Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 28

e Control Flow
— Recursion
— Continuations

Recursion

Recursion: subroutines that call themselves directly or indirectly
(mutual recursion)

Typically used to solve a problem that is defined in terms of simpler
versions, for example:

— To compute the length of a list, remove the first element, calculate the
length of the remaining list in n, and return n+1

— Termination condition: if the list is empty, return O

lteration and recursion are equally powerful in theoretical sense

— lteration can be expressed by recursion and vice versa
Recursion is more elegant to use to solve a problem that is naturally
recursively defined, such as a tree traversal algorithm

Recursion can be less efficient, but most compilers for functional
languages are often able to replace it with iterations

Tail-Recursive Functions

Tail-recursive functions are functions in which no operations follow
the recursive call(s) in the function, thus the function returns
immediately after the recursive call:

tail-recursive not tail-recursive
int trfun|() int rfun|()
{ . { ..
return trfun(); return l+rfun();

} }
A tail-recursive call could reuse the subroutine's frame on the run-
time stack, since the current subroutine state is no longer needed
— Simply eliminating the push (and pop) of the next frame will do
In addition, we can do more for tail-recursion optimization: the

compiler replaces tail-recursive calls by jumps to the beginning of
the function

Tail-Recursion Optimization

« Consider the GCD function:
int gcd(int a, int b)
{ if (a==b) return a;
else if (a>b) return gcd(a-b, b);
else return gcd(a, b-a);
}
« a good compiler will optimize the function into:
int gcd(int a, int b)
{ start:
if (a==b) return a;
else if (a>b) { a = a-b; goto start; }
else { b = b-a; goto start; }

}
« which is just as efficient as the iterative version:

int gcd(int a, int b)
{ while (a'=b)
if (a>b) a =
else b = b-a;
return a;

}

a-b;

Converting Recursive Functions to Tail-
Recursive Functions

* Remove the work after the recursive call and include it in some other

form as a computation that is passed to the recursive callh')
« For example, the non-tail-recursive function computing i f(n)

n=low

summation = \(f, low, high) ->
if (low == high) then (f low)
else (f low) + summation (£, low + 1, high)

can be rewritten into a tail-recursive function:

summationTR = \(f, low, high, subtotal) ->
if (low == high)
then subtotal + (£ low)
else summationTR (£, low + 1, high, subtotal + (f low))

Converting recursion into
tail recursion: Example

Here is the same example in C:
typedef int (*int func) (int);

int summation(int func £, int low, int high)
{ if (low == high)
return £ (low)
else
return f(low) + summation(f, low+l, high);
}

rewritten into the tail-recursive form:

int summationTR(int func £, int low, int high, int subtotal)
{ if (low == high)
return subtotal+f (low)
else
return summationTR(f, low+l, high, subtotal+f (low)) ;

When Recursion is Bad

« The Fibonacci function implemented as a recursive function is very
inefficient as it takes exponential time to compute:

fib = \n -> if n == 0 then 1
else if n == 1 then 1
else fib (n - 1) + £fib (n - 2)

« with a tail-recursive helper function, we can run it in O(n) time:

fibTR = \n -> 1let fibhelper (f1, £2, i) =
if (n == i) then £f2
else fibhelper (f2, f1 + £2, 1 + 1)
in fibhelper(0,1,0)

Continuation-passing Style

Makes control explicit in functional programming
(including evaluation order of operands/arguments,
returning from a function, etc.)

A continuation is a function representing “the rest of the
program” taking as argument the current result

Functions have an additional (last) argument, which is a
continuation

Primitive functions have to be encapsulated in CPS ones

Encapsulation of primitive operators
(*&) xy k k (x * y)
k (x + vy)
= k (x ==y)
k (sgrt x)

Making evaluation order explicit

* Function call arguments must be either variables or lambda
expressions (not more complex expressions)

Direct style: evaluation order is implicit

diag x y = sqrt ((x * x) + (y * y))
diag 34 > 5.0

Continuation-passing style: evaluation order is explicit

diagK x y k
(*&) x x (\x2 ->
(*&) vy y (\y2 ->
(+&) x2 y2 (\x2py2 ->
(sqrtK x2py2 k))))
diagk 3 4 (\x -> x) 2 5.0

Non-tail-recursive functions cause
continuation in recursive call to grow

Direct style: non-tail-recursive factorial

factorial n = if (n == 0) then 1
else n * factorial (n - 1)

Continuation-passing style: non-tail-recursive factorial

factorialKk n k = (==&) n 0 (\b >
if b then (k 1) else
(-&) n 1 (\nml ->
factorialK nml (\f-> ((*&) n £ k))))

Tail-recursive functions: continuation
in recursive call is identical

Direct style: tail-recursive factorial
factorialTR n = faux n 1
faux n a = if (n == 0) then a
else faux (n - 1) (n * a) —tail recursive

Continuation-passing style: tail-recursive factorial
factorialTRK n k = fauxTR n 1 k

fauxTR n a k = (==& n 0 (\b ->
if b then (k a) else
(-&) n 1 (\nml ->
(*&) n a (\nta ->
(fauxTR nml nta k))))

On continuation-passing style

e |f all functions are in CPS, no runtime stack is necessary: all
invocations are tail-calls

* The continuation can be replaced or modified by a
function, implementing almost arbitrary control structures

(exceptions, goto’s, ...)
* Continuations used in denotational semantics for goto’s

and other control structure (eg: bind a label with a
continuation in the environment)

Continuation-passing style: returning error to the top-level

sqgrt n k = if (n < 0) 'error
else k (safe-sqgrt n)

Direct style: the callers should propagate the error along the stack

