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Historical	Origins	

•  The	impera;ve	and	func;onal	models	grew	out	of	work	
undertaken	Alan	Turing,	Alonzo	Church,	Stephen	
Kleene,	Emil	Post,	etc.	~1930s	
–  different	formaliza;ons	of	the	no;on	of	an	algorithm,	or	
effec$ve	procedure,	based	on	automata,	symbolic	
manipula;on,	recursive	func;on	defini;ons,	and	
combinatorics	

•  These	results	led	Church	to	conjecture	that	any	
intui;vely	appealing	model	of	compu;ng	would	be	
equally	powerful	as	well	
–  this	conjecture	is	known	as	Church’s	thesis	
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Historical	Origins	

•  Turing’s	model	of	compu;ng	was	the	Turing	
machine	a	sort	of	pushdown	automaton	using	
an	unbounded	storage	“tape”	
–  the	Turing	machine	computes	in	an	impera;ve	
way,	by	changing	the	values	in	cells	of	its	tape	like	
variables	just	as	a	high	level	impera;ve	program	
computes	by	changing	the	values	of	variables	
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Historical	Origins	
•  Church’s	model	of	compu;ng	is	called	the	lambda	
calculus	
–  based	on	the	no;on	of	parameterized	expressions	(with	
each	parameter	introduced	by	an	occurrence	of	the	leVer	λ,	
hence	the	nota;on’s	name)	

–  allows	one	to	define	mathema;cal	func;ons	in	a	
construc;ve/effec;ve	way		

–  Lambda	calculus	was	the	inspira;on	for	func;onal	
programming		

–  computa;on	proceeds	by	subs;tu;ng	parameters	into	
expressions,	just	as	one	computes	in	a	high	level	func;onal	
program	by	passing	arguments	to	func;ons	
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Func;onal	Programming	Concepts	

•  Func;onal	languages	such	as	Lisp,	Scheme,	
FP,	ML,	Miranda,	and	Haskell	are	an	
aVempt	to	realize	Church’s	lambda	calculus	
in	prac;cal	form	as	a	programming	language	

•  The	key	idea:	do	everything	by	composing	
func;ons	
– no	mutable	state	
– no	side	effects	
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Func;onal	Programming	Concepts	
•  Necessary	features,	many	of	which	are	missing	in	
some	impera;ve	languages	
–  1st	class	and	high-order	func;ons	
–  recursion	

•  Takes	the	place	of	itera;on	
–  powerful	list	facili;es	

•  Recursive	func;on	exploit	recursive	defini;on	of	lists		
–  serious	polymorphism	

•  Relevance	of	Container/Collec;ons	
–  fully	general	aggregates	

•  Data	structures	cannot	be	modified,	have	to	be	re-created	
–  structured	func;on	returns	
–  garbage	collec;on	

•  Unlimited	extent	for	locally	allocated	data	structures	
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Recursion	vs.	Itera;on	
•  Recursion	can	be	used	in	place	of	itera;on	

x := 0; i := 1; j := 100; 
while i < j do 

 x := x + i*j; i := i + 1;  
  j := j - 1 

end while 
return x	

f(0,1,100), where 
f(x,i,j) == if i < j then  
f (x+i*j, i+1, j-1) else x 

becomes 

•  Thinking	about	recursion	as	a	mechanical	
replacement	for	itera;on	is	wrong	

•  One	should	learn	to	think	in	recursive	style 



8	

Other	Related	Concepts		
•  Lisp	also	has	some	features	that	are	not	
necessary	present	in	other	func;onal	languages:	
–  programs	are	data	
–  self-defini;on	
–  read-evaluate-print	interac;ve	loop	

•  Variants	of	LISP	
–  	(Original)	Lisp:	purely	func;onal,	dynamically	scoped	
as	early	variants		

–  Common	Lisp:	current	standard,	sta;cally	scoped,	
very	complex	

–  Scheme:	sta;cally	scoped,	very	elegant,	used	for	
teaching	



Other	func;onal	languages:	the	ML	family	

•  Robin	Milner	(Turing	award	in	1991,	CCS,	Pi-calculus,	…)	
•  Sta;cally	typed,	general-purpose	programming	language	

–  “Meta-Language”	of	the	LCF	theorem	proving	system	
•  Type	safe,	with	type	inference	and	formal	seman;cs	
•  Compiled	language,	but	intended	for	interac;ve	use		
•  Combina;on	of	Lisp	and	Algol-like	features	

–  Expression-oriented	
–  Higher-order	func;ons	
–  Garbage	collec;on	
–  Abstract	data	types	
–  Module	system	
–  Excep;ons	
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Other	func;onal	languages:	Haskell	
•  Designed	by	commiVee	in	80’s	and	90’s	to	unify	research	efforts	in	lazy	

languages	
–  Evolu;on	of	Miranda	
–  Haskell	1.0	in	1990,	Haskell	‘98,	Haskell’	ongoing		

•  Several	features	in	common	with	ML,	but	some	differ:	
•  Types	and	type	checking	

–  Type	inference	
–  Parametric	polymorphism	
–  Ad	hoc	polymorphism	(aka	overloading)	

•  Control	
–  Lazy	vs.	eager	evaluaKon	
–  Tail	recursion	and	con;nua;ons	

•  Purely	func;onal	
–  Precise	management	of	effects	
–  Rise	of	mul;-core,	parallel	programming	likely	to	make	minimizing	state	much	

more	important	
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Applica;ve	and	Normal	Order	evalua;on	
•  Applica;ve	Order	evalua;on	

–  Arguments	are	evaluated	before	applying	the	
func;on	–	aka	Eager	evalua$on	

•  Normal	Order	evalua;on	
–  Func;on	evaluated	first,	arguments	if	and	when	
needed	

–  Sort	of	parameter	passing	by	name	
–  Some	evalua;on	can	be	repeated	

•  Church-Rosser	
–  If	evalua;on	terminates,	the	result	(normal	
form)	is	unique	

–  If	some	evalua;on	terminates,	normal	order	
evalua;on	terminates	
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ApplicaKve	order	
(λx.(+	x	x))	(+	3	2)		
à (λx.(+	x	x))	5	
à 	(+	5	5)	
à 10	

Normal	order	
(λx.(+	x	x))	(+	3	2)		
à (+		(+	3	2)	(+	3	2))	
à (+	5		(+	3	2))	
à (+	5	5)	
à 10	

Define		Ω	=	(λx.x	x)	
Then	
ΩΩ		=	(λx.x	x)	(λx.x	x)		
à x	x	[(λx.x	x)/x]	
à (λx.x	x)	(λx.x	x)	=	ΩΩ	
à	…		non-termina$ng	
(λx.	0)	(ΩΩ)	
à  {	Applica$ve	order}	
…	non-termina$ng	
(λx.	0)	(ΩΩ)	
à  {	Normal	order}	
0	

β-conversion	
(λx.t)	t’	=	t	[t’/x]	



The	Glasgow	Haskell	Compiler	[GHC]	
www.haskell.org/plasorm	
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Basic	Overview	of	Haskell	

•  Interac;ve	Interpreter	(ghci):	read-eval-print	
–  ghci	infers	type	before	compiling	or	execu;ng	
–  Type	system	does	not	allow	casts	or	similar	things!	

•  Examples	

Prelude> (5+3)-2 
6 
it :: Integer 
Prelude> if 5>3 then “Harry” else “Hermione” 
“Harry” 
it :: [Char]      -- String is equivalent to [Char] 
Prelude> 5==4 
False 
it :: Bool 
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Overview	by	Type	
•  Booleans	

•  Integers	

•  Strings	
		

•  Floats	

True, False :: Bool§ 
if …  then … else …  --types must match  

0, 1, 2, … :: Integer 
+, * , …   :: Integer  -> Integer -> Integer 

"Ron Weasley"  

1.0, 2, 3.14159, …  --type classes to disambiguate 
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Simple	Compound	Types	

•  Tuples	

•  Lists	

•  Records	

(4, 5, "PLP") :: (Integer, Integer, String) 

[] :: [a]                  -- NIL, polymorphic type 
1 : [2, 3, 4] :: [Integer]   -- infix cons notation 
[1,2]++[3,4] :: [Integer]   -- concatenation 

data Person = Person {firstName :: String,       
                      lastName  :: String}  
hg = Person { firstName = “Hermione”,  
              lastName  = “Granger”} 
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More	on	list	constructors	
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ghci> [1..20]    -- ranges 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]   
ghci> ['a'..'z']   
"abcdefghijklmnopqrstuvwxyz"   
ghci> [3,6..20]   -- ranges with step 
[3,6,9,12,15,18] 
ghci> [7,6..1] 
[7,6,5,4,3,2,1] 

ghci> take 10 [1..]    -- (prefix of) infinite lists 
[1,2,3,4,5,6,7,8,9,10]   
ghci> take 10 (cycle [1,2]) 
[1,2,1,2,1,2,1,2,1,2]   
ghci> take 10 (repeat 5) 
[5,5,5,5,5,5,5,5,5,5]  



PaVerns	and	Declara;ons	

•  PaVerns	can	be	used	in	place	of	variables	
				<pat>	::=	<var>	|	<tuple>	|	<cons>	|	<record>	…	

•  Value	declara;ons	
– General	form:							<pat>	=	<exp>	
–  Examples	

		
		
		
		

–  Local	declara;ons	
		
		

myTuple = ("Foo", "Bar") 
(x,y)  = myTuple  --  x = "Foo”, y = "Bar" 
myList = [1, 2, 3, 4] 
z:zs  = myList  --  z = 1, zs = [2,3,4] 

let (x,y) = (2, "FooBar") in x * 4  
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Func;ons	and	PaVern	Matching	

•  Anonymous	func;on	

•  Func;on	declara;on	form	
		

		

•  Examples	
		

\x -> x+1     --like Lisp lambda, function (…) in JS 

<name> <pat1>  = <exp1>

<name> <pat2>  = <exp2> …

<name> <patn>  = <expn> …


f (x,y) = x+y    --argument must match pattern (x,y) 
 
length [] = 0    
length (x:s) = 1 + length(s) 
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Higher	Order	func;ons:	
Map	Func;on	on	Lists	

•  Apply	func;on	to	every	element	of	list	
		

	
	

		

map f [] = [] 
map f (x:xs) = f x : map f xs 

map (\x -> x+1) [1,2,3]               [2,3,4] 
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More	Func;ons	on	Lists		

•  Apply	func;on	to	every	element	of	list	
		
		
	

•  Reverse	a	list	
		

map f [] = [] 
map f (x:xs) = f x : map f xs 

reverse [] = [] 
reverse (x:xs) = (reverse xs) ++ [x] 
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map (\x -> x+1) [1,2,3]               [2,3,4] 

reverse xs = 
    let rev ( [], accum ) = accum 
         rev ( y:ys, accum ) = rev ( ys, y:accum ) 
    in rev ( xs, [] ) 



List	Comprehensions	

•  Notation for constructing new lists from old:


•  Similar to “set comprehension”

     { x | x ∈ Odd  ∧  x > 6 }


myData = [1,2,3,4,5,6,7] 
 
twiceData = [2 * x | x <- myData] 
-- [2,4,6,8,10,12,14] 
  
twiceEvenData = [2 * x| x <- myData, x `mod` 2 == 0] 
-- [4,8,12] 
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More	on	List	Comprehensions	

ghci> [ x | x <- [10..20], x /= 13, x /= 15, x /= 19]   
[10,11,12,14,16,17,18,20] –- more predicates 
 
ghci> [ x*y | x <- [2,5,10], y <- [8,10,11]]   
[16,20,22,40,50,55,80,100,110]    –- more lists 
 
length' xs = sum [1 | _ <- xs] –- anonymous (don’t care) var 
 
–- strings are lists… 
removeNonUppercase st = [ c | c <- st, c `elem` ['A'..'Z']] 
 

22	



Datatype	Declara;ons		

•  Examples	
–  		

elements	are	Red,	Yellow,	Blue	

elements	are	Atom	“A”,	Atom	“B”,	…,	Number	0,		...	

elements	are	Nil,	Cons(Atom	“A”,	Nil),	…	
						Cons(Number	2,	Cons(Atom(“Bill”),	Nil)),	...	

•  General	form	
		

–  Type	name	and	constructors	must	be	Capitalized.	

data Color = Red | Yellow | Blue 

data Atom = Atom String | Number Int 

data List    = Nil  |   Cons (Atom, List) 

data <name> = <clause> | … | <clause>

<clause> ::= <constructor> | <contructor> <type>
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Datatypes	and	PaVern	Matching	

•  Recursively	defined	data	structure	
		
	
		

•  Constructors	can	be	used		
in	PaVern	Matching																		

•  Recursive	func;on	

4	

5	

7	6	

3	

2	1	

data Tree = Leaf Int | Node (Int, Tree, Tree) 

Node(4, Node(3, Leaf 1, Leaf 2), 
        Node(5, Leaf 6, Leaf 7))          

sum (Leaf n) = n 
sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2) 
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Case	Expression	

¡ Datatype	
		

§  Case	expression	
		
	
		
	
Indenta;on	maVers	in	case	statements	in	Haskell.		

data Exp = Var Int | Const Int | Plus (Exp, Exp) 

case e of 
     Var n ->  …    
     Const n -> … 
     Plus(e1,e2) -> … 
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Example:	Evalua;ng		
expressions	by	Cases	

data Exp = Var Int | Const Int | Plus (Exp, Exp) 
 
ev ( Var n) = Var n 
ev ( Const n ) = Const n 
ev ( Plus ( e1,e2 ) ) =  

  case ev e1 of 
     Var n -> Plus( Var n, ev e2)       
     Const n -> case ev e2 of   
                  Var m -> Plus( Const n, Var m)       
                  Const m -> Const (n+m)                          
                  Plus(e3,e4) -> Plus ( Const n,  
                                        Plus ( e3, e4 ))    
     Plus(e3, e4) -> Plus( Plus ( e3, e4 ), ev e2) 
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Func;on	Types	in	Haskell	
In	Haskell,			f :: A -> B				means	for	every	x	∈	A,	

	
					f(x)		=	

In	words,	“if	f(x)	terminates,	then	f(x)	∈	B.”	

In	ML,	func;ons	with	type	A	→	B	can	throw	an	excep;on	or	
have	other	effects,	but	not	in	Haskell	

some	element	y	=	f(x)	∈	B	
run	forever	
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ghci> :t not    -- type of some predefined functions 
not :: Bool -> Bool 
ghci> :t (+) 
(+) :: Num a => a -> a -> a 
ghci> :t not 
not :: Bool -> Bool 
ghci> :t (:) 
(:) :: a -> [a] -> [a] 
ghci> :t elem 
elem :: Eq a => a -> [a] -> Bool 



Higher-Order	Func;ons	
•  Func;ons	that	take	other	func;ons	as	arguments	or	return	

as	a	result	are	higher-order	func;ons.	
•  Common	Examples:	

–  Map:	applies	argument	func;on	to	each	element	in	a	collec;on.	
–  Reduce:	takes	a	collec;on,	an	ini;al	value,	and	a	func;on,	and	
combines	the	elements	in	the	collec;on	according	to	the	
func;on.	

ghci> :t map 
map :: (a -> b) -> [a] -> [b] 
ghci> let list = [1,2,3] 
ghci> map (\x -> x+1) list  
[2,3,4] 
ghci> :t foldl 
foldl :: (b -> a -> b) -> b -> [a] -> b 
ghci> foldl (\accum i -> i + accum) 0 list 
6  28	



Laziness	
•  Haskell	is	a	lazy	language	
•  Func;ons	and	data	constructors	don’t	
evaluate	their	arguments	un;l	they	need	
them	

•  Programmers	can	write	control-flow	operators	
that	have	to	be	built-in	in	eager	languages	

cond :: Bool -> a -> a -> a 
cond True  t e = t 
cond False t e = e 

(||) :: Bool -> Bool -> Bool 
True  || x = True 
False || x = x 

Short-
circuiting  

“or”
 29	
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 static int indexOf(char[] source, int sourceOffset, int sourceCount, 
                       char[] target, int targetOffset, int targetCount, 
                       int fromIndex) { 
        ... 

  
        char first  = target[targetOffset]; 
        int max = sourceOffset + (sourceCount - targetCount); 

  
        for (int i = sourceOffset + fromIndex; i <= max; i++) { 
            /* Look for first character. */ 
            if (source[i] != first) { 
                while (++i <= max && source[i] != first); 
            } 
 
            /* Found first character, now look at the rest of v2 */ 
            if (i <= max) { 
                int j = i + 1; 
                int end = j + targetCount - 1; 
                for (int k = targetOffset + 1; j < end && source[j] == 
                         target[k]; j++, k++); 
 
                if (j == end) { 
                    /* Found whole string. */ 
                    return i - sourceOffset; 
        }   }   } 
        return -1; 
    } 

Searching	a	substring:	Java	code	



Searching	a	Substring:		
Exploi;ng	Laziness	

isSubString :: String -> String -> Bool 
x `isSubString` s = or [ x `isPrefixOf` t 
                       | t <- suffixes s ]  

suffixes:: String -> [String] 
-- All suffixes of s 
suffixes[]     = [[]] 
suffixes(x:xs) = (x:xs) : suffixes xs 

or :: [Bool] -> Bool 
-- (or bs) returns True if any of the bs is True 
or []     = False 
or (b:bs) = b || or bs 
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isPrefixOf :: Eq a => [a] -> [a] -> Bool 
-- returns True if first list is prefix of the second 
isPrefixOf [] x = True 
isPrefixOf (y:ys) [] = False 
isPrefixOf (y:ys)(x:xs) =  
 if (x == y) then isPrefixOf ys xs else False 



A	Lazy	Paradigm	

•  Generate	all	solu;ons	(an	enormous	tree)	
•  Walk	the	tree	to	find	the	solu;on	you	want	

nextMove :: Board -> Move 
nextMove b = selectMove allMoves 
 where 
   allMoves = allMovesFrom b 

A gigantic (perhaps infinite) 
tree of possible moves 
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Core	Haskell	

•  Basic	Types	
–  Unit	
–  Booleans	
–  Integers		
–  Strings	
–  Reals	
–  Tuples	
–  Lists	
–  Records	

•  PaVerns	
•  Declara;ons	
•  Func;ons	
•  Polymorphism	
•  Type	declara;ons	
•  Type	Classes	
•  Monads	
•  Excep;ons	
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