Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 30

* Scripting languages

Origin of Scripting Languages

* Modern scripting languages have two principal sets of
ancestors.

— command interpreters or “shells” of traditional batch and
“terminal” (command-line) computing
* IBM’s JCL, MS-DOS command interpreter, Unix sh and csh
— various tools for text processing and report generation
* IBM’s RPG, and Unix’s sed and awk.

* From these evolved

— Rexx, IBM’s “Restructured Extended Executor,” which dates from
1979

— Perl, originally devised by Larry Wall in the late 1980s, and now
the most widel yused general purpose scripting language.

— Other general purpose scripting languages include Tcl (“tickle”),
Python, Ruby, VBScript (for Windows) and AppleScript (for the
Mac)

What is a Scripting Language

e Common Characteristics
— Both batch and interactive use
— Economy of expression
— Lack of declarations; simple scoping rules.
— Flexible dynamic typing
— Easy access to other programs

— Sophisticated pattern matching and string
manipulation

— High level data types

Problem Domains

 Some general purpose languages—Scheme and
Visual Basic in particular—are widely used for
scripting

* Conversely, some scripting languages, including
Perl, Python, and Ruby, are intended by their
designers for general purpose use, with features
intended to support “programming in the large”

— modules, separate compilation, reflection, program
development environments
* For the most part, however, scripting languages

tend to see their principal use in well defined
problem domains

Problem Domains: Shell Languages

* Shell Languages have features designed for interactive use

Provide a wealth of mechanisms to manipulate file names,
arguments, and commands, and to glue together other

programs

— Most of these features are retained by more general scripting languages

Typical mechanisms supported:

— Filename and Variable Expansion
— Tests, Queries, and Conditions

— Pipes and Redirection

— Quoting and Expansion

— Functions

— The #! Convention

for fig in *.eps
do
target=${fig%.eps}.pdf
if [$fig -nt $target]
then
ps2pdf $fig

fi

done

Problem

Domains:

Text Processing and Report Generation

sed: Unix’s stream editor

No variables, no state: just a powerful filter
s/ _/_/ substitution command

label (target for branch):

save copy of pattern space
delete text after closing tag
delete text before opening tag

retrieve saved pattern space

and branch to top of script
extend search to next line

and branch to top of script
if no match at all, delete

rtop
/<[hH] [123]>.*<\/[hH] [123]>/ { ;# match whole heading
h #
s/\(<\/[hH] [123]>\) . *$/\1/ ;#
s/~ . *\(<[hH] [123]>\) /\1/ P #
P ;# print what remains
g #
s/<\/[hH] [123]>// ;# delete closing tag
b top
} #
/<[hH] [123]>/ { ;# match opening tag (only)
N #
b top
} R
d R
Figure 13.] Script in sed to extract headers from an HTML file. The script assumes that

opening and closing tags are properly matched, and that headers do not nest.

Problem Domains:

Text Processing and Report Generation
awk

— adds variables, state and richer control structures

/<[hH] [123]>/ {
execute this block if line contains an opening tag

do {
open_tag = match($0, /<[hH][123]>/)
$0 = substr($0, open_tag) # delete text before opening tag
$0 is the current input line
while (!/<\/[hH][123]>/) { # print interior lines
print = in their entirety
if (getline != 1) exit
}

close_tag = match($0, /<\/[hH][123]>/) + 4

print substr($0, 0, close_tag) # print through closing tag
$0 = substr($0, close_tag + 1) # delete through closing tag
} while (/<[hH][123]>/) # repeat if more opening tags
}

Figure 13.2 Script in awk to extract headers from an HTML file. Unlike the sed script, this
version prints interior lines incrementally. It again assumes that the input is well formed.

From bash/sed/awk to Perl

Originally developed by Larry Wall in 1987

Unix-only tool, meant primarily for text processing (the name
stands for “practical extraction and report language”)

Over the years has grown into a large and complex language,
ported to all operating systems: it is the most popular and widely
used scripting language

It is also fast enough for much general purpose use, and includes

— separate compilation, modularization, and dynamic library mechanisms
appropriate for large-scale projects

while (>) { # iterate over lines of input
next if '/<[hH][123]>/; # jump to next iteration
while (!/<\/[hH][123]>/) { $_ .= <>; } # append next line to $_

s/.*?([hH] [123]1>.*?<\/[hH] [123]>)//s;

perform minimal matching; capture parenthesized expression in $1
print $1, "\n";

redo unless eof; # continue without reading next line of input

}

“Force quit” in Per]

$#ARGV == 0 || die "usage: $0 pattern\n";
open(PS, "ps -w -w -x -o’pid,command’ |"); # ’process status’ command

<PS>; # discard header line
while (<PS>) {
@words = split; # parse line into space-separated words
if (/$ARGV([0]/i && $words[0] ne $$) {
chomp; # delete trailing newline
print;
do {
print "7 ";

$answer = <STDIN>;
} until $answer =~ /" [ynl/i;
if ($answer =~ /"y/i) {
kill 9, $words[0]; # signal 9 in Unix is always fatal

sleep 1; # wait for ’kill’ to take effect
die "unsuccessful; sorry\n" if kill 0, $words([O];
} # kill O tests for process existence

¥

Figure 13.5 Script in Perl to “force quit” errant processes. Ferl’s text processing features
allow us to parse the output of ps, rather than filtering it through an external tool like sed or
awk.

Problem Domains: “Glue” Languages and

- General Purpose Scripting

— Developed in the late 1980s at UC, Berkeley (Prof. John
Ousterhout)

— The initial motivation for Tcl (“tool command language”) was
the desire for an extension language that could be
embedded in the tools for VLSI developed by the group,

providing them with uniform command syntax and reducing
the complexity of development and maintenance

— Tcl quickly evolved beyond its emphasis on command
extension to encompass “glue” applications as well

* In comparison to Perl, Tcl is somewhat more verbose
— |t makes less use of punctuation, and has fewer special cases

* All data represented internally as strings

“Force quit” in Tcl

if {$argc != 1} {puts stderr "usage: $argv0 pattern"; exit 1}
set PS [open "|/bin/ps -w -w -x -opid,command" r]

gets $PS ;# discard header line
while {! [eof $PS1} {
set line [gets $PS] ;# returns blank line at eof

regexp {[0-9]+} $line proc
if {[regexp [lindex $argv 0] $line] && [expr $proc != [pidll} {
puts -nonewline "$line? "
flush stdout ;# force prompt out to screen
set answer [gets stdin]
while {! [regexp -nocase {"[yn]} $answer]} {
puts -nonewline "7 "
flush stdout
set answer [gets stdin]
}
if {[regexp -nocase {"y} $answer]} {
set stat [catch {exec kill -9 $proc}]
exec sleep 1
if {$stat || [exec ps -p $proc | wc -1] > 1} {
puts stderr "unsuccessful; sorry"; exit 1

}

Figure 13.6 Script in Tcl to “force quit” errant processes. Compare to the Perl script of
Figure |3.5.

Problem Domains
“Glue” Languages and General Purpose Scripting

 Rexx (1979) is considered the first of the general purpose scripting languages

* Perl and Tcl are roughly contemporaneous: late 1980s

— Perl was originally intended for glue and text processing applications

— Tcl was originally an extension language, but soon grew into glue applications
* Python was originally developed by Guido van Rossum at CWI in Amsterdam,

the Netherlands, in the early 1990s
— Recent versions of the language are owned by the Python Software
* All releases are Open Source.

— Object oriented
* Ruby

— Deveoloped in Japan in early 1990

— English documentation published in 2001

— Smalltalk-like object orientation

“Force quit” in Python

import sys, os, re, time

if len(sys.argv) != 2:
sys.stderr.write(’usage: ’ + sys.argv[0] + ’ pattern\n’)
sys.exit (1)

PS = os.popen("/bin/ps -w -w -x -o’pid,command’")
PS.readline() # discard header line
PS.readline() .rstrip() # prime pump

"o,

line

line
while line !=
proc = int(re.search(’\S+’, line).group())
if re.search(sys.argv[1], line) and proc != os.getpid():
print line + ’7 7,
answer = sys.stdin.readline()
while not re.search(’"[yn]’, answer, re.I):
print ’7 7, # trailing comma inhibits newline
answer = sys.stdin.readline()
if re.search(’"y’, answer, re.I):
os.kill(proc, 9)
time.sleep(1)

try: # expect exception if process
os.kill(proc, 0) # no longer exists
sys.stderr.write("unsuccessful; sorry\n"); sys.exit(1)
except: pass # do nothing

sys.stdout.write(’’) # inhibit prepended blank on next print
line = PS.readline().rstrip()

Figure [3.7 Script in Python to “force quit” errant processes. Compare to Figures |3.5
and |3.6.

Problem Domains: Extension Languages

* Most applications accept some sort of commands

— these commands are entered textually or triggered by user interface
events such as mouse clicks, menu selections, and keystrokes

— Commands in a grapical drawing program might save or load a drawing;
select, insert, delete, or modify its parts; choose a line style, weight, or
color; zoom or rotate the display; or modify user preferences.

* An extension language serves to increase the usefulness of an
application by allowing the user to create new commands, generally
using the existing commands as primitives.

* Extension languages are increasingly seen as an essential feature of
sophisticated tools

— Adobe’s graphics suite (lllustrator, Photoshop, InDesign, etc.) can be

extended (scripted) using JavaScript, Visual Basic (on Windows), or
AppleScript

Problem Domains: Extension Languages

* To admit extension, a tool must
— incorporate, or communicate with, an interpreter for a scripting
language
— provide hooks that allow scripts to call the tool’s existing commands
— allow the user to tie newly defined commands to user interface
events
* With care, these mechanisms can be made independent of any particular
scripting language
* One of the oldest existing extension mechanisms is that of the emacs text
editor

— An enormous number of extension packages have been created for
emacs; many of them are installed by default in the standard
distribution.

— The extension language for emacs is a dialect of Lisp called Emacs
Lisp.

Problem Domains: Extension Languages

(setgq-default line-number-prefix "")
(setg-default line-number-suffix ") ")
(defun number-region (start end &optional initial)
"Add line numbers to all lines in region.
With optional prefix argument, start numbering at num.
Line number is bracketed by strings line-number-prefix
and line-number-suffix (default \"\" and \") \")."
(interactive "*r\np") ; how to parse args when invoked from keyboard
(let* ((i (or initial 1))
(num-lines (+ -1 initial (count-lines start end)))
(fmt (format "%%%dd" (length (number-to-string num-lines))))
; yields "%1d", "%2d", etc. as appropriate
(finish (set-marker (make-marker) end)))
(save-excursion
(goto-char start)
(beginning-of-line)
(while (< (point) finish)
(insert line-number-prefix (format fmt i) line-number-suffix)
(setq 1 (1+ 1))
(forward-line 1))
(set-marker finish nil))))

Figure 13.9 Emacs Lisp function to number the lines in a selected region of text.

16

Scripting the World Wide Web
* CGl Scripts

— The original mechanism for server-side web scripting is the Common
Gateway Interface (CGl)

— A CGl script is an executable program residing in a special directory known
to the web server program

— When a client requests the URI corresponding to such a program, the
server executes the program and sends its output back to the client
* this output needs to be something that the browser will understand: typically
HTML.
— CGl scripts may be written in any language available
* Perlis particularly popular:

— its string-handling and “glue” mechanisms are suited to generating HTML
— it was already widely available during the early years of the web

Scripting the World Wide Web

#!/usr/bin/perl
print "Content-type: text/html\n\n";

$host = ‘hostname‘; chop $host;

print "<HTML>\n<HEAD>\n<TITLE>Status of ", $host,
"</TITLE>\n</HEAD>\n<BODY>\n":

print "<H1>", $host, "</H1>\n";

print "<PRE>\n", ‘uptime‘, "\n", ‘who‘;

print "</PRE>\n</BODY>\n</HTML>\n";

Figure 13.10 A simple CGI script in Perl. If this script is named status.perl, and is installed
in the servers cgi-bin directory, then a user anywhere on the Internet can obtain summary
statistics and a list of users currently logged into the server by typing hostname/cgi-bin/status.perl
into a browser window.

18

Scripting the World Wide Web
Embedded Server-Side Scripts

— Though widely used, CGl scripts have several disadvantages:

 The web server must launch each script as a separate program, with
potentially significant overhead

* Scripts must generally be installed in a trusted directory by trusted
system administrators
— they cannot reside in arbitrary locations as ordinary pages do
 The name of the script appears in the URI, typically prefixed with the

name of the trusted directory, so static and dynamic pages look
different to end users

* Each script must generate not only dynamic content, but also the
HTML tags that are needed to format and display it

Scripting the World Wide Web

<HTML>

<HEAD>

<TITLE>Status of <7php echo $host = chop(‘hostname‘) 7></TITLE>
</HEAD>

<BODY>

<H1><?php echo $host 7></H1>

<PRE>

<?php echo ‘uptime‘, "\n", ‘who‘ 7>
</PRE>

</BODY>

</HTML>

Figure 13.13 A simple PHP script embedded in a web page. \When served by a PHP-enabled
host, this page performs the equivalent of the CGl script of Figure 13.10.

20

Scripting the World Wide Web

* C(Client-Side Scripts
— embedded server-side scripts are generally faster than CGl script, at least when
startup cost predominates

* communication across the Internet is still too slow for interactive pages

— Because they run on the web designer’s site, CGl scripts and, to a lesser extent,
embeddable server-side scripts can be written in many different languages

e All the client ever sees is standard HTML.
— Client-side scripts, by contrast, require an interpreter on the client’ s machine

* thereis a powerful incentive for convergence in client-side scripting languages: most
designers want their pages to be viewable by as wide an audience as possible

* While Visual Basic is widely used within specific organizations, where all the

clients of interest are known to run Internet Explorer, pages intended for the
general public almost always use JavaScript for interactive features.

Scripting the World Wide Web
* Client-Side Scripts

— While Visual Basic is widely used within specific
organizations, where all the clients of interest are
known to run Internet Explorer, pages intended for the
general public almost always use JavaScript for
interactive features

* Java Applets

— An applet is a program designed to run inside some
other program

— The term is most often used for Java programs that
display their output in (a portion of) a web page

— To support he execution of applets, most modern
browsers contain a Java virtual machine

Scripting the World Wide Web

<HTML>
<HEAD> Adder
<TITLE>Adder</TITLE> .
<SCRIPT type="text/javascript"> First addend
function doAdd() { Second addend

argh = parselnt(document.adder.argh.value)

argB = parseInt(document.adder.argB.value) (Calculate)

x = document.getElementById(’sum’) .

12 plus 34 is 46
while (x.hasChildNodes()) pls =1

x.removeChild(x.lastChild) // delete old content
t = document.createTextNode(argh + " plus "
+ argB + " is " + (argA + argB))
x.appendChild(t)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM name="adder" onsubmit="return false">
<P><INPUT name="argA" size=3> First addend

<INPUT name="argB" size=3> Second addend
<P><INPUT type="button" onclick="doAdd()" value="Calculate">
</FORM>
<P>
</BODY>
</HTML>

ngre 13.16 An interactive JavaScript web page. Source appears at left The rendered version on the right shows the
appearance of the page after the user has entered two values and hit the Calculate button, causing the output message to
appear. By entering new values and clicking again, the user can calculate as many sums as desired. Each new calculation will
replace the output message.

Innovative Features

* Earlier we listed several common characteristics
of scripting languages:
— both batch and interactive use
— economy of expression
— lack of declarations; simple scoping rules
— flexible dynamic typing
— easy access to other programs

— sophisticated pattern matching and string
manipulation

— high level data types

Innovative Features

Most scripting languages (Scheme is the obvious
exception) do not require variables to be declared

Perl and JavaScript, permit optional declarations -
sort of compiler-checked documentation

Perl can be run in a mode (use strict 'wvars')
that requires declarations

— With or without declarations, most scripting languages
use dynamic typing

The interpreter can perform type checking at run
time, or coerce values when appropriate

Tcl is unusual in that all values—even lists—are
represented internally as strings

Innovative Features

* Nesting and scoping conventions vary quite a bit

Scheme, Python, JavaScript provide the classic combination of nested
subroutines and static (lexical) scope

Tcl allows subroutines to nest, but uses dynamic scope

Named subroutines (methods) do not nest in PHP or Ruby

* Perl and Ruby join Scheme, Python, JavaScript, in providing first class
anonymous local subroutines

Nested blocks are statically scoped in Perl
* In Ruby they are part of the named scope in which they appear
Scheme, Perl, Python provide for variables captured in closures

PHP and the major glue languages (Perl, Tcl, Python, Ruby) all have
sophisticated namespace

* mechanisms for information hiding and the selective import of names from
separate modules

Innovative Features

* String and Pattern Manipulation

— Regular expressions are present in many scripting

languages and related tools employ extended versions
of the notation

» extended regular expressions in sed, awk, Perl, Tcl, Python, and
Ruby

* grep, the stand-alone Unix is a pattern-matching tool
— Two main groups.

* The first group includes awk, egrep (the most widely used of
several different versions of grep), the regex routines of the C
standard library, and older versions of Tcl

— These implement REs as defined in the POSIX standard

* Languages in the second group follow the lead of Perl, which

provides a large set of extensions, sometimes referred to as
“advanced REs”

Innovative Features

* Data Types
— As we have seen, scripting languages don’t generally
require (or even permit) the declaration of types for

variables

— Most perform extensive run-time checks to make sure that
values are never used in inappropriate ways

— Some languages (e.g., Scheme, Python, and Ruby) are
relatively strict about this checking
* When the programmer who wants to convert from one type to
another must say so explicitly
— Perl (and likewise Rexx and Tcl) takes the position that
programmers should check for the errors they care about

* in the absence of such checks the program should do something
reasonable

Innovative Features

* Numeric types: “numeric values are simply numbers”

In JavaScripts all numbers are double precision floating point

In Tcl are strings

PHP has double precision float and integers

To these Perl and Ruby add bignums (arbitrary precision integers)
Python also has complex numbers

Scheme also has rationals

Representation transparency varies: best in Perl, ,minimal in Ruby

 Composite types: mainly associative arrays (based on hash tables)

Perl has fully dynamic arrays indexed by numbers, and hashes, indexed by
strings. Records and objects are realized with hashes

Python and Ruby also have arrays and hashes, with slightly different syntax.
Python also has sets and tuples

PHP and Tcl eliminate distinction between arrays and hashes. Likewise
JavaScript handles in a uniform way also objects.

Innovative Features

* Object Orientation

— Perl 5 has features that allow one to program in an object-
oriented style

— PHP and JavaScript have cleaner, more conventional-looking
object-oriented features
* both allow the programmer to use a more traditional imperative style

— Python and Ruby are explicitly and uniformly object-oriented

— Perl uses a value model for variables; objects are always
accessed via pointers

— In PHP and JavaScript, a variable can hold either a value of a

primitive type or a reference to an object of composite type.

* In contrast to Perl, however, these languages provide no way to
speak of the reference itself, only the object to which it refers

Innovative Features

Object Orientation (2)
— Python and Ruby use a uniform reference model

— Classes are themselves objects in Python and Ruby,
much as they are in Smalltalk

— They are types in PHP, much as they are in C++, Java, or
CH

— Classes in Perl are simply an alternative way of looking
at packages (namespaces)
— JavaScript, remarkably, has objects but no classes
* its inheritance is based on a concept known as prototypes
— While Perl’'s mechanisms suffice to create object-

oriented programs, dynamic lookup makes both PHP
and JavaScript are more explicitly object oriented

