione intera sinistra
_ + _ | somma o concatenazione sinistra
_ - _ | sottrazione sinistra
_ << _ | shift aritmetico a sinistra sinistra
_ >> _ | shift aritmetico a destra sinistra
_ >>> _ | shift logico a destra sinistra
_ < _ | minore di sinistra
_ <= _ | minore o uguale a sinistra
_ > _ | maggiore di sinistra
_ >= _ | maggiore o uguale a sinistra
_ == _ | ugualea sinistra
_ '= _ | diverso da sinistra
instanceof | appartenenza a un tipo sinistra
_ & _ | AND bit-a-bit sinistra
_ =~ _ | XOR bit-a-bit sinistra
_ | _ | OR bit-a-bit sinistra
_ && _ | congiunzione ‘lazy’ sinistra
_ |1 _ | disgiunzione inclusiva ‘lazy’ sinistra
_ 7 _ _ | espressione condizionale destra
_ = _ | assegnamento semplice destra
_ op= _ | assegnamento composto destra
(opunotra *, /, %, +, -, <<, >>,>>> &, ~, |) destra

Operator Precedence and Associativity

 (C’svery fine grained precedence levels are of doubtful
usefulness

* Pascal’s flat precedence levels is a design mistake
if A<B and C<D then
is grouped as follows

if A<(B and C)<D then

* Note: levels of operator precedence and associativity can
— be captured in a context-free grammar

— be imposed by instructing the parser on how to resolve shift-
reduce conflicts.

Evaluation Order of Expressions

Precedence and associativity state the rules for grouping operators in
expressions, but do not determine the operand evaluation order!
— Expression
a-f (b) -b*c
is structured as
(a-£f (b)) - (b*c)
but either (a-£ (b)) or (b*c) can be evaluated first
The evaluation order of arguments in function and subroutine calls may
differ, e.g. arguments evaluated from left to right or right to left

Knowing the operand evaluation order is important

— Side effects: suppose £ (b) above modifies the value of b (thatis, £ (b) has
a side effect) then the value will depend on the operand evaluation order

— Code improvement: compilers rearrange expressions to maximize efficiency,

e.g. a compiler can improve memory load efficiency by moving loads up in the
instruction stream

Denotational semantics of expressions

* |f expressions don’t have side effects, the semantic
interpretation function is

E: Exp = Env - Store - Eval

* Precedence and associativity rules determine the abstract
syntax

* Semantics by structural induction with one rule for each
operator, e.g.

E{el+e2}rs=E{el}rs®E{e2}rs

where @ is the semantic counterpart of +

* |f expression may have side effects, the function is
E: Exp = Env = Store = (Eval x Store)
* Order of evaluation of arguments may influence the result
* Semantic rules must specify the order. Eg:
e F{el+e2}rs=let(V,s')=E{el}rsin
let (v, s”)=E{e2}rs in(V eV’ s”)

10

Expression Operand Reordering Issues

« Rearranging expressions may lead to arithmetic overflow or different
floating point results

Assume b, d, and c are very large positive integers, then if b-c+d is
rearranged into (b+d) -c arithmetic overflow occurs

Floating point value of b-c+d may differ from b+d-c

Most programming languages will not rearrange expressions when
parenthesis are used, e.g. write (b-c) +d to avoid problems

« Design choices:

Java: expressions evaluation is always left to right in the order operands are
provided in the source text and overflow is always detected

Pascal: expression evaluation is unspecified and overflows are always
detected

C and C++: expression evaluation is unspecified and overflow detection is
implementation dependent

Lisp: no limit on number representation

Short-Circuit Evaluation

Short-circuit evaluation of Boolean expressions: the result of an
operator can be determined from the evaluation of just one operand
Pascal does not use short-circuit evaluation

— The program fragment below has the problem that element a[11] is
read resulting in a dynamic semantic error:
var a:array [1l..10] of integer;

i:=1;
while (i<=10) and (a[i]<>0) do
i := i+l
C, C++, and Java use short-circuit conditional and/or operators
— If a in a&&b evaluates to false, b is not evaluated
— Ifain a| | b evaluates to true, b is not evaluated

— Avoids the Pascal problem, e.g.

while (1 <= 10 && a[i] '= 0) ..
— Ada uses and then and or else, e.g. cond1 and then cond?2
— Ada, C, C++ and Java also have regular bit-wise Boolean operators

