Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 25

* Functional programming languages
* Introduction to Hakell

Historical Origins

* The imperative and functional models grew out of work
undertaken Alan Turing, Alonzo Church, Stephen
Kleene, Emil Post, etc. ~1930s

— different formalizations of the notion of an algorithm, or
effective procedure, based on automata, symbolic

manipulation, recursive function definitions, and
combinatorics

* These results led Church to conjecture that any

intuitively appealing model of computing would be
equally powerful as well

— this conjecture is known as Church’s thesis

Historical Origins

* Turing’s model of computing was the Turing
machine a sort of pushdown automaton using
an unbounded storage “tape”

— the Turing machine computes in an imperative
way, by changing the values in cells of its tape like
variables just as a high level imperative program
computes by changing the values of variables

Historical Origins

* Church’s model of computing is called the lambda
calculus

— based on the notion of parameterized expressions (with
each parameter introduced by an occurrence of the letter A,
hence the notation’s name)

— allows one to define mathematical functions in a
constructive/effective way

— Lambda calculus was the inspiration for functional
programming

— computation proceeds by substituting parameters into
expressions, just as one computes in a high level functional
program by passing arguments to functions

Functional Programming Concepts

* Functional languages such as Lisp, Scheme,
FP, ML, Miranda, and Haskell are an
attempt to realize Church’s lambda calculus

in practical form as a programming language
* The key idea: do everything by composing
functions

— no mutable state

— no side effects

Functional Programming Concepts

* Necessary features, many of which are missing in
some imperative languages

— 1st class and high-order functions
— recursion
* Takes the place of iteration
— powerful list facilities
* Recursive function exploit recursive definition of lists
— serious polymorphism
* Relevance of Container/Collections

— fully general aggregates
» Data structures cannot be modified, have to be re-created

— structured function returns

— garbage collection
* Unlimited extent for locally allocated data structures

Recursion vs. lteration

* Recursion can be used in place of iteration

x :=0; 1 :=1; j := 100;
while i < j do
X :(=x + 1i*j; i1 =1 + 1;
j =3 -1
end while
return x

becomes
£(0,1,100), where
f(x,i,j) == if i < j then
f (x+i*j, i+l, j-1) else x

* Thinking about recursion as a mechanical
replacement for iteration is wrong

* One should learn to think in recursive style

Other Related Concepts

* Lisp also has some features that are not
necessary present in other functional languages:
— programs are data
— self-definition
— read-evaluate-print interactive loop

e Variants of LISP
— (Original) Lisp: purely functional, dynamically scoped
as early variants

— Common Lisp: current standard, statically scoped,
very complex

— Scheme: statically scoped, very elegant, used for
teaching

Other functional languages: the ML family

Robin Milner (Turing award in 1991, CCS, Pi-calculus, ...)
Statically typed, general-purpose programming language
— “Meta-Language” of the LCF theorem proving system

Type safe, with type inference and formal semantics
Compiled language, but intended for interactive use

Combination of Lisp and Algol-like features
— Expression-oriented

— Higher-order functions

— Garbage collection

— Abstract data types

— Module system

— Exceptions

Other functional languages: Haskell

Designed by committee in 80’s and 90’s to unify research efforts in lazy
languages

— Evolution of Miranda

— Haskell 1.0 in 1990, Haskell ‘98, Haskell” ongoing

* Several features in common with ML, but some differ:

 Types and type checking

— Type inference

— Parametric polymorphism

— Ad hoc polymorphism (aka overloading)
e Control

— Lazy vs. eager evaluation

— Tail recursion and continuations
e Purely functional

— Precise management of effects

— Rise of multi-core, parallel programming likely to make minimizing state much
more important

10

Applicative and Normal Order evaluation

* Applicative Order evaluation

— Arguments are evaluated before applying the

function — aka Eager evaluation

Normal Order evaluation
— Function evaluated first, arguments if and when

needed

— Sort of parameter passing by name
— Some evaluation can be repeated

Church-Rosser

— |If evaluation terminates, the result (normal

form) is unique

— If some evaluation terminates, normal order

evaluation terminates

Define Q = (Ax.x x)

Then

QO = (Ax.x x) (AX.x x)
=2 x X [(Ax.x x)/X]

=2 (Ax.x X) (Ax.x xX) = QQ
- ... hon-terminating

(Ax. 0) (QQ)
- { Applicative order}
... hon-terminating

(Ax. 0) (QQ)
- { Normal order}
0

B-conversion
(Ax.t) t' =t [t'/X]

Applicative order
(Ax.(+ x x)) (+ 3 2)
-2 (Ax.(+ xx)) 5

> (+55)

- 10

Normal order
(Ax.(+ x X)) (+ 3 2)
2>+ (+32)(+32))
2> (+5 (+32))

- (+505)

- 10

The Glasgow Haskell Compiler [GHC]
www.haskell.org/platform

Current release: 2014.2.0.0

New GHC: 7.8.3
Major update:OpenGL and GLUT

The Haskell Platform Bl

roblems?
Do ntation
Library Doc

Download
N, r 2

Wlndows Mac Linux

Robust Cutting Edge
The Haskell Platform contains only The Haskell Platform ships with

. stable and widely-used tools and advanced features such as multicore
libraries, drawn from a pool of parallelism, thread sparks and

s thousands of Haskell packages, transactional memory, along with many
‘ensuring you get the best from what is other technologies, to help you get work
ffer. done.
. . &

Basic Overview of Haskell

* Interactive Interpreter (ghci): read-eval-print
— ghci infers type before compiling or executing
— Type system does not allow casts or similar things!

 Examples

Prelude> (5+43)-2

6

it :: Integer

Prelude> if 5>3 then “Harry” else “Hermione”
“Harry”

it :: [Char] -— String is equivalent to [Char]
Prelude> 5==4

False

it :: Bool

Overview by Type

Booleans

True, False :: BoolS§

if .. then .. else .. --types must match
ntegers

0, 1, 2, .. :: Integer

ST - :: Integer -> Integer -> Integer
Strings

"Ron Weasley"

Floats

1.0, 2, 3.14159, .

--type classes to disambiguate

14

Simple Compound Types

* Tuples
(4, 5, "PLP") :: (Integer, Integer, String)

* Lists
[1 :: [a] -- NIL, polymorphic type
1 : [2, 3, 4] :: [Integer] —--— infix cons notation
[1,2]++[3,4] :: [Integer] —-— concatenation

* Records
data Person = Person {firstName :: String,

lastName :: String}
hg = Person { firstName = “Hermione”,
lastName = “Granger”}

More on list constructors

ghci> [1..20] -- ranges
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
ghci> ['a'..'z']

"abcdefghijklmnopqgrstuvwxyz"

ghci> [3,6..20] -- ranges with step
[3,6,9,12,15,18]

ghci> [7,6..1]

[7,6,5,4,3,2,1]

ghci> take 10 [1..] -- (prefix of) infinite 1lists
[1,2,3,4,5,6,7,8,9,10]

ghci> take 10 (cycle [1,2])

(1,2,1,2,1,2,1,2,1,2]

ghci> take 10 (repeat 5)

[5,5,5,5,5,5,5,5,5,5]

Patterns and Declarations

e Patterns can be used in place of variables
<pat>::=<var> | <tuple> | <cons> | <record> ...

 Value declarations
— General form: <pat> = <exp>

— Examples
myTuple = ("Foo", "Bar")
(x,y) = myTuple -- x = "Foo”, y = "Bar"
myList = [1, 2, 3, 4]
z:zs = myList -- z =1, zs = [2,3,4]

— Local declarations

let (x,y) = (2, "FooBar") in x * 4

Functions and Pattern Matching

* Anonymous function

\x -> x+1 --like Lisp lambda, function (..) in JS

* Function declaration form
<name> <pat;> = <exp,>
<name> <pat,> = <exp,> ..

<name> <pat. > = <exp,> ..
e Examples

f (x,y) = x+y -—argument must match pattern (x,y)

length [] = 0
length (x:s) = 1 + length(s)

Higher Order functions:
Map Function on Lists

* Apply function to every element of list

map £ [] = []
map £ (x:xs) = £f x : map f xs

map (\x -> x+1) [1,2,3]) [2,3,4]

More Functions on Lists

* Apply function to every element of list

map £ [] = []
map f (x:xs) = £ x : map f xs

map (\x -> x+1) [1,2,3] [2,3,4]

e Reverse a list

reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

reverse Xs =
let rev ([], accum) = accum
rev (y:ys, accum) = rev (ys, y:accum)
in rev (xs, [])

List Comprehensions

* Notation for constructing new lists from old:
myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]
-- [2,4,6,8,10,12,14]

twiceEvenData = [2 * x| x <- myData, x mod 2 == 0]
-- [4,8,12]

* Similar to “set comprehension”
{x|xeEe0dd A x> 6}

More on List Comprehensions

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20] —- more predicates

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110] —- more lists

length' xs = sum [1 | <- xs] -- anonymous (don’t care) var

—- strings are lists..
removeNonUppercase st = [¢ | ¢ <- st, ¢ 'elem ['A'..'Z']]

Datatype Declarations

 Examples

data Color = Red | Yellow | Blue
elements are Red, Yellow, Blue
data Atom = Atom String | Number Int

elements are Atom “A”, Atom “B”, ..., Number O, ...
data List Nil | Cons (Atom, List)

elements are Nil, Cons(Atom “A”, Nil), ...
Cons(Number 2, Cons(Atom(“Bill”), Nil)), ...

e General form

data <name> = <clause> | ... | <clause>
<clause> ::= <constructor> | <contructor> <type>

— Type name and constructors must be Capitalized.

Datatypes and Pattern Matching

* Recursively defined data structure
data Tree = Leaf Int | Node (Int, Tree, Tree)

Node (4, Node (3, Leaf 1, Leaf 2), °
Node (5, Leaf 6, Leaf 7))

e Constructors can be used 9 °
in Pattern Matching e e @ @

 Recursive function

sum (Leaf n) = n
sum (Node(n,tl,t2)) = n + sum(tl) + sum(t2)

Case Expression

B Datatype

data Exp = Var Int | Const Int | Plus (Exp, Exp)

B Case expression

case e of
var n ->
Const n -> ..
Plus (el,e2) -> ..

Indentation matters in case statements in Haskell.

Example: Evaluating
expressions by Cases

data Exp = Var Int | Const Int | Plus (Exp, Exp)

ev (Var n) = Var n
ev (Const n) = Const n
ev (Plus (el,e2)) =

case ev el of

Var n -> Plus(Var n, ev e2)
Const n -> case ev e2 of

Var m -> Plus(Const n, Var m)

Const m -> Const (n+m)

Plus(e3,e4) -> Plus (Const n,

Plus (e3, e4d))

Plus (e3, e4) -> Plus(Plus (e3, ed), ev e2)

Function Types in Haskell
In Haskell, £ :: A -> B means for every x €A,

f(x) = some elementy =f(x) €B
run forever

In words, “if f(x) terminates, then f(x) &€ B.”

In ML, functions with type A — B can throw an exception or
have other effects, but not in Haskell

ghci> :t not -- type of some predefined functions
not :: Bool -> Bool

ghci> :t (+4)

(+) :: Num a => a -> a -> a

ghci> :t not

not :: Bool -> Bool

ghci> :t (:)

(:) :: a -> [a] -> [a]

ghci> :t elem

elem :: Eq a => a -> [a] -> Bool

Higher-Order Functions

* Functions that take other functions as arguments or return
as a result are higher-order functions.

e Common Examples:
— Map: applies argument function to each element in a collection.

— Reduce: takes a collection, an initial value, and a function, and
combines the elements in the collection according to the
function.

ghci> :t map

map :: (a -> b) -> [a] -> [Db]
ghci> let list = [1,2,3]
ghci> map (\x -> x+1) list

[2,3,4]
ghci> :t foldl
foldl :: (b -> a ->b) ->b -> [a] -> b

ghci> foldl (\accum i -> i + accum) 0 list
6

Laziness
* Haskell is a lazy language

* Functions and data constructors don’t
evaluate their arguments until they need
them

cond :: Bool -> a -> a -> a
cond True ¢t e t
cond False t e e

* Programmers can write control-flow operators
that have to be built-in in eager languages

Short- (1) :: Bool -> Bool -> Bool
circuiting True || x True

or” False || x = x .

Searching a substring: Java code

static int indexOf (char[] source, int sourceOffset, int sourceCount,
char[] target, int targetOffset, int targetCount,
int fromIndex) {

char first = target[targetOffset];
int max = sourceOffset + (sourceCount - targetCount);

for (int i = sourceOffset + fromIndex; i <= max; i++) {
/* Look for first character. */
if (source[i] != first) {
while (++i <= max && source[i] '= first);

}

/* Found first character, now look at the rest of v2 */
if (i <= max) {
int j =1 + 1;
int end = j + targetCount - 1;
for (int k = targetOffset + 1; j < end && source[j] ==
target[k]; j++, k++);

if (j == end) {
/* Found whole string. */
return i - sourceOffset;

o} }

return -1;

Searching a Substring:
Exploiting Laziness

isPrefixOf :: Eq a => [a] -> [a] -> Bool
-- returns True if first list is prefix of the second
isPrefixOf [] x = True
isPrefixOf (y:ys) [] = False
isPrefixOf (y:ys) (x:xs) =
if (x == y) then isPrefixOf ys xs else False

suffixes:: String -> [String]
-—- All suffixes of s

suffixes|] = [[]1]
suffixes(x:xs) = (x:xs) : suffixes xs
or :: [Bool] -> Bool

-- (or bs) returns True if any of the bs is True
or [] = False
or (b:bs)

I
o
o)
H
o
(7

isSubString :: String -> String -> Bool
X isSubString s = or [x isPrefixOf t
| t <- suffixes s]

A Lazy Paradigm

* Generate all solutions (an enormous tree)
 Walk the tree to find the solution you want

nextMove :: Board -> Move
nextMove b = selectMove allMoves
where

allMoves = allMovesFrom b

A gigantic (perhaps infinite)

tree of possible moves

32

Core Haskell

* Basic Types
— Unit
— Booleans
— Integers
— Strings
— Reals
— Tuples
— Lists

— Records

Patterns
Declarations
Functions
Polymorphism
Type declarations
Type Classes
Monads
Exceptions

