Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 22

Array allocation and layout

Intermediate code generation for array declaration and
access

Strings
Variant and discriminated records
Algebraic data types and classes as union types

Array-level operations

Assigment
— Value or Reference Model

Comparison for equality or lexicographic ordering
(Ada)

Arithmetic (pointwise) + specific intrinsic (built-
in) operations in Fortran 90 (and APL)

— Searching, transposition, reshaping...

Slice or section

— Returns a sub-array by selecting sub-ranges of
dimensions

Slicing in Fortran 90

matrix(3:6, 4:7) matrix(6:, 5)

matrix(:4, 2:8:2) matrix(:, (/2, 5, 9/))

Array allocation

» static array, global lifetime — If a static array can exist
throughout the execution of the program, then the compiler can
allocate space for it in static global memory

» static array, local lifetime — If a static array should not exist
throughout the execution of the program, then space can be
allocated in the subroutine’s stack frame at run time.

* dynamic array, local lifetime — If the index range is known at
runtime, the array can still be allocated in the stack, but in a
variable size area

fully dynamic — If the index range can be modified at runtime it
has to be allocated in the heap

Dope vector: run-time data structure that keeps information about
lower (and upper) limits of arrays ranges

— Needed for checking bounds and computing addresses of elements

Allocation of dynamic arrays on stack

sSp —>

-- Ada:
procedure foo (size : integer) is
M : array (1..size, 1..size) of real;

begin

end foo;
—
Local
variables
// C99:
void foo(int size) { _
double M[size] [size];
} fp—>

Bookkeeping

Return address

Arguments
and returns

Variable-size
part of the frame

Fixed-size part
of the frame

Arrays: memory layout

* Contiguous elements
— column major - only in Fortran

— row major
* used by everybody else

* Row pointers
— an option in C, the rule in Java

— allows rows to be put anywhere - nice for big arrays
on machines with segmentation problems

— avoids multiplication

— nice for matrices whose rows are of different lengths
e e.g. an array of strings

— requires extra space for the pointers

Arrays’ memory layout in C

char days[][10] = { char *days[] = {
"Sunday", "Monday", "Tuesday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Wednesday", "Thursday",
"Friday", "Saturday" "Friday", "Saturday"

}; ¥

days[2] [3] == ’s’; /x in Tuesday */ days[2] [3] == ’s’; /* in Tuesday */

Sfu|ln|d|al|y v)
Mlo|n|d|al|y S nfdlaly M|lo|n
Tlu|le|s|d|al|y d y Tlu|le|s|d|a
Wle|ld|n|e|[s]|d y y Wlel|d|[n|e|s|d|a
Tlhlu|r|s|d|a VI | T|hlujr|s|d|a|y
Flr|i|d|a]|y Flrli|d|a]|y S|la
Sla|t|u|r|d|al|y tlu|r|d|la|y

* Address computation varies a lot
* With contiguous allocation part of the computation can be done statically

Compiling array declarations
and addressing

* Translation scheme for associating with an

array declaration a type expression and the
width of its instances

 Computing the address of an array element:
one- and multi-dimensional cases

* Generating three address code for addressing
array elements

Declaration of Multidimensional Arrays:

Syntax Directed Translation Scheme for type/width
Example: int[2] [3]

T— B { t=B.type; w = B.width; }
C { T.type = C.type; T.width = C.width }
B — int { B.type = ‘integer’; B.width =4, }
B — float { B.type = ‘float’; B.width = 8, }
C — £ {C.type = t; C.width = w; }
C— [num] C, { C.type = array(num.value, C,.type);
C.width = num.value * C,.width; }
T type = array(2, array(3, integer))
width = 24
g . t = integer - C type = array(2, array(3, integer))
type = integer ¢ — 4 7 width = 24
 width = 4 X ~_
iI:lt [9] C type = array(3, integer)
.. width = 12
. ‘ . \
' K type = integer
[3] ' idth =4

Annotated parse tree for
int[2] [3]

Addressing Array Elements:
One-Dimensional Arrays

* Assuming that elements are stored in adjacent cells:
A : array [10..20] of integer;

d \

low high Type’s size

/

:= A[i] = base,+ (i-low)*w
* If base, low and w are known at compile time:
=i*w+c wherec = base, - low *w

Example with low = 10; w =4

tl

= ¢ //c = base, - 10 * 4, can be stored in the symbol table
t2 =i * 4
t3 = tl[t2]

t3 10

Addressing Array Elements:

low, =1, low, =1,

array [1..2,1..3] of integer;

n, =high, -low, +1=2, n,=3,
w =4 (element type size)

base,

(as in C)

A[1][1]

A[l][2]

A[1l][3]

A[2][1]

A[2] [2]

A[2] [3]

Row-major

base,

Column-major

A[1][1]

A[2][1]

A[l][2]

A[2][2]

A[1][3]

A[2][3]

Multi-Dimensional Arrays

(asin Fortran)11

Addressing Array Elements:
Multi-Dimensional Arrays

A : array [1..2,1..3] of integer; (Row-major)

. := A[i][3]1 = base,+ ((i-low)) *n,+j-low, *w

=((*ny)+)) *wa+c
where ¢ = base, - ((low, * n,) + low,) * w

Example with low, = 1; low, = 1;n, =3;w =4

tl :=1i * 3

tl = t1 + j

t2 := c // c¢ = base, -(1*3+1)*4
t3 = t1 * 4

td := t2[t3] // base t2, offset t3

t4 12

Addressing Array Elements: Grammar

Grammar: Synthesized attributes:
S—id=E; E.addr name of temp holding value of £
| L=E; L.addr temporary to compute offset
E —-E+E L.array pointer to symbol table entry for the array name
| id L.array.base base address
| L L.array.type type of the array, eg. array(2, array(3,int))
L—id[E] L.array.type.elem type of array elements, eg. array(3,int)
| L[E] L.type type of the subarray generated by L

L.typewidth memory allocated for data of type L.type

* Nonterminal L generates an array name
followed by a sequence of indexes, like

afi1][J][k]

e L can appear both as left- and right-value
13

Addressing array elements:
generating three address statements

S—id=E; { gen(top.get(id.lexeme) '=' E.addr); } // no array
| L=E; { gen(L.array.base '[' L.addr ']' '=' E.addr); } // address = base + offset
E —E, +E, { E.addr = new Temp(), // similarly for *, -, ...
gen(E.addr'=' E,.addr '+' E,.addr); }
| id { E.addr = top.get(id.lexeme); }
| L { E.addr = new Temp(),
gen(E.addr'=' L.array.base '[' L.addr']');} // address = base + offset
L—id[E] { L.array = top.get(id.lexeme);

L.type = L.array.type.elem;

L.addr = new Temp(),

gen(L.addr '=" E.addr '*' L.type.width); } // computes the offset
| L, [E] {L.array=L,.array;

L.type = L,.type.elem;

t = new Temp();

L.addr=new Temp();

gen(t'=' E.addr '*' L.type.width);

gen(L.addr'="L,.addr '+' t); }

Example - generating intermediate code
foraccesstoarray: ¢ + a[i][3]

E.addr = ts
|
+
E.adallr C a |7" 4 t; = 1 * 12
c L.array = a ty =] x4
L.type = integer t3 = t1 + T2
L.addr = t3 ty = a [t3]
L.array = a / \ \ ty = c + t4
L.type = array(3, integer) [E.addr = j]
L.addr = t; |
[E.addr=1 |

a.type

= array(2, array(3, integer)) '
i

Strings

A string is a sequence of 0 or more characters.
Usually ad-hoc syntax is supported
Some PLs (ML, Python) treat strings as primitive.

Haskell treats strings as lists of characters. Strings are
thus equipped with general list operations (length,
head selection, tail selection, concatenation, ...).

Ada treats strings as arrays of characters. Strings are
thus equipped with general array operations (length,
indexing, slicing, concatenation, ...).

Also in C strings are arrays of characters, but handled
differently from other arrays

Java treats strings as objects, of class String.

Disjoint Unions

* In a disjoint union, a value is chosen from one of
several different types.

* Let S + T stand for a set of disjoint-union values, each
of which consists of a tag together with a variant
chosen from either type S or type T. The tag indicates
the type of the variant:

S+T ={leftx | x&S}U{righty |yET}
— left x is a value with tag left and variant x chosen from S
— right x is a value with tag right and variant y chosen from T.

 We write left S + right T (instead of S + T) when we
want to make the tags explicit.

Disjoint Unions

= Basic operations on disjoint-union values in S+ T

e construction of a disjoint-union value from its tag and
variant

e tag test, to see whether the variantisfromSor T
e projection, to recover the variantinSorinT

= Algebraic data types (Haskell), discriminated
records (Ada), unions (C) and objects (Java) can be
understood as disjoint unions.

= We can generalise to multiple variants:
S;+S,+...+S,.

Variant records (unions)

Origin: Fortran | equivalence _
] Fortran | -- equivalence statement
statement: variables should integer i
share the same memory location |zeal =
. logical b
C’s union types equivalence (i, r, b)
Motivations:
— Saving space C - union
— Need of different access to the union é _
. in 1l;
same memory locations for double d:
system programming _Bool b;
— Alternative configurations of a i

data type

Variant records (unions) (2)

* |[n Ada, Pascal, unions are discriminated by a
tag, called discriminant

* Integrated with records in Pascal/Ada, not in C

ADA — discriminated variant

type Form 1is I
(pointy, ciygglarf“fééfangular);
type Figure (f: Form := pointy) is record
X, y: Float;
case f 1is

when pointy => null;

when circular => r: Float;

when rectangular => w, h: Float;
end case;

end record;

Using discriminated records in Ada

e Application code: .~ discriminated-record

box: Figure := L construction
(rectangular, 1.5, 2.0, 3.0, 4.0);

function area (fig: Figure) return Float

is

begin

return 0.0; tag test
when circular =>
return 3.1416 * fig.r**2;
when rectangular => .
return fig.w * flg hj
end case; -

end; TN L.
" projection

(Lack of) Safety in variant records

On

ly Ada has strict rules for assignment: tag and

variant have to be changed together

For nondiscriminated unions (Fortran, C) no
runtime check: responsibility of the programmer

In
INC

Pascal the tag field can be modified
ependently of the variant. Even worse: the tag

fie
Un

d is optional.
ions not included recent OO laguages:

replaced by algebraic data types or classes +
inheritance

Haskell/ML algebraic data types

 Type declaration:

data Number = Exact Int | Inexact Float

* Each Number value consists of a tag (constructor),
together with either an Integer variant (if the tag is Exact)
or a Float variant (if the tag is Inexact).

e Application code:
pl = Inexact 3.1416

rounded :: Number -> Integer
rounded num =

case num of

- Exact 1 -> i

projection .
 Inexact r -> round r

(by pattern
matching)

Active patternsin F

e With algebraic data types, the type definition determines
uniquely the patterns

e Active patterns, can be used to “wrap” a data type,
algebraic or not, providing a different perspective for use of
pattern matching

* Essentially, active patterns define ad-hoc, unnamed union

types
P Roughly equivalent to
type numKind =
Active pattern definition | Even : :
let (|Even|Odd]|) n = | odd IUSIng active pz_atterns
if n % 2 =0 then et teitl:um ntl;
Even : _ match n wi
olse Iet.fgeto_chc_)lce E = | Even -> printfn "%i is even" n
Odd ! r:EA) 2=0then | Odd -> printfn "%i is odd" n;;§
ven
else
Odd

Active Patterns defining
Constructors with Parameters

/* Active pattern for Sequences */
let (|SeqNode|SeqEmpty|) s =
if Seq.isEmpty s then SeqEmpty
else SeqNode ((Seq.head s), Seq.skip 1 s)

/* SeqNode is a constructor with two parameters */
let perfectSquares =seq {forain1..10->a *a}

let rec printSeq = function
| SegEmpty -> printfn "Done."
| SeqNode(hd, tl) ->
printf "%A " hd
printSeq tl;;

> printSeq perfectSquares;;
1491625364964 81 100 Done.

Active Patterns in F# (2)

e Active Patterns

— Can introduce union constructors with parameters

Java objects as unions

* Type declarations:

class Point {
private float x,
... // methods

}

Yr

class Circle extends Point {

private float r;
.. // methods
J

class Rectangle extends

private float w,
// methods

h;

inherits x and y
from Point

Point {

inherits x and y
from Point

Java objects as unions (2)

e Methods:
class Point {

public float area ()
{ return 0.0; }

}

class Circle extends Point {

i;UbliC float area () overrides Point’s
{ return 3.1416 * ¢ % r,; } area() method

}

class Rectangle extends Point {

gublic float area() ..
{ return w * h; } 7 overrides Point’s

J area() method

Java objects as unions (3)

e Application code:

Rectangle box =
new Rectangle (1.5, 2.0, 3.0,4.0);

it can refer to a
Point, Circle, or
Rectangle object

float al = box.area();

Point 1t = ..;

float a2 = it.area(); calls the appropriate

area() method

Assignment of composite values

What happens when a composite value is assigned to a
variable of the same type?

Value model: all components of the composite value are
copied into the corresponding components of the composite
variable.

Reference model: the composite variable is made to contain
a reference to the composite value.

Note: this makes no difference for basic or immutable types.

C and Ada adopt value model

Java adopts value model for primitive values, reference model
for objects.

Functional languages usually adopt the reference model

Example: Ada value model (1)

e Declarations:
type Date 1is

record
y: Year Number;
m: Month;

d: Day Number;
end record;
dateA: Date := (2004, jan, 1);
dateB: Date;

e Effect of copy semantics:

dateA dateB

dateB := dateA;
dateB.y := 2005; <=

3-31

Example: Java reference model (1)

* Declarations:

class Date {

int y, m, d;

public Date (int y, int m, int d)
{ ..}
}
Date dateR new Date (2004, 1, 1);
Date dateS new Date (2004, 12, 25);

* Effect of reference semantics:

dateR dateS

dateS = dateR;
dateR.y = 2005; <

3-32

Ada reference model with pointers (2)

 We can achieve the effect of reference model
in Ada by using explicit pointers:
type Date Pointer 1s access Date;

Date Pointer dateP = new Date;
Date Pointer dateQ = new Date;

aateP.all := datelh;
dateQ := dateP;

Java value model with cloning (2)

 We can achieve the effect of copy semantics in
Java by cloning:

Date dateR = new Date (2004, 4, 1);
dateT = dateR.clone() ;

Pointers

Thus in a language adopting the value model, the reference
model can be simulated with the use of pointers.

A pointer (value) is a reference to a particular variable.
A pointer’s referent is the variable to which it refers.
A null pointer is a special pointer value that has no referent.

A pointer is essentially the address of its referent in the store,
but it also has a type. The type of a pointer allows us to infer
the type of its referent.

Pointers mainly serve two purposes:

— efficient (sometimes intuitive) access to elaborated objects (as in C)

— dynamic creation of linked data structures, in conjunction with a heap
storage manager

Dangling pointers

A dangling pointer is a pointer to a variable that
has been destroyed.

Dangling pointers arise from the following
situations:

— where a pointer to a heap variable still exists after the
heap variable is destroyed by a deallocator

— where a pointer to a local variable still exists at exit
from the block in which the local variable was
declared.

A deallocator immediately destroys a heap variable.
All existing pointers to that heap variable become
dangling pointers.

Thus deallocators are inherently unsafe.

Dangling pointers in languages

Cis highly unsafe:

— After a heap variable is destroyed, pointers to it might still
exist.

— At exit from a block, pointers to its local variables might still
exist (e.g., stored in global variables).

Ada and Pascal are safer:

— After a heap variable is destroyed, pointers to it might still
exist.

— But pointers to local variables may not be stored in global
variables.

Java is very safe:

— It has no deallocator.

— Pointers to local variables cannot be obtained.
Functional languages are even safer:

— they don’t have pointers

Example: C dangling pointers

 Consider this C code:

struct Date {int vy, m, d;}; . allocates a new
struct Date *dateP, *dateQ; - heap variable
dateP = (struct Date*)malloc(sizeof (struct Date));

(
dateP->y = 2004; dateP->m = 1; dateP->d = 1;
dateQ = dateP;

free (dateQ) ; makes dateQ point
to the same heap

printf ("%d", dateP->y); .. variable as dateP

dateP->y = 2005; ~ deallocates that heap

variable (dateP and
o oy dateQ are now
can fail can fail dangling pointers)

Techniques to avoid dangling pointers

* Tombstones —
— A pointer variable refers to a P 3
tombstone that in turn refers .,
to an object - /)
— If the object is destroyed, the pr2[—
tombstone is marked as ot pn.
“expired” N - o

reused)

ptr2 —

39

Locks and Keys

Heap objects are associated R B
with an integer (lock)

initialized when created. e K ey K2
A valid pointer contains a key /

that matches the lock on the —

object in the heap. o —]

Every access checks that they

ptr2 [135942

match

A dangling reference is
unlikely to match.

Pointers and arrays in C

* InC, an array variable is a pointer to its first element

int *a == int al]
int **a == int *al[]
 BUT equivalences don't always hold

— Specifically, a declaration allocates an array if it specifies a size for the
first dimension, otherwise it allocates a pointer

int **a, int *al[] pointer to pointerto int
int *a[n], n-element array of row pointers
int a[n][m], 2-darray
* Pointer arithmetics: operations on pointers are scaled by the
base type size. All these expressions denote the third element

of a:
al[2] (a+2) [0] (a+1) [1] 2[a] O[a+2]

C pointers and recursive types

 Cdeclaration rule: read right as far as you can
(subject to parentheses), then left, then out a level
and repeat

int *a[n], n-element array of pointers to integer

int (*a) [n], polnter to n-element array of
integers

 Compiler has to be able to tell the size of the things
to which you point
— So the following aren't valid:

int al[]][] bad
int (*a) [] bad

Recursive types: Lists

A recursive type is one defined in terms of itself, like
lists and trees

A list is a sequence of 0 or more component values.

The length of a list is its number of components. The
empty list has no components.

A non-empty list consists of a head (its first
component) and a tail (all but its first component).

Typical constructor: cons: A x A-list -> A-list

A list is homogeneous if all its components are of the
same type. Otherwise it is heterogeneous.

List operations

e Typical list operations:
— length
— emptiness test
— head selection
— tail selection
— concatenation
— list comprehension

Example: Ada lists

 Type declarations for integer-lists:

type IntNode;
type IntList is access IntNode;.
type IntNode is record \
head: Integer;
tail: IntlList;
end record;

e mutually
recursive

D An IntList construction:

new IntNode'(2,
new IntNode'(3,
new IntNode'(5,
new IntNode'(7, null)))

Example: Java lists

* C(Class declarations for generic lists:
class List<E> {

public E head;
public List<E> tall; recursive

public List<E> (E el, List<E> t) {
head = h; tail = t;
}
}

o A list construction:
List<Integer> list =

new List<Integer>(2,
new List<Integer>(3,
new List<integer>(5, null))));

Example: Haskell lists

* Haskell has built-in list types:

[1, 2, 3] integer list containing 1, 2, 3

[Int] : type of lists of integers. Similarly [Char], [[Int]],
[(Int,Char)]

2:[4,5] ==[2, 4, 5] cons is “:”
head [1, 2,3] =1 tail [1, 2, 3] =12, 3]
Strings are lists of characters: "foo" ==['f','0','0'] : [Char]

range [1..10] ==1[1,2,3,4,5,6,7,8,9,10]

range with step [3,6..20] ==[3,6,9,12,15,18]

range with step [7,6..1] == [7,6,5,4,3,2,1]

infinite list [1..] ==[1, 2, 3, ...]

List comprehension [x*y | x<-[2,5,10],y <-[8,10,11]]
==[16,20,22,40,50,55,80,100,110]

