Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 18

* Control Flow
— Assignment: Value Model and Reference Model
— Structured and unstructured flow
— Sequencing and selection
— Logically- and enumeration-controlled iteration
— lterators

Assignments and Expressions

Fundamental difference between imperative and functional

languages

Imperative languages: “computing by means of side effects”
— Computation is an ordered series of changes to values of

variables in memory (state) and statement ordering is
influenced by run-time testing values of variables

Expressions in (pure) functional language are referentially
transparent:

— All values used and produced depend on the local
referencing environment of the expression

— A function is idempotent in a functional language: it always
returns the same value given the same arguments because
of the absence of side-effects

L-Values vs. R-Values and
Value Model vs. Reference Model

Consider the assignment of the form: a:=b

— The left-hand side a of the assignment is an I-value which is an expression that
should denote a location, e.g. array element a[2] or a variable foo or a
dereferenced pointer *p or a more complex expression (f(a)+3)->b[c]

— The right-hand side b of the assignment is an r-value which can be any syntactically
valid expression with a type that is compatible to the left-hand side
Languages that adopt the value model of variables copy the value of b into
the location of a (e.g. Ada, Pascal, C)

Languages that adopt the reference model of variables copy references,
resulting in shared data values via multiple references

— Clu, Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference model. They copy the
reference of b into a so that a and b refer to the same object

— Most imperative programming languages use the value model

— Java is a mix: it uses the value model for built-in types and the reference model for
class instances

Assignment in
Value Model vs. Reference Model

b:=2;
c:=b;
a:=b+c

4

al 4 a

/2

c| 2 C

Figure 6.2 The value (left) and reference (right) models of variables. Under the reference
model, it becomes important to distinguish between variables that refer to the same object
and variables that refer to different objects whose values happen (at the moment) to be

equal.

Denotational semantics of
value model and reference model

e A PL with value model has the usual Env and Store semantic domains
— Env =Ide - Dval (Dval = ... + Loc +...)
— Store = Loc = Sval

* “r-values” are expressions that evaluate to elements of domain Sval
(storable values)

* “l-values” are expressions e that evaluate to locations: (E{e} r s as Loc)

* InaPL with reference model, conceptually there is no Store, but only
— Env=Ide - Dval thus E: Exp = Env - Eval

* The main binding operator is let
Exp=.. | let Ide =Expin Exp
with semantics
E{letx=einel}r=E{el}r[E{e}r/x]
* Note: letx=einel isjustsyntacticsugarfor (Ax.el)e

References and pointers

Most implementations of PLs have as target architecture a Von
Neumann one, where memory is made of cells with addresses

Thus implementations use the value model of the target
architecture

Assumption: every data structure is stored in memory cells
We “define”:
— Areference to X is the address of the (base) cell where X is stored
— A pointer to X is a location containing the address of X
Value model based implementation can mimic the reference model
using pointers and standard assignment
— Each variable is associated with a location

— To let variable x refer to data X, the address of (reference to) X is written
in the location of x, which becomes a pointer.

— Can be modeled by requiring that Loc is contained in Sval
— Expressions of “reference types” must return a location

Denotational Semantics of Reference
Memory Model on Value Memory Model

Semantic interpretation functions

D: Decl = Env = Store = (Env x Store)
C: Cmd = Env = Store - Store

E: Exp = Env = Store - (Eval x Store)
Env = Ide = Dval

Store = Loc = Sval

Dval =... + Loc + ...
Eval = ... + Loc + Sval + ... Semantics: declaration
Sval = ... + Loc + ... D{var x = e} rs = (r[l/x], s1[n/I])
where | = newloc(s)
X1l 5 and (n,sl1) = E{e}rs

and (n as Loc)
y Allocates a new location bound
5 to x and referring to n

Special Cases of Assignments

« Assignment by variable initialization

— Use of uninitialized variable is source of many problems, sometimes
compilers are able to detect this but with programmer involvement e.g.
definite assignment requirement in Java

— Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default
when variable is declared

« Combinations of assignment operators (+=, -=, *=, ++, --.)

— InC/C++ a+=b isequivalentto a=a+b (but a[i++]+=b is
different from a[i++]=a[i++]+Db,!)

— Compiler produces better code, because the address of a variable is
only calculated once

* Multiway assignments in Clu, ML, and Perl
— a,b := ¢,d // assigns c to a and d to b simultaneously,
* eg.a,b :=b,a swaps a with b
— a,b := £(c) // £ returns a pair of values

Structured and Unstructuted Flow

* Unstructured flow: the use of goto statements and statement
labels to implement control flow

— Close correspondence with conditional/unconditional branching in
assembly/machine code

— Merit or evil? Hot debate in 1960’s. Dijkstra “GOTO Considered
Harmful”

— Bohm-Jacopini theorem: goto’s are not necessary

— Generally considered bad: programs are hardly understandable

— Sometimes useful for jumping out of nested loops and for coding the
flow of exceptions (when a language does not support exception
handling)

— Java has no goto statement (supports labeled loops and breaks) but
goto is a reserved word

Structured and Unstructuted Flow

e Structured flow:
— Statement sequencing
— Selection with "if-then-else" statements and "switch" statements
— lteration with "for" and "while" loop statements
— Subroutine calls (including recursion)
— All of which promotes "structured programming”

e Structured alternatives to goto
— break to escape from the middle of a loop
— return to exit a procedure
— continue to skip the rest of the current iteration of a loop
— raise (throw) an exception to pass control to a suitable handler
— multilevel return with unwinding to repair the runtime stack (e.g.
return-from statement in Common Lisp)

* Cannot jump into middle of block or function body

Sequencing

A list of statements in a program text is executed in top-down
order
A compound statement is a delimited list of statements

— A compund statement is called a block when it includes variable
declarations

— C, C++, and Java use { and } to delimit a block
— Pascal and Modula use begin ... end
— Ada uses declare ... begin ... end

Special cases: in C, C++, and Java expressions can be
Inserted as statements

In pure functional languages sequencing is impossible (and
not desired!)

In some (non-pure) functional languages a sequence of
expression has as value the last expression’s value

Selection

If-then-else selection statements in C and C++:
— if (<expr>) <stmt> [else <stmt>]
— Condition is a bool, integer, or pointer

— Grouping with { and } is required for statement sequences in the then clause
and else clause
— Syntax ambiguity is resolved with "an else matches the closest if' rule

Conditional expressions, e.g. if and cond in Lisp and a?b:cin C
Java syntax is like C/C++, but condition must be Boolean

Ada syntax supports multiple elsif's to define nested conditions:
— if <cond> then
<statements>
elsif <cond> then
e-J...se
<statements>
end if

Selection (cont’d)

Case/switch statements are different from if-then-else
statements in that an expression can be tested against
multiple constants to select statement(s) in one of the
arms of the case statement:
— C, C++, and Java:

switch (<expr>)

{ case <const>: <statements> break;

case <const>: <statements> break;

default: <statements>

}

— Abreak is necessary to transfer control at the end of an arm to
the end of the switch statement

— Most programming languages support a switch-like statement,
but do not require the use of a break in each arm

Selection (cont’d)

The allowed types of <exp> depends on the language:
e.g. int, char, enum, strings (in C# and Java)

Some languages admit label ranges

A switch statement is much more efficient compared to
nested if-then-else statements

Several possible implementation techniques with
complementary advantages/disadvantages:

— Jump tables

— Sequential testing (like if ... then ... elseif ...)

— Hash tables

— Binary search

Ilteration

An iterative command (or /loop) repeatedly executes a
subcommand, which is called the loop body.

Each execution of the loop body is called an iteration.

Classification of iterative commands:

— Indefinite iteration: the number of iterations is not
predetermined.

— Definite iteration: the number of iterations is
predetermined.

Note: sequencing, selection and definite iteration are
not sufficient to make a language Turing complete:
either indefinite iteration or recursion is needed

Ilteration

* Enumeration-controlled loops (aka bounded/definite
iteration) repeat a collection of statements a number of
times, where in each iteration a loop index variable (counter,
control variable) takes the next value of a set of values
specified at the beginning of the loop

* Logically-controlled loops (aka unbounded/indefinite
iteration) repeat a collection of statements until some
Boolean condition changes value in the loop

— Pretest loops test condition at the begin of each iteration
— Posttest loops test condition at the end of each iteration

— Midtest loops allow structured exits from within loop with exit
conditions

Logically-Controlled Pretest loops

Logically-controlled pretest loops check the exit condition before the
next loop iteration

Not available in Fortran-77

Pascal:
while <cond> do <stmt>
where the condition is a Boolean-typed expression
C, C++:
while (<expr>) <stmt>
where the loop terminates when the condition evaluates to 0, NULL,
or false
— Use continue and break to jump to next iteration or exit the loop

Java is similar C++, but condition is restricted to Boolean

Logically-Controlled Posttest Loops

Logically-controlled posttest loops check the exit condition after
each loop iteration

Not available in Fortran-77

Pascal:

repeat <stmt> [; <stmt>]* until <cond>
where the condition is a Boolean-typed expression and the loop
terminates when the condition is true

C, C++:

do <stmt> while (<expr>)
where the loop terminates when the expression evaluates to 0,
NULL, or false

Java is similar to C++, but condition is restricted to Boolean

Logically-Controlled Midtest Loops

« Ada supports logically-controlled midtest loops check exit conditions

anywhere within the loop:
loop
<statements>
exit when <cond>;
<statements>
exit when <cond>;

ena.loop

« Ada also supports labels, allowing exit of outer loops without gotos:
outer: loop

féf i in 1..n loop
éiit outer when a[i]>0;

end loop;
end outer loop;

* Java allows labeled breaks to exit of outer loops

Enumeration-Controlled Loops

General form:
for I = start to end by step do

body

* Informal operational semantics...

Some critical issues

 Number of iterations?

 What if I, start and/or end are modified in body?
 What if step is negative?

 Whatis the value of I after completion of the iteration?

Enumeration-Controlled Loops

Some failures on design of enumeration-controlled loops
Fortran-IV:
DO 20 i = 1, 10, 2
20 CONTINUE
which is defined to be equivalent to

i=1
20 ...
i =i+ 2
IF i.LE.10 GOTO 20
Problems:

— Requires positive constant loop bounds (1 and 10) and step size (2)

— If loop index variable i is modified in the loop body, the number of iterations is
changed compared to the iterations set by the loop bounds

— GOTOs can jump out of the loop and also from outside into the loop
— The value of counter i after the loop is implementation dependent
— The body of the loop will be executed at least once (no empty bounds)

Enumeration-Controlled Loops (cont’d)

* Fortran-77:

— Same syntax as in Fortran-1V, but many dialects support ENDDO instead of
CONTINUE statements

— Can jump out of the loop, but cannot jump from outside into the loop
— Assignments to counter i in loop body are not allowed

— Number of iterations is determined by
max(|[(H-L+S)/S],0)
for lower bound L, upper bound H, step size S

— Body is not executed when (H-L+S)/5< 0

— Either integer-valued or real-valued expressions for loop bounds and step
sizes

— Changes to the variables used in the bounds do not affect the number of
iterations executed

— Terminal value of loop index variable is the most recent value assigned, which
IS

L + S * max(| (H-L+S)/S], 0)

Enumeration-Controlled Loops (cont’d)

* Algol-60 combines logical conditions in combination
loops:

for <id> := <forlist> do <stmt>
where the syntax of <forlist> is

<forlist> ::= <enumerator> [, <enumerator>]*
<enumerator> ::= <expr>
| <expr> step <expr>until <expr>
| <expr>while <cond>

* Not orthogonal: many forms that behave the same:

for i :=1, 3, 5, 7, 9 do ...
for i := 1 step 2 until 10 do ...
for i := 1, i+2 while i < 10 do

Enumeration-Controlled Loops (cont’d)

« Pascal’'s enumeration-controlled loops have simple and
elegant design with two forms for up and down:
for <id> := <expr> to <expr> do <stmt>
and
for <id> := <expr> downto <expr> do <stmt>
« Can iterate over any discrete type, e.g. integers, chars,
elements of a set

 Lower and upper bound expressions are evaluated once
to determine the iteration range

« Counter variable cannot be assigned in the loop body
* Final value of loop counter after the loop is undefined

Enumeration-Controlled Loops (cont’d)

« Ada’s for loop is much like Pascal's:

for <id> in <expr> .. <expr> loop
<statements>
end loop

and

for <id> in reverse <expr> .. <expr> loop
<statements>
end loop

« Lower and upper bound expressions are evaluated once to determine
the iteration range

« Counter variable has a local scope in the loop body
— Not accessible outside of the loop

« Counter variable cannot be assigned in the loop body

Enumeration-Controlled Loops (cont’d)

« C and C++ do not have true enumeration-controlled loops, they
have combination loops

« A'"for" loop is essentially a logically-controlled loop
. for (1 = first; 1 <= last; i += step) {

}
is equivalent to
{

i = first;
while (i1 <= last) {

i += step;
}

}

» Java’s standard for statement is as in C/C++, but the enhanced for is
almost a true enumeration-controlled loop (see later)

Enumeration-Controlled Loops (cont’d)

Why is C/C++/Java for not enumeration controlled?

— Assignments to counter i and variables in the bounds are allowed, thus
it is the programmer's responsibility to structure the loop to mimic
enumeration loops

Use continue to jump to next iteration
Use break to exit loop

C++ and Java also support local scoping for counter variable
for (int 1 = 1; i <= n; i++)

In this case the look index variable is not accessible after the loop

Enumeration-Controlled Loops (cont’d)

* Other problems with C/C++ for loops to emulate enumeration-
controlled loops are related to the mishandling of bounds and limits
of value representations

— This C program never terminates (do you see why?)
#include <limits.h> // INT MAX is max int value
main ()

{ int 1i;
for (i = 0; i <= INT MAX; i++)
printf ("Iteration %d\n", 1i);
}
— This C program does not count from 0.0 to 10.0, why?
main ()
{ £float n;
for (n = 0.0; n <= 10; n += 0.01)
printf ("Iteration %g\n", n);

Enumeration-Controlled Loops (cont’d)

 How is loop iteration counter overflow handled?
« C, C++, and Java: nope
 Fortran-77

— Calculate the number of iterations in advance

— For REAL typed index variables an exception is raised
when overflow occurs

« Pascal and Ada

— Only specity step size 1 and -1 and detection of the
end of the iterations is safe

— Pascal’s final counter value is undefined (may have
wrapped)

lterators

Containers (collections) are aggregates of homogeneous
data, which may have various (topo)logical properties

— Eg: arrays, sets, bags, lists, trees,...

Common operations on containers require to iterate on
(all of) its elements

— Eg: search, print, map, ...

[terators provide an abstraction for iterating on
containers, through a sequential access to all their
elements

Iterator objects are also called enumerators or
generators

Ilterators in Java

Iterators are supported in the Java Collection Framework: interface
Iterator<T>

They exploit generics (as collections do)

lterators are usually defined as nested classes (non-static private
member classes): each iterator instance is associated with an
instance of the collection class

Collections equipped with iterators have to implement the
Iterable<T> interface

class BinTree<T> implements Iterable<T> ({
BinTree<T> left;
BinTree<T> right;
T val;

// other methods: insert, delete, lookup,
public Iterator<T> iterator() ({
return new Treelterator (this);

}

lterators in Java (cont’d)

class BinTree<T> implements Iterable<T> ({

private class Treelterator implements Iterator<T> {
private Stack<BinTree<T>> s = new Stack<BinTree<T>>() ;
Treelterator (BinTree<T> n) {
if (n.val '= null) s.push(n);
}
public boolean hasNext () ({
return !s.empty () ;
}
public T next() { //preorder traversal
if ('hasNext()) throw new NoSuchElementException() ;
BinTree<T> n = s.pop()
if (n.right !'= null) s.push(n.right);
if (n.left !'= null) s.push(n.left);
return n.val;
}

public void remove () {
throw new UnsupportedOperationException() ;

b}

Iterators in Java (cont’d)

 Use of the iterator to print all the nodes of a BinTree:

for (Iterator<Integer> it = myBinTree.iterator () ;

it.hasNext () ;)
{ Integer i = it.next();
System.out.println (i) ;
}

* Java provides (since Java 5.0) an enhanced for statement (foreach) which exploits
iterators. The above loop can be written:

for (Integer i : myBinTree)
System.out.println (i) ;

* Inthe enhanced for, myBinTree must either be an array of integers, or it has to
implement Iterable<Integer>

« The enhanced for on arrays is a bounded iteration. On an arbitrary iterator it depends
on the way it is implemented.

Ilterators in C++

« (C++ iterators are associated with a container object and used in loops
similar to pointers and pointer arithmetic

» They exploit the possibility of overloading primitive operations.

vector<int> V;
for (vector<int>::iterator it = V.begin(), it !'=

V.end (), ++it)
cout << *it << endl;

An in-order tree traversal:

tree_node<int> T;

for (tree node<int>::iterator it = T.begin(); it !=
T.end(); ++it)
cout << *it << endl;

True lterators

« While Java and C++ use iterator objects that hold
the state of the iterator, Clu, Python, Ruby, and C#
use “true iterators” which are functions that run in
“parallel” (in a separate thread) to the loop code to
produce elements
— The yield operation in Clu returns control to the loop body

— The loop returns control to the generator’s last yield

operation to allow it to compute the value for the next
iteration

— The loop terminates when the generator function returns

True Iterators (cont’d)

* Generator function for pre-order visit of binary tree in Python
* Since Python is dynamically typed, it works automatically
for different types

class BinTree:
def init (self): # constructor
self.data = self.lchild = self.rchild = None

other methods: insert, delete, lookup,
def preorder (self):
if self.data !'= None:
yield self.data
if self.lchild '= None:
for d in self.lchild.preorder() :
yield d
if self.rchild '= None:
for d in self.rchild.preorder():
yield d

Iterators in some functional languages

e Exploting “in line” definitions of functions, the body of
the iteration can be defined as a function having as
argument the loop index

 Then the body is passed as last argument to the
iterator which is a function realising the loop

* Simple iterator in Scheme and sum of 50 odd numbers:

(define uptoby

(lambéa (low high.step f) (let ((sum 0))
(if (<= low high) (uptoby 1 100 2
(begin (Lambda (i)
(f low) (set! sum (+ sum i))))
(uptoby (+ low step) high step f)) sum)

0))))

