Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 21

Type systems
Type safety
Type checking
— Equivalence, compatibility and coercion
Primitive and composite types
— Discrete and scalar types
— Tuples and records
— Arrays



What is a Data Type?

* A (data) type is a homogeneous collection of
values, effectively presented, equipped with a set of
operations which manipulate these values

* Various perspectives:

— collection of values from a “domain” (the denotational

approach)

— internal structure of a bunch of data, described down to
the level of a small set of fundamental types (the
structural approach)

— collection of well-defined operations that can be applied
to objects of that type (the abstraction approach)




Advantages of Types

* Program organization and documentation

— Separate types for separate concepts
* Represent concepts from problem domain

— Document intended use of declared identifiers
* Types can be checked, unlike program comments

* |dentify and prevent errors

— Compile-time or run-time checking can prevent
meaningless computations such as 3 + true — “Bill”

* Support implementation and optimization
— Example: short integers require fewer bits
— Access components of structures by known offset



Type system

A type system consists of

1. The set of predefined types of the language.

2. The mechanisms which permit the definition of new types.

3. The mechanisms for the control (checking) of types, which include:

1. Equivalence rules which specify when two formally different
types correspond to the same type.

2. Compatibility rules specifying when a value of a one type can
be used in given context.

3. Rules and techniques for type inference which specify how the
language assigns a type to a complex expression based on
information about its components (and sometimes on the
context).

4. The specification as to whether (or which) constraints are statically
or dynamically checked.



Type errors

A type error occurs when a value is used in a way that is
inconsistent with its definition

Type errors are type system (thus language) dependent
Implementations can react in various ways

— Hardware interrupt, e.g. apply fp addition to non-legal bit configuration
— OS exception, e.g. segmentation fault when dereferencing 0 in C
— Continue execution possibly with wrong values

Examples

— Array out of bounds access
e C/C++: runtime errors
* Java: dynamic type error

— Null pointer dereference
e C/C++: run-time errors
* Java: dynamic type error
* Haskell/ML: pointers are hidden inside datatypes

— Null pointer dereferences would be incorrect use of these datatypes, therefore
static type errors



Type safety

e Alanguage is type safe (strongly typed) when
no program can violate the distinctions
between types defined in its type system

* |[n other words, a type system is safe when no
program, during its execution, can generate
an unsignalled type error

e Also: if code accesses data, it is handled with
the type associated with the creation and
previous manipulation of that data



Safe and not safe languages

Not safe: C and C++
— Casts, pointer arithmetic

Almost safe (aka “weakly typed”): Algol family, Pascal,
Ada.

— Dangling pointers.

* Allocate a pointer p to an integer, deallocate the memory
referenced by p, then later use the value pointed to by p.

* No language with explicit deallocation of memory is fully type-
safe.

Safe (aka “strongly typed”): Lisp, Smalltalk, ML,
Haskell, Java, JavaScript

— Dynamically typed: Lisp, Smalltalk, JavaScript

— Statically typed: ML, Haskell, Java



Type checking

* To prevent type errors, before any operation is
performed, its operands must be type-checked to
ensure that they comply with the compatibility
rules of the type system

— mod operation: check that both operands are integers
— and operation: check that both operands are booleans

— indexing operation: check that the left operand is an
array, and that the right operand is a value of the
array’s index type.

 Statically typed languages: (most) type checking is
done during compilation

 Dynamically typed languages: type checking is
done at runtime



Static vs dynamic typing

In a statically typed PL:

— all variables and expressions have fixed types (either stated
by the programmer or inferred by the compiler)

— most operands are type-checked at compile-time.

Most PLs are called “statically typed”, including Ada, C,
C++, Java, Haskell, ... even if some type-checking is done
at run-time (e.g. access to arrays)

In a dynamically typed PL:

— values have fixed types, but variables and expressions do
not

— operands must be type-checked when they are computed
at run-time.

Some PLs and many scripting languages are dynamically
typed, including Smalltalk, Lisp, Prolog, Perl, Python.



Example: Ada static typing

Ada function definition: : , .
---------------- Knowing that n’s type is

function 1s even (n: Integer) Integer, the compiler

return Boolean 1is infers that the type of

begin “n mod 2 = 0” will be
return (n mod 2 = 0); Boolean.
end;
Call:

.~~~ Knowing that p’s type is Integer,
’ the compiler infers that the type
of “p+1” will be Integer.

p: Integer;
ifis_even(p+1) ...

Even without knowing the values of variables and parameters, the Ada
compiler can guarantee that no type errors will happen at run-time.



Example: Python dynamic typing

* Python function definition:

def even (n): P
return (n $ 2 == 0)

-~ The type of n is unknown.
So the “%” (mod) operation
must be protected by a run-
time type check.

The types of variables and parameters are not declared, and cannot

be inferred by the Python compiler. So run-time type checks are
needed to detect type errors.



Static vs dynamic type checking

Static typing is more efficient
— No run-time checks
— Values do not need to be tagged at run-time

Static typing is often considered more secure

— The compiler guarantees that the object program
contains no type errors. With dynamic typing you rely
on the implementation.

Dynamic typing is more flexible

— Needed by some applications where the types of the
data are not known in advance.

* JavaScript array: elements can have different types
* Haskell list: all elements must have same type

Note: type safety is independent of dynamic/static



Static typing Is conservative

* |n JavaScript, we can write a function like

function f(x) { return x < 10 ? x : x(); }

Some uses will produce type error, some will not.

e Static typing must be conservative

if (possibly-non-terminating-boolean-expression)
then £ (5);
else £(15);

Cannot decide at compile time if run-time error will occur!

13



Type Checking: how does it work

* Checks that each operator is applied to
arguments of the right type. It needs:

— Type inference, to infer the type of an expression
given the types of the basic constituents

— Type compatibility, to check if a value of type A
can be used in a context that expects type B
e Coercion rules, to transform silently a type into a
compatible one, if needed
— Type equivalence, to know if two types are
considered the same



Towards Type Equivalence:
Type Expressions

* Type expressions are used in declarations and type
casts to define or refer to a type

Type ::= int | bool | ... | X | Tname |pointer-to(Type) |
array(num, Type) | record(Fields) | class(...) |
Type =2 Type | Type x Type

— Primitive types, such as int and bool

— Type constructors, such as pointer-to, array-of, records
and classes, and functions

— Type names, such as typedefs in C and named types in
Pascal, refer to type expressions

15



Graph Representations for
Type Expressions

* Internal compiler representation, built during
parsing

° Example: int *f (char*,char¥*)

/fun\ fun
}gs\ poi1|1ter (argsw }rllter
poirllter poirllter int p01nter int
char char char

Tree forms DAGs

16



Cyclic Graph Representations

Source program

struct Node
{ int wval;
struct Node *next;

};

struct

val next

int pointer

Internal compiler representation
of the Node type: cyclic graph

17



Equivalence of Type Expressions

 Two different notions: name equivalence
and structural equivalence

— Two types are structurally equivalent if
1. They are the same basic types, or

2. They have the form TC(T1,..., Tn) and TC(S], ...,
Sn), where TC is a type constructor and Ti is
structurally equivalent to Si forall 1 <=i<=n, or

3. Oneis atype name that denotes the other.

— Two types are name equivalent if they satisfy
1. and 2.

18



On Structural Equivalence

e Structural equivalence: unravel all type
constructors obtaining type expressions
containing only primitive types, then check if
they are equivalent — _———

. type Student = record
® Used N C/C++’ C# name, address : string

age : integer

type School = record
name, address : string
age : integer

X : Student;
y : School;

X:=y;
--ok with structural equivalence
--error with name equivalence 19




Structural Equivalence of Recursive

Type Expressions
|

p01nter — p01nter
struct struct
ext next
p01nter

* Two structurally equivalent type expressions have the
same pointer address when constructing graphs by

(maximally) sharing nodes

p &s
struct Node
{ int val; p p01nter
struct Node *next;
}i struct
struct Node s, *p;
p = &s; // OK next

*p =s; // OK
p = s; // ERROR

20



On Name Equivalence

 Each type name is a distinct type, even when the type
expressions that the names refer to are the same

* Types are identical only if names match
e Used for Abstract Data Types and by OO languages
e Used by Pascal (inconsistently)

type link = “node; With name equivalence in Pascal:

var next : link; P := next FAIL
last : link; last :=p FAIL

p : “node; q :=r OK

q, r : “node; next := last OK

P :=q FAIL !!! o



On Name Equivalence

* Name equivalence: sometimes “aliases” needed

TYPE stack element = INTEGER;
MODULE stack;

IMPORT stack element;

EXPORT push, pop;

(* alias *)

PROCEDURE push (elem : stack_element);
PROCEDURE pop() : stack_element;

var st:stack;
st.push (42) ; // this should be OK




Type compatibility and Coercion

* Type compatibility rules vary a lot

— Integers as reals OK
— Subtypes as supertypes OK
— Reals as integers P77
— Doubles as floats 27?7

* When an expression of type A is used in a
context where a compatible type B is
expected, an automatic implicit
conversion is performed, called coercion



Type checking with attributed grammars
A simple language example

P—D;$§

E —
D—D;D fale o
lid: T literal Synthesized attributes
T — boolean hum T.type : type expression
char id E.type : type of expression
nteger Eand E or type_error
array [num ] of T E4E o .
AT S.type : void if statement is
S— id:=EF EE\E] well-typed, type error
|if Ethen S R otherwise
| while Edo S
|1S;S
Pointerto T

Pascal-like pointer
dereference operator 24



Declarations

D—id:T { addtype(id.entry, T.type) }
T — boolean { T.type := boolean }

T — char { T.type :=char}

T — integer { T.type :=integer }

T — array [ num ] of T,

{ T.type := array(1..num.val, T,.type) }

T—AN"T, { T.type := pointer(T,) }

Parametric types:
type constructor

25



Checking Statements

S —id := E{ S.type := (if id.type = E.type then void else type error)}
* Note: the type of id is determined by scope’s environment:
id.type = lookup(id.entry)

S—if EthenS, {S.type :=(if E.type = boolean then S .type
else type error) }

S — while Edo S, { S.type := (if E.type = boolean then S,.type
else type error) }

§—=5,;5, {S.type := (if S;.type = void and S,.type = void
then void else type error) }

26



Checking Expressions

E — true { E.type = boolean }

E — false { E.type = boolean }

E — literal { E.type = char }

E — num { E.type = integer }

E—id { E.type = lookup(id.entry) }

E—E +E, {E.type:=(if E,.type =integer and E,.type = integer
then integer else type error) }

E— E,and E, { E.type := (if E,.type = boolean and E,.type = boolean
then boolean else type error) }

E—E/[E,] {E.type:=(if E.type =array(s, t) and E,.type = integer
then t else type error) }

* Parameter tis set with the unification of E,.type = array(s, t)

E— E, N {E.type:=(if E,.type = pointer(t) then t
else type error) }

* Parameter tis set with the unification of E,.type = pointer(t)
27



Type Conversion and Coercion

* Type conversion is explicit, for example using
type casts

e Type coercion is implicitly performed by the
compiler to generate code that converts types

of values at runtime (typically to narrow or
widen a type)

* Both require a type system to check and infer
types from (sub)expressions

28



On Coercion

Coercion may change the representation of the value
or not

— Integer = Real binary representation is changed
{int x = 5; double y = x; ..}

— A > B subclasses binary representation not changed
class A extends B{ .. }
{B myBobject = new A(..);, ..}

Coercion may cause loss of information, in general

— Notin Java, with the exception of long as float

In statically typed languages coercion instructions are
inserted during semantic analysis (type checking)

Popular in Fortran/C/C++, tends to be replaced by
overloading and polymorphism

Popular again in modern scripting languages



Example: Type Coercion and Cast in Java

Coercion (implicit, widening)
— No loss of information (almost...)
Cast (explicit, narrowing)
— Some information can be lost

Explicit cast is always allowed

when coercion is

among numerical types

double 64
ﬂlat 32
oy 68

i?lv,t 32

/N

short 16 char

|

byte 8

(a) Widening conversions

double

!
float

'

long

'
/z* Y

char —=— short -—= byte

(b) Narrowing conversions



Handling coercion during translation

Translation of sum without type coercion:

E— E +E, { E.place := newtemp();
gen(E.place :=" E,.place ‘+" E,.place)}

With type coercion:

E—E, +E, { E.type = max(E,.type,E,.type);
a, = widen(E,.addr, E,.type, E.type) ;
a, = widen(E,.addr, E,.type, E.type);
E.addr = new Temp();
gen(E.addr '="a, '+' a,); }

where:

* max(T,,T,) returns the least upper bound of T, and T, in the widening
hierarchy

e widen(addr, T,, T,) generate the statement that copies the value of type
T, in addr to a new temporary, castingitto T,



Pseudocode for widen

Addr widen (Addr a, Type t, Type w) {
temp = new Temp () ;
if(t = w) return a; //no coercion needed

elseif(t = integer and w = float) {

gen(temp '=' '(float)' a);
elseif(t = integer and w = double) {
gen(temp '=' ' (double)' a);

elseif

else error;
return temp; }



Built-in primitive types

* Typical built-in primitive types:

Boolean = {false, true}

Character = {.., ‘A’, .. ‘z, . PL-orimplementation-defined
‘0" ‘9’ set of characters (ASCII, ISO-
! Latin, or Unicode)

Integer = {..,-2,-1, " PL- or implementation-defined
0,+1, +2, ..} set of whole numbers

Float = {...,-1.0, ..., . .
00,+1.0 .} PL- or implementation-defined

set of real numbers

= Note: In some PLs (such as C), booleans and characters are just small
integers.

= Names of types vary from one PL to another: not significant.



Terminology

* Discrete types — countable
— integer, boolean, char

— enumeration type Color is (red, green, blue);

— subrange type Population is range 0 .. 1elO;

* Scalar types - one-dimensional
— discrete
— real



Composite types

 Types whose values are composite, that is composed of other
values (simple or composite):

— records (unions)
— Arrays (Strings)
— algebraic data types
— sets
— pointers
— lists
* Most of them can be understood in terms of a few concepts:
— Cartesian products (records)
— mappings (arrays)
— disjoint unions (algebraic data types, unions, objects)
— recursive types (lists, trees, etc.)
* Different names in different languages.

* Defined applying type constructors to other types (eg struct,
array, record,...)



An brief overview of composite types

 We review type constructors in Ada, Java and
Haskell corresponding to the following
mathematical concepts:
— Cartesian products (records)
— mappings (arrays)
— disjoint unions (algebraic data types, unions)

— recursive types (lists, trees, etc.)



Cartesian products (1)

In a Cartesian product, values of several types are
grouped into tuples.

Let (x, y) be the pair whose first component is x
and whose second component is y.

S x T denotes the Cartesian product of Sand T:
SxT={(xy)|xES,yeT}

Cardinality:
BSxT) = #Sx#r hence the “x” notation



Cartesian products (2)

We can generalise from pairs to tuples. Let S, x S, x
... xS stand for the set of all n-tuples such that the
ith component is chosen from S::
S xS, x...xS5, ={(x, %X ..., X)) | X ;ES; X, ESy; 3 X, ES, }

Basic operations on tuples:

— construction of a tuple from its component values

— selection of an explicitly-designated component of a tuple

* we can select the 1st or 2nd (but not the ith) component

Records (Ada), structures (C), and tuples (Haskell) can
all be understood in terms of Cartesian products.



Example: Ada records (1)

 Type declarations:

type Month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

type Day Number is range 1 .. 31;
type Date is record
m: Month;

d: Day Number;
end record;

* Application code: . record construction

someday: Date := (jan, 1);

put (someday.m+1); put("/"); put(someday.d);
someday.d := 29; someday.m := feb; '

" component selection



Example: Haskell tuples

 Declarations:
data Month = Jan | Feb | Mar | Apr
| May | Jun | Jul | Aug
| Sep | Oct | Nov | Dec
type Date = (Month, Int)

e Set of values:
Date = Month x Integer
= {Jan, Feb, ..., Dec} x{...,-1,0,1, 2, ...}
* Application code:
someday = (jan, 1) //tuple construction
m, d = someday // component selection

// (by pattern matching)
anotherday = (m + 1, d)



Mappings

 Wewritem:S5—T tostatethatmisa
mapping from set S to set T. In other words, m
maps every value in S to some value in T.

* If m maps value x to value y, we write y = m(x).
The value y is called the image of x under m.

 Some of the mappingsin {u, v} — {a, b, c}:
m,={u—a,v—c}
m; = U= €V oG image of u is c,
m3={uec,veb} image of vis b



Arrays (1)

Arrays (found in all imperative and OO PLs)
can be understood as mappings.

If the array’s elements are of type T (base
type) and its index values are of type S, the
array’s typeis S — T.

An array’s length is the number of
components, #S.

Basic operations on arrays:
— construction of an array from its components

— indexing — using a computed index value to select
a component

* we can select the ith component



Arrays (2)

An array of type S — T is a finite mapping.

Here S is nearly always a finite range of consecutive values
{l, I+1, ..., u}. This is called the array’s index range.

" lower bound  upper bound

In C and Java, the index range must be {0, 1, ..., n—1}.
In Pascal and Ada, the index range may be any scalar
(sub)type other than real/float.

We can generalise to n-dimensional arrays. If an array
has index ranges of types S, ..., S,, the array’s type is
S;x.xS5 —T.



When is the index range known?

e A static array is an array variable whose index range is
fixed by the program code.

* A dynamic array is an array variable whose index range
is fixed at the time when the array variable is created.

— In Ada, the definition of an array type must fix the index
type, but need not fix the index range. Only when an array
variable is created must its index range be fixed.

— Arrays as formal parameters of subroutines are often
dynamic (eg. conformant arrays in Pascal)
* A flexible (or fully dynamic) array is an array variable
whose index range is not fixed at all, but may change
whenever a new array value is assigned.



Example: C static arrays

e Array variable declarations:

float v1[] = {2.0, 3.0, 5.0, 7.0}
float v2[10];

~ index range
is {0, ..., 3}

. index range is {0, ..., 9}
= Function:

void print vector (float v[], int n) {
// Print the array v[0], .., vI[n-1]"in the form “[.. ..]

144

int i;
printf ("[$£", v[0]);
for (1 = 1; 1 < n; 1t++) "
printf (" $£", v[i]); A C array
printf ("]1"); doesn’t know

} its own length!

print vector(vl, 4); print vector(vz, 10);



Example: Ada dynamic arrays

* Array type and variable declarations:

type Vector is

array (Integer range <>) of Float;
vl: Vector(l .. 4) := (1.0, 0.5, 5.0, 3.5);
vZ2: Vector(0 .. m) := (0 .. m => 0.0);

e Procedure:

procedure print vector (v: in Vector) 1is
—— Print the array v in the form “[... ... ... 7.

begin
put ('["'"); put(v(v'first));
for 1 in v'first + 1 .. v'last loop
put (" '"); put(v(i));
end loop;
put (']");
end;

print vector(vl); print vector (v2);



Example: Java flexible arrays

e Array variable declarations:

float[] vl = {1.0, 0.5, 5.0, 3.5}  Indexrange
float[] v2 = {0.0, 0.0, 0.0}; 15 {0, ..., 3}
7 index range is {0, ..., 2}
vl = v2;
""""""""" v1l’s index range is now {0, ..., 2}
= Method:

static void printVector (float[] v) {

// Print the array v in the form “[.. .. .. ]
System.out.print ("[" + v[0]);
for (int 1 = 1; 1 < v.length; 1++)

System.out.print (" " + v[i]);
System.out.print ("]"); |Enhanced for:
} for (float f : v)
System.out.print (" " + f)

printVector (vl); printVector (v2);



