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Abstract. Over recent years, optimisation and evolutionary search have
seen substantial interest in the MDE research community. Many of these
techniques require the specification of an optimisation problem to in-
clude a set of model transformations for deriving new solution candidates
from existing ones. For some problems—for example, planning problems,
where the domain only allows specific actions to be taken—this is an ap-
propriate form of problem specification. However, for many optimisation
problems there is no such domain constraint. In these cases providing
the transformation rules over-specifies the problem. The choice of rules
has a substantial impact on the efficiency of the search, and may even
cause the search to get stuck in local optima.
In this paper, we propose a new approach to specifying optimisation
problems in an MDE context without the need to explicitly specify evolu-
tion rules. Instead, we demonstrate how these rules can be automatically
generated from a problem description that consists of a meta-model for
problems and candidate solutions, a list of meta-classes, instances of
which describe potential solutions, a set of additional multiplicity con-
straints to be satisfied by candidate solutions, and a number of objective
functions. We show that rules generated in this way lead to optimisation
runs that are at least as efficient as those using hand-written rules.

1 Introduction

There has been a good deal of interest in optimisation of models in recent years
[1,2,3,4,5,6,7,8]. These approaches aim to provide support for search-based soft-
ware engineering [9] in an MDE context. Many of these approaches focus on
using evolutionary techniques for finding models that optimise some objective
function(s)—for example an OCL query or a simulation-based evaluation. To
guide the exploration of the search space, a user has to provide a set of model
transformations, which can create new candidate solution models from exist-
ing ones. Overall, the optimisation problem is thus specified by providing (1) a
meta-model, instances of which are candidate solutions, (2) a set of objective
functions, (3) additional constraints to be satisfied by valid solutions, and (4) a
set of transformations to evolve models.

In some cases, these transformations are an inherent part of the optimisation
problem. For example, when using evolutionary search to find an optimal refac-
toring of model transformations [10], or when finding optimal reconfigurations



of a cloud data centre [11], it is important to ensure that any solutions have
been derived from the starting point only through the application of rules from
a pre-defined set. In the latter case, we may even have an objective function
based on the number of transformation steps that have been applied. However,
in many other scenarios specifying the transformation rules as part of the op-
timisation problem is less natural and leads to over-specification. For example,
the well-known class–responsibility assignment (CRA) problem, which was also a
problem case at the 2016 Transformation Tool Contest (TTC) [12], simply looks
for an optimal allocation of features to classes. How the search algorithm arrives
at this allocation is not a natural part of the problem. In fact, when solving this
problem in an evolutionary manner, there are different sets of evolution rules
that might potentially be applied, and different sets of rules will lead to results
of different optimality. Requiring users to specify the rules with the problem,
then, forces them to over-specify and risks missing the best solutions.

In this paper, we show how optimisation problems over models can be spec-
ified without the need to specify a set of evolution transformations as well. We
show how a set of rules can be automatically generated from a meta-model,
objective functions, and a set of additional constraints. The rule generation al-
gorithm presented in this paper uses an extended variant of the SERGe (SiDiff
Edit Rule Generator) algorithm presented in [13]. We demonstrate, using the
CRA case study, that we are able to generate rules that enable efficient optimi-
sation runs leading to good results.

The remainder of this paper is structured as follows: Section 2 gives a brief
description of related work in model optimisation. Then, in Sect. 3, we describe
the case study used throughout the paper, followed by Sect. 4, where we present
our solution. In Sect. 5, we present an evaluation, including a comparison to the
VIATRA-DSE solution to the TTC ’16 CRA case [14]. Finally, in Sect. 6, we
discuss lessons learned and highlight future research.

2 Related Work

We have introduced MDEOptimiser (MDEO) previously in [2,15]. MDEO
performs model-based optimisation by running evolutionary optimisation with
candidate solutions represented by model instances of a given meta-model. Evo-
lution steps are obtained by applying endogenous model transformations using
Henshin transformation rules [16]. Since our submission to TTC 2016, the tool
has been improved, the evaluation in Sect. 5 is be based on the most recent
version of the tool. A description of the improvements is included in Sect. 4.

In [5] the authors introduce the MOMoT (Marrying Optimisation and Model
Transformations) tool. The tool is built in the context of Eclipse Modelling
Framework (EMF)1 and it uses Henshin transformation rules to generate opti-
misation solutions. The tool uses the MOEA framework2 for the implementation
of the search algorithms. Alongside the MOEA framework algorithms, MOMoT

1 https://eclipse.org/modeling/emf/
2 http://moeaframework.org/

https://eclipse.org/modeling/emf/
http://moeaframework.org/


also supports single-objective and local search optimisation algorithms. It de-
fines a custom DSL for problem descriptions, consisting of a meta-model, a set
of Henshin transformation rules, a set of objectives and constraints specified
either as Java or OCL implementations and the search algorithm to be used.
The output produced consists of a set of analysis artifacts, the resulting mod-
els, found objective values and a chain of rule applications used to obtain the
solution models. The MOMoT framework is very similar to MDEO, the main
difference being that MDEO runs the optimisation directly on models rather
than on sequences of rule applications from which models can be generated.

VIATRA-DSE [1] is another tool performing optimisation on models. It uses
the VIATRA2 [17] model transformation framework which is built on the EMF.
In order to run model optimisation, the tool requires as input an initial model, a
set of transformation rules, a set of constraints and a set of objectives. For search
space exploration the tool supports several algorithms such as Hill Climbing and
Non-dominated Sorting Genetic Algorithm (NSGA-II)[18]. This tool, similarly
to MOMoT requires the user to specify the transformation rules as part of the
optimisation problem specification.

In [4], the authors propose another model optimisation tool. Crepe Complète
is an extension of Crepe [19], which allows multi-objective optimisation of mod-
els. It has been developed as an improvement of the Crepe tool which only
supported single objective optimisation. Crepe Complète is built on top of the
Epsilon Object Language (EOL) and can run multi-objective optimisation on
models. Crepe Complète can run optimisation on any problem that can be en-
coded in a meta-model. The tool supports generic search operators and a generic
encoding of models using integer vectors. However, optimisation performance can
quickly become sub-optimal as the encoding is non-locality-preserving [20].

There remains a clear gap for approaches that run evolutionary search over
models but do not require manual definition of evolution rules as part of the
problem specification. In this paper, we propose a first such approach.

3 Running Example

Throughout this paper, we will use a running example to help explain and evalu-
ate our approach. For this, we are reusing the well-studied Class–Responsibility
Assignment (CRA) problem, in the form introduced as a challenge case at the
2016 Transformation Tool Contest [12].3 The goal in this problem is to find an
optimal set of classes and class–feature allocations that minimise coupling and
maximise coherence.

More specifically, a CRA problem is an instance of the CRA meta-model in
Fig. 1, without any instances of Class. A valid solution is an instance of the
same meta-model with a number of Class instances and all Feature instances
allocated to a class via association isEncapsulatedBy. Note that this means

3 This problem case also required all classes to have unique names. Given that this
can be achieved by a simple post-processing step [15], we ignore the requirement for
this paper.
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Fig. 1: Problem meta-model for the CRA problem

that for solutions we have a stricter multiplicity constraint than for problem de-
scriptions; in particular, the lower bound multiplicity of isEncapsulatedBy is 1
rather than 0. Features can be either Attributes or Methods. Different kinds of
dependencies can be represented between features of different kinds. The goal is
to allocate Features to (newly created) Classes to minimise dependencies be-
tween classes (coupling) and maximise dependencies within classes (coherence).
This is specified as a single objective combining the coupling and coherence ob-
jectives into a single so-called CRA measure. Details of the definition of this
measure can be found in the TTC case [12]. The case study description includes
five input models which can be used to evaluate the proposed case solutions [12].
A summary of these input models, which vary in size and complexity, has been
included in Table 1. In Sect. 5 we are discussing the results of our approach using
each of these models as input.

Table 1: Summary of input models

A B C D E
Attributes 5 10 20 40 80
Methods 4 8 15 40 80
Data Dep. 8 15 50 150 300
Functional Dep. 6 15 50 150 300

This is a common way in which
search problems are phrased: an
initial model (instance of the prob-
lem meta-model) is given to de-
scribe a specific search problem.
Typically, the elements provided in
this model are not meant to be
changed as a result of the search.
Some elements of the meta-model
are not (or only partly) instanti-
ated: these will be used to repre-
sent potential solutions. Because the problem meta-model, thus, needs to be a
valid meta-model for both problem specifications and candidate solutions, some
of its multiplicity constraints (namely those at the boundary between the el-
ements responsible for problem descriptions and those responsible for solution
descriptions) may need to be strengthened for valid solutions. This is similar
to more traditional ways of specifying optimisation problems, where constraints
are a standard part of a problem specification. In model-based optimisation,
we can say that the problem meta-model is refined by the solution meta-model



by providing stronger multiplicity bounds in some places. Thus, every candi-
date solution will also be a valid instance of the problem meta-model, while a
problem specification will typically not yet be a valid instance of the solution
meta-model. The task of the search algorithm, then, is to continuously modify
the given problem specification until it satisfies all the additional multiplicity
constraints of the solution meta-model and, then, to find an optimal solution
model.

4 Searching Optimal Models with Generated Rules

We have implemented our approach using our MDEO tool [2,15]. The tool is an
Eclipse plugin allowing the user to specify model optimisation in the EMF con-
text through a DSL. It uses Henshin-encoded endogenous model transformation
rules as search mutation operators, to explore the search space. The optimisation
algorithms are implemented using the MOEA framework. In earlier versions of
the tool, the user was required to manually create the Henshin transformation
rules and then specify them in the DSL configuration. In this paper we are us-
ing the SERGe [13] meta-tool to automatically generate the initial consistency
preserving edit rules (CPERs). For each of the generated rules we then make
a copy to which we apply a set of refinements to better guide the evolutionary
process by ensuring that edit operations encoded in the rules can be applied to
models conforming to both the problem and the solution meta-models.

The rest of this section is structured as follows: In Section 4.1 we describe
how the optimisation problem for rule generation is specified in our DSL, then
in Section 4.2 we describe our rule generation algorithm. Section 4.3 describes
how we configured our tool to run the experiments for the CRA case.

4.1 Specifying the Optimisation Problem

The problem description required by our DSL consists of the following elements:

1. A problem meta-model. Specific search problems are given as instances of
this meta-model. In the CRA case this is the meta-model shown in Fig. 1;

2. Objective functions. These can be provided as Java implementation or as
OCL queries and return a numerical value for a given model. In the context
of the CRA case, we have only one objective, namely the CRA value which
we are seeking to maximise during the search;

3. A meta-model subgraph. Only a subset of the elements from the problem
meta-model represent solution information. Instances of these elements can
be modified during the search, everything else should be kept constant as it
represents problem context only. The multiplicity refinements provided next
can only apply to elements in this sub-graph of the problem meta-model;

4. Additional multiplicity constraints. These constraints, which we also call mul-
tiplicity refinements are constraints that form the solution meta-model, a
subset of the problem meta-model. These refinements must be satisfied by



Fig. 2: MDEO CRA problem specification with automatic rule generation

all valid solution candidates. In the CRA case, as described in Sect. 3, the
requirement is that there are no features which are not encapsulated in a
class, so a refinement is to restrict the multiplicity of the isEncapsulatedBy
edge from [0..1] to [1..1]. These multiplicity constraints must refine those in
the original problem meta-model;

5. Constraint functions. These represent the additional multiplicity constraints
in a form that can be used by a search algorithm (i.e., a function that must
be zero for valid candidate solutions). In principle, these could be generated
from the additional multiplicity constraints, but our prototype currently does
not support this;

6. An optimisation algorithm. This specifies the algorithm provider4, along with
the search algorithm to use and the necessary evolutions and population
configuration. In this paper we are only using the NSGA-II algorithm with
multiple configurations for the evolutions and populations variables. It is be-
yond the scope of this paper to present a comprehensive comparison between
multiple algorithms.

An example of the CRA problem specification using the MDEO DSL can
be seen in Fig. 2. The configuration keywords in the DSL are intuitive. The
basepath element is required, can only be used once and it defines the Eclipse
resource set working path, then the meta-model element is also required, can
be only one and it’s used for specifying this optimisation problem meta-model.
The next element is the objective, which is required and can be used multiple
times. This is used to specify the optimisation objectives which can be loaded
from Java files or specified as OCL queries. The next keyword is constraint,
it’s optional and it defines the constraints to be used in the optimisation pro-
cess. Then the rule generation node keywords allow the user to specify the
nodes for which Henshin transformation rules are going to be generated. Finally
the optimisation keyword is used to configure the search algorithm and its
parameters.

4.2 Generating the Rules

In this section, we discuss how we generate the evolution transformation rules
from the information provided above.

4 As registered in the underlying instance of the MOEA Framework



Previous work on automatic generation of transformation rules from meta-
model information has been reported in [13]. SERGe is a meta-tool which gen-
erates a complete set of complete and consistency-preserving edit operations
(CPEOs) for a given meta-model. The tool has been developed in the EMF
context and the generated transformation rules are encoded in Henshin. The
algorithm implemented in SERGe is designed to ensure that for any rules it
generates, any change between two models is always consistency preserving with
regards to the meta-model. The SERGe tool, by default, provides an extensive
set of configuration options. A complete description of the rule generation process
supported is described in [21]. However for the purpose of proving our approach
with the CRA case we have restricted the generation of rules to only a subset
of all the possible operations. A complete list of the SERGe rules generated for
our case can be seen in Table 2. To generate the rules, SERGe performs the
following steps:

1. Create node. For each non-root type A with mandatory neigbours and no
children, SERGe will generate a create node rule. The rule also connects
the node A to its mandatory children, if any are present in the metamodel,
by creating a containment edge. The node is connected to its mandatory
neighbours B by creating edges of type a. If edge a has an opposite edge of
type b then this will also be created. If there is an upper bound multiplicity
in the meta-model for edge b, then a Negative Application Condition (NAC)
will be generated to ensure that the multiplicity is respected when connecting
nodes of type B to nodes of type A;

2. Delete node. The node delete rules are created as inverses of the Create
rules, by swapping the left and right-hand side of the Henshin rule graph.
The generated rule will delete the node A and all its mandatory children.
The node is also disconnected from its mandatory neighbours. If multiplicity
constraints are present, then a Positive Application Condition (PAC) will be
generated to ensure that node A can be deleted safely without invalidating
the meta-model lower bound multiplicities between the deleted node and its
neighbours;

3. Add node edge. The add edge rule is generated for each reference a or op-
posing reference b of a node A. If the reference is not a containment and if
the lower bound multiplicity is not equal to the upper bound multiplicity
then, a rule is generated to add an edge a between type A and the type at
the opposing end B. If edge a has an opposite edge of type b then this will
also be created. If there is an upper bound multiplicity in the meta-model
for edge b, then a NAC will also be generated to ensure that the multiplicity
is respected when connecting nodes of type B to nodes of type A;

4. Remove node edge. Similar to the delete node rule the remove node edge
rule is generated by swapping the left-hand side with the right-hand side of
the add edge rule. In the case of remove edge rules, NAC applications are
not required, but if multiplicity constraints are present, then a PAC will be
generated to ensure that the edge can be deleted safely without invalidating
the model;



5. Change node edge. This rule type is a simplified version of the combined
application chain of a Remove node edge and Create node edge rules, per-
forming the individual steps of each of these rules in a single application.
This rule is generated by SERGe when ran with a meta-model that has a
fixed multiplicity between two nodes. The generated rule is the same as the
Refined Remove Edge Rule in Table 2.

When using the transformation rules generated by SERGe for the problem
meta-model, the optimisation process has a tendency to get stuck in local optima.
This is because the SERGe rules are generated so that the produced models
are consistent w.r.t to the problem meta-model only. The solution meta-model
is a subset of the problem meta-model, as a result of the refined multiplicity
constraints applied to the problem meta-model. It is still possible for solution
meta-model instances to be discovered using the rules generated by SERGe for
the problem meta-model, however when using these rules to transform instances
of the solution meta-model, the validity of the resulting model instances cannot
be ensured. The validity depends on which part of the problem meta-model the
transformation output model conforms to, the valid solution meta-model subset
which satisfies the problem constraints or the rest of the problem meta-model
which includes all possible solutions, both valid and invalid w.r.t. the problem
constraints. During the optimisation process, if a valid solution becomes invalid
because of a constraint invalidation, it automatically becomes infeasible and it
is dominated by other valid solutions [18,22]. This happens even if a subsequent
transformation on the same solution would make it dominant. A solution is
dominant if it is feasible with regards to its constraints and it is at least as good
for all objective values as the other solutions and better for at least one objective
value [22].

Performing a CRA case optimisation run using these transformation rules
generated for the problem meta-model and using a constraint that invalidates
solutions with unassigned Features, is not sufficient to obtain the best pos-
sible results. The evolution gets stuck in local optima after all the Features

are assigned to a Class and the model becomes consistent w.r.t the solution
meta-model. Then, the only way to move a Feature from a Class to another
Class, is to remove the isEncapsulatedBy edge from a Class using rule RE-
MOVE Class (encapsulates) TGT Feature and then add it again for another
Class using rule ADD Class (encapsulates) TGT Feature. While this is done,
the specified constraint is invalidated, creating a solution which has one unas-
signed Feature. This constraint violation causes the solution to become infea-
sible and it becomes dominated by the other solutions which do not have a
good CRA value to that point, but are feasible because they don’t invalidate
the constraint to have no unassigned Features. As a result, the new candidate
is removed from the population and never explored further. We could try to fix
this by encoding constraints as objectives instead. However, while this would
allow the search to escape local optima, by not having any solutions considered
invalid, it would not guarantee all resulting search solutions to be valid.



SERGe Create Rule Refined Create Rule

SERGe Delete Rule Refined Delete Rule

SERGe Remove Edge Rule Refined Remove Edge Rule

SERGe Add Edge Rule

No refinements necessary for this rule.

Table 2: Generated SERGe and refined rules

Generally, the problem here is that we are running SERGe with the problem
meta-model and that the solution meta-model introduces additional multiplicity
constraints. These are not taken into account by the rules generated. Running



SERGe with the solution meta-model does offer a solution to the problem: for
the case of a [1..1] multiplicity constraint (as between Feature and Class in
the CRA case), with the right configuration settings, SERGe can generate a
change edge rule. In addition to this rule, two other rules are generated: add
an unassigned Feature to an existing Class and create a Class and assign an
unassigned Feature to it. The problem with these rules however, is that the
search space cannot be fully explored once all Features have been assigned
to a Class. After this happens, the only possible operation is to apply the
change Feature rule to the search models and move Features between classes,
but the transformations cannot perform any create and delete Class solution
model changes. This limitation of rule applications on valid solutions leads to
an incomplete search space exploration.

What we need, is an algorithm that generates transformation rules that are
applicable to an instance model of the problem meta-model, allowing all types
of transformations for the nodes we are interested in, but that ensure that any
model edit operations will not introduce additional invalidations of the solution
meta-model constraints. The generated rules must be able to perform the same
edit operations on models conforming with both the problem meta-model and
the solution meta-model. We ensure this by post-processing the rules produced
by SERGe for the problem meta-model.

We have adapted the SERGe meta-tool by applying a set of refinements to
the generated rules to ensure that the search process does not get stuck in local
optima due to constraint invalidation. Our refinements, are additions to copies
of generated SERGe rules, to ensure that when an instance of the solution meta-
model is found, the search process can still evolve it by applying CPEOs to it,
without breaking the constraints defined in the solution meta-model.

In our approach, we have implemented refinements aimed at solving the CRA
case, therefore the list presented in this paper is not exhaustive and we aim to
implement the remaining refinements in future work.

The overall rule-refinement process is the following:

1. For all nodes with given multiplicity-constraint refinements, check the va-
lidity of the refinements. In this step we ensure that the given refinement
constraints are valid w.r.t. the problem meta-model, by ensuring that they
specify a solution meta-model which is a subset of the problem meta-model;

2. Generate a new meta-model including only the upper-bound refinements.
This meta-model is then used in the following step to generate the SERGe
rules. Note that SERGe already handles upper-bound refinements the way
we need them. Lower-bound refinements require post-processing of rules;

3. Run the SERGe meta-tool with the new meta-model and generate rules for
the nodes specified in the problem specification. In this step, we run the
SERGe algorithm with the meta-model having the specified upper-bound
refinements set. This generates the rules as seen in the SERGe rules column
in Table 2;

4. Create a copy of each of the generated rules and apply the following re-
finements to them, each refinement resulting in a new rule. For each of the



refinements described in the following list, a before and after comparison can
be found in Table 2:

(a) If the rule is creating a new node type A and there is a lower bound
refinement of an edge a or b at either side, then find another existing node
of type A and for each created edge between the new node and the existing
mandatory neighbours, add a delete edge between the existing node type
A and the existing mandatory neighbours B. These refinements allow the
rule to create a new node when there are no mandatory neighbours
available to be assigned, by taking one from an existing node of the
same type;

(b) If the rule is deleting a node type A and there is a lower-bound refinement
of an edge a or b at either side of them, then find another existing
node A and for each deleted edge between the deleted node A and the
existing mandatory neighbours, add a create edge between the existing
node A and the existing mandatory neighbours. The rule changes added
by these refinements allow a node to be deleted and not leave mandatory
neighbours dangling, by moving them to other existing nodes of the same
type as the deleted node;

(c) If the rule is deleting an edge a between node type A and node type B

and there is a lower bound refinement at either side of A or B then find
another node of type A and create the deleted edge between B and the
found node type A. This refinement results in a Change edge rule, which
SERGe can also generate if configured to do so and the edge has a fixed
multiplicity;

5. Remove duplicate rules by using the SERGe duplicate checker;

4.3 Running the Optimisation

Once the rule refinements are generated, MDEO groups the rules generated for
the meta-model with the upper bound refinements and the new refined rules and
runs the optimisation process with the complete set of generated rules. To run
the optimisation for the CRA case we have implemented our proof of concept
as a new feature of the MDEO tool. For this experiment we have created a
standalone launcher for the tool to allow us to run the optimisation without
having to run the tool as an Eclipse plugin for each of the configurations.

5 Evaluation

Our aim is to automatically generate evolvers from a metamodel so that we can
then run MDEO to perform evolutionary optimisation on models without having
to design the rules manually. We describe the ideal solution meta-model and
which sections should be transformed and then the tool automatically generates
the necessary transformation rules so that models can be evolved to become valid
solution candidates. We have evaluated our solution starting from the following



Table 3: Summary of MDEO TTC ’16 input models results
MDEO M I A B C D E

Best CRA 3.0 2.999 2.015 N/A N/A
Mean CRA 1.978 1.954 1.232 N/A N/A
Mean Time 0m 0s 505ms 0m 1s 083ms 0m 2s 705ms 0m 8s 946ms 0m 18s 906ms

MDEO M II
Best CRA 3.0 3.104 2.910 5.531 3.098
Mean CRA 1.950 1.911 1.972 4.103 0.816
Mean Time 0m 2s 464ms 0m 5s 337ms 0m 12s 293ms 0m 54s 193ms 3m 7s 864ms

MDEO R I
Best CRA 3.0 3.166 1.858 N/A N/A
Mean CRA 2.627 2.114 0.327 N/A N/A
Mean Time 0m 1s 188ms 0m 1s 892ms 0m 3s 816ms 0m 9s 760ms 0m 18s 234ms

MDEO R II
Best CRA 3.0 4.083 3.177 5.794 2.618
Mean CRA 2.478 2.424 2.033 3.703 -0.035
Mean Time 0m 5s 650ms 0m 10s 290ms 0m 18s 358ms 1m 05s 752ms 3m 13s 674ms

MDEO S I
Best CRA 1.75 0.791 -0.930 -2.646 N/A
Mean CRA 0.654 -0.629 -4.207 -8.293 N/A
Mean Time 0m 0s 566ms 0m 1s 117ms 0m 2s 390ms 0m 6s 767ms 0m 13s 723ms

MDEO S II
Best CRA 2.333 0.983 -0.601 -3.785 -4.855
Mean CRA 0.783 -0.523 -4.732 -7.647 -11.555
Mean Time 0m 2s 745ms 0m 5s 491ms 0m 13s 331ms 0m 44s 963ms 2m 21s 917ms

MDEO C I
Best CRA 3.0 2.833 2.017 N/A N/A
Mean CRA 1.936 1.964 0.908 N/A N/A
Mean Time 0m 0s 958ms 0m 1s 448ms 0m 3s 290ms 0m 9s 385ms 0m 18s 256ms

MDEO C II
Best CRA 3.0 3.104 3.634 6.436 3.011
Mean CRA 2.072 2.050 2.454 4.770 0.401
Mean Time 0m 3s 560ms 0m 7s 480ms 0m 19s 614ms 1m 12s 672ms 3m 57s 076ms

research question: Can we generate evolvers that perform optimisation as well
as or better than the ones defined manually?

In this section we compare the results obtained with the latest version of
MDEO running with manual user defined evolvers, the SERGe generated evolvers
for both the problem and the solution meta-models and the automatically gen-
erated evolvers with our refinements. By doing this comparison we show that
the automatically generated rules are just as good as the user defined rules. We
also compare our CRA case results with VIATRA-DSE results from TTC ’16
[14].

Experiment Setup. We ran our experiments for the CRA case using three
Henshin transformation rules (evolvers) configurations:



MDEO Manual (MDEO M) Using the user defined evolvers, specified by us
and previously used in the TTC 2016 Submission [15];

MDEO Refined (MDEO R) Using the evolvers automatically generated by
the SERGe generated rules improvements described in this paper;

MDEO SERGe (MDEO S) Using the evolvers generated by SERGe without
any of our refinements; and

MDEO SERGe Solution Metamodel (MDEO C) Using the evolvers gen-
erated by SERGe from the solution meta-model without any of our refine-
ments.

For each evolver configuration we ran 30 experiments using the NSGA-II
algorithm and the following parameters: I 100 evolutions and population size of
40; and II 500 evolutions and population size of 40. We have chosen the values for
configuration I to have a comparison configuration with the solution proposed
by VIATRA-DSE [14] for TTC 2016. The authors presented the results of 30
experiments running with a population of 40 and 100 evolutions.

The source code of the experiment together with the discovered solutions
for all experiments can be found on GitHub5. All the experiments have been
executed in headless mode on an AWS EC2 c4.large spot instances running
Amazon Linux 4.4.2331.54.amzn1. x86 64 and Java 1.8.0 121 openjdk.

Results. In all configurations, computation time is partly given by the num-
ber of evolvers that have to be applied to a model in order to find mutation
matches. Fewer evolvers require less computations to identify potential matches
when evolving solutions. This execution time difference can be observed be-
tween the MDEO R configurations which has seven evolvers and the other con-
figurations which have three(MDEO C) and four evolvers(MDEO M, MDEO
S), respectively. The NSGA-II algorithm used for our experiments requires more
computation time when there are less convergent dominant solutions than the ex-
pected population size and it has to spend more time on sorting though crowded
solutions.

In Table 3 we can see that all configurations have been able to find the
the same maximum CRA value for input model A, except for MDEO S. By
inspecting the generated solutions and the average CRA value we can observe
that MDEO R has found the highest overall values for model A, followed by
MDEO C. The execution time is smaller for MDEO C than for MDEO R in
both configurations. For input model B we can see that the best results are also
obtained by MDEO R in both configurations. MDEO R also found the most
good solutions overall, having the highest mean CRA value.

MDEO C found the best CRA value for input model C. Because the generated
solutions are crowded and not diverse, the MDEO C II configuration takes more
time than MDEO R and MDEO M to find the results, despite having only three
evolvers compared to MDEO R which has seven.

5 https://github.com/mde-optimiser/gcm-2017-experiments
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Table 4: Summary of VIATRA-DSE TTC ’16 input models results
A B C D E

Best CRA 3 4 3.002 5.08 8.0811
Mean CRA 3 3.75 19992 2.8531 5.0188
Mean Time 0m 4s 729ms 0m 13s 891ms 0m 17s 707ms 1m 19s 136ms 9m 14s 769ms

For models D and E we note that configuration I does not actually find a
solution. This is likely because not all features can be allocated to classes during
the first 100 evolutions. For configuration II we can find valid solutions. For
model D, MDEO R finds a better CRA than MDEO M but worse than MDEO
C. For model E, we suspect that MDEO R needs even more evolutions to produce
good CRA values due to the large number of evolvers. However, by comparing
the average CRA we can observe that MDEO M found the best overall solutions
and is closely followed by MDEO C and MDEO R.

For all the input models evaluated, the MDEO S configuration is getting
stuck in local optima, because there are no rules to allow it to move a feature
without invalidating a solution consistent with the solution meta-model. The
best solutions it can find are given by the ones where all the features are assigned
to classes the first time, when the solution becomes valid, during the evolution
process. After this step, the solutions cannot generate better candidates through
the mutations allowed by the generated evolvers for this configuration.

Comparing the MDEO R results with the VIATRA-DSE results for the CRA
case included in Table 4, we can see that for configuration I, MDEO R found
an equal CRA value for model A, but a worse mean CRA. For configuration I,
MDEO R found worse CRA values for all other input models. For configuration
II, MDEO R found again an equal CRA for model A and a better CRA value
for all other models except E. The mean CRA values are worse for models A, B,
and E and better for C and D. However it is worth noting that for configuration
II, MDEO R ran for 500 evolutions compared to VIATRA-DSE which only
ran for 100 evolutions. Also, the conditions under which the experiments for
both solutions have been performed are very different, therefore a performance
comparison of the two solutions is not possible.

Because we seek to apply optimisation directly on models through endoge-
nous transformations, 100 evolutions is not enough to fully explore solutions
which have close to or more than 100 features that have to be assigned. This can
be observed in the results obtained by the MDEO R, which has seven evolvers
compared to MDEO C which has only three or MDEO M which has four. How-
ever, given enough evolutions, the MDEO C and MDEO M are at a disadvantage
when compared to MDEO R on the quality and diversity of explored solutions,
because once all features are assigned to a class, no new classes can be created.
This can lead to a limitation in search space exploration. This behaviour can
be observed by analysing the mean CRA values of the smaller models (A-B) for
configurations I and II.



In summary, we can say that the rule generation approach proposed in this
paper produces rules that are comparable to manually written evolution rules.
We can see that the obtained results for MDEO R are close to MDEO M or in
some cases, better. The main drawback for the refined rules configuration is that
the number of evolvers is larger than the ones manually defined, this ending up
as requiring a longer time and more evolutions to find good solutions.

We have only experimented with the CRA case so far. We are aware that
the presented approach may not be valid for other cases in its current form, but
we are encouraged by the results obtained and we are planning to extend it to
support other cases in future work.

6 Conclusions and Outlook

In this paper we have shown an approach to specifying optimisation problems in
an MDE context without the need to explicitly specify evolution rules. We have
shown an algorithm to generate the evolution rules from a problem specification
consisting of a meta-model, a set of additional multiplicity constraints, a set of
objectives and a list of meta-classes.

We have been encouraged by the results and we are planning to extend our
tool so it can be used for additional types of constraints beyond multiplicity
constraints. We also plan to test the approach with other case studies. One
other improvement we are planning to implement is to support the generation of
problem specifications for other tools requiring manual evolution rules such as
MOMoT. Another improvement we are interested in adding to MDEOptimiser
is support for a hyperheuristic algorithm to determine the best set of rule appli-
cations during an optimisation (e.g., using different rule sets during start up and
during later stages of the search), so that we improve design space exploration
in our optimisation process [23].
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