
Generating Efficient Predictive Shift-Reduce
Parsers for Hyperedge Replacement Grammars

Berthold Hoffmann1 and Mark Minas2 (B)

1 Universität Bremen, Germany
hof@informatik.uni-bremen.de

2 Universität der Bundeswehr München, Germany
mark.minas@unibw.de

Abstract. Predictive shift-reduce (PSR) parsing for a subclass of hy-
peredge replacement graph grammars has recently been devised by Frank
Drewes and the authors [6]. This paper describes in detail how effi-
cient PSR parsers are generated with the Grappa parser generator im-
plemented by Mark Minas. Measurements confirm that the generated
parsers run in linear time.

Keywords: hyperedge replacement grammar, graph parsing, parser generator

1 Introduction

Since the processing of diagram languages with computers becomes more and
more common, the question whether a diagram adheres to the rules of such a
language gets more and more important. If the rules of a language go beyond
validity wrt. a metamodel, the notion of grammars gains relevance. Here, graph
grammars are a natural candidate, in particular if they are context-free, like those
defined by hyperedge replacement (HR) [10]. Unfortunately, general HR parsers,
like the adaptation of the Cocke-Younger-Kasami (CYK) parser to graphs [13],
do not scale to graphs of the size used in modern applications, e.g., in model
transformation. So it is worthwhile to identify subclasses of HR grammars that
have efficient parsers. After devising predictive top down parsing (PTD) [4],
Frank Drewes and the authors have recently proposed predictive shift-reduce
parsing (PSR) [6], its bottom-up counterpart, which lifts SLR(1) string parsing
to graphs. Now Mark Minas has completed his implementation of Grappa, a
generator for PTD and PSR parsers.3

In order to keep the paper self-contained, we start with a brief account of
HR grammars in Section 2, introduce PSR parsing in Section 3, and sketch
conflict analysis in Section 4. (More details can be found in [6].) Then we describe
the implementation of efficient PSR parsers generated by Grappa in Section 5.
Evaluation of their efficiency in Section 6, also in comparison to PTD and CYK
parsers, confirm that they run in linear time. Finally we point out some future
work, in Section 7.
3 Grappa is available at www.unibw.de/inf2/grappa.

https://www.unibw.de/inf2/grappa/

2 Berthold Hoffmann and Mark Minas

2 Hyperedge Replacement Grammars

We use the wellknown relation between graphs and logic [1] to define graphs and
hyperedge replacement grammars.

Definition 1 (Graph). Let Σ be a vocabulary of symbols that comes with an
arity function arity : Σ → N, and let X be an infinite set of variables. We assume
that Σ is the disjoint union of nonterminals N and terminals T .

A literal e = `(x1, . . . , xk) consists of a symbol ` ∈ Σ and k = arity(`)
variables x1, . . . , xk from X. A graph is a sequence G = e1 . . . en of literals. With
Σ(G) andX(G) we denote the symbols and variables occurring inG, respectively.

X(G) represents the nodes of G, and a literal e = `(x1, . . . , xk) represents a
hyperedge (edge, for short) that has the label ` and is attached to the nodes
x1, . . . , xk. If necessary, isolated nodes can be represented by a literal ν(x), where
ν is a ficticious node symbol with arity(ν) = 1. Multiple occurrences of literals
represent parallel edges.

Definition 2 (HR Grammar). A pair r = (L,R) of graphs is a hyperedge
replacement rule (rule for short) if its left-hand side L consists of a single non-
terminal literal and if its right-hand side R satisfies X(L) ⊆ X(R); we usually
denote a rule as r = L→ R.

An injective function % : X → X is a renaming; G% denotes the graph ob-
tained by replacing all variables in G according to %.

Consider a graph G and a rule r as above. A renaming µ : X → X matches r
to the ith literal of G if Lµ = ei for some 1 6 i 6 n and X(G)∩X(Rµ) ⊆ X(Lµ).
A match µ of r rewrites G to the graph H = e1 . . . ei−1R

µei+1 . . . en. This is
denoted as G ⇒r,µ H, or just as G ⇒r H. We write G ⇒R H if G ⇒r H for
some rule r taken from a finite set R of rules, and denote the transitive closure
of this relation by ⇒∗R, as usual.

A hyperedge replacement grammar Γ = (Σ,T,R, Z) (HR grammar for short)
consists of a finite set R of rules over Σ, and of a start graph Z with Σ(Z) = S ∈
N and X(Z) = ∅. Γ generates the language L(Γ) = {G | Z ⇒∗R G,Σ(G) ⊆ T}.

Example 1 (Nested Triangles). Consider nonterminals S and N and the terminal
M. We use `x1...xk as a a shorthand for literals `(x1, . . . , xk). (Here ε denotes the
empty variable sequence.) Then the rules

Sε → Nxyz Nxyz → Mxuv Muyw Mvwz Nuwv Nxyz → Mxyz

(which are numbered 1, 2, and 3) generate a nested triangle:

Sε⇒
1
N123⇒

2
M145 M426 M563 N465 ⇒

2
M145 M426 M563 M478 M769 M895N798

⇒
3
M145 M426 M563 M478 M769 M895M798

(In Fig. 1, the graphs of this derivation are drawn as diagrams.)

Generating Efficient PSR Parsers for HR Grammars 3

S ⇒
1

1

2 3

⇒
2

1

2 3

4 5

6

⇒
2

1

2 3

4 5

6

8

7 9

⇒
3

1

2 3

4 5

6

8

7 9

Fig. 1. Diagrams of a derivation of a nested triangles. Circles represent nodes, boxes
and triangles represent edges of triangle graphs, which are connected to their attached
nodes by lines; these lines are ordered clockwise around the edge, starting at the sharper
edge of the triangle.

3 Predictive Shift-Reduce Parsing for HR Grammars

A parser attempts to construct a derivation for a given input according to some
grammar. In our case, graphs shall be parsed according to a HR grammar. A
bottom-up parser constructs the derivation by an operation called reduction:
the right-hand side of a rule is matched in the input graph, and replaced by its
left-hand side. A bottom-up parser for the nested triangles in Example 1 may
reduce every triangle Mabc according to rule 3. However, only a single reduction,
of the “central” triangle, will lead to a successful chain of reductions reaching the
start graph Sε. Cocke-Younger-Kasami parsers use this idea (after transforming
grammars into Chomsky normal form). Even if this works for small graphs with
up to hundred edges [13], it does not scale to bigger graphs. See our evaluation
in Sect. 6 below.

PSR parsers borrow an idea of context-free bottom-up string parsers: they
consume edges of a graph in exactly the order in which they would be constructed
by a derivation. An operation, called shift, puts terminal edges onto a stack, to
be considered for reduction later. A PSR parser will reduce rule 3 only once,
after all other edges have been shifted; further reductions of rule 2, and finally
of rule 1, may then lead to a successful parse.

A predictive bottom-up shift-reduce parser uses a characteristic finite au-
tomaton (CFA) to control its actions. We describe its construction at hand of
the running example. The states of the CFA are defined as sets of items, which are
rules where a dot indicates how far the right-hand side has been shifted onto the
stack. Consider the item Nxyz → Mxuv Muyw Mvwz � Nuwv of rule 2: Here the parser
has shifted all terminals, but not the nonterminal. This item will constitute a ker-
nel item of some state of the CFA, say q3. All variables x, y, z, u, v, w of the rule
are known in this situation. So we consider them as parameters of the state, and
denote it as q3(x, y, z, u, v, w). Before the missing Nuwv can be shifted, the parser
must recursively parse rule 2 or 3. So the items Nuwv → � MursMrwtMstv Nrts and
Nuwv → � Muwv are added to q3 as closure items. The dots at the start of these
items indicate that nothing of these rules has been shifted in this state. We have
to rename variables in order to avoid name clashes with the kernel item.

4 Berthold Hoffmann and Mark Minas

Like every CFA state, q3 has transitions under every symbol appearing after
the dot in some of its items. A transition under Murs leads from q3 to a state
with the kernel item Nuwv → Murs � MrwtMstv Nrts. No closure items arise in this
state since the dot is in front of a terminal. This state would be denoted as
q′1(u,w, v, r, s), but if there is already a state q1(x, y, z, u, v) that is equal to q′1
up to variable names, we redirect the transition to this state and write a “call”
q1(u,w, v, r, s) on the transition to specify how parameters should be passed
along. Another transition, under Muwv, leads to a state with kernel item Nuwv →
Muwv � , say quwv5 . This transition matches a terminal where all nodes are known;
so it differs from that under Murs that has to match two nodes r and s to hitherto
unconsumed nodes. Finally, a transition under Nuwv leads from q3 to a state, say
q4(x, y, z, u, v, w) with the kernel item Nxyz → Mxuv Muyw Mvwz Nuwv � .

A special case arises in the start state q0. In order to work without back-
tracking, some nodes of the start rule must be uniquely determined in the input
graph before parsing starts. In our example, all nodes x, y, z match the unique
nodes a, b, c that are attached to just one edge, with their first, second, and third
attachment, respectively. If the input graph does not have exactly three nodes
like that, it cannot be a nested triangle, and parsing fails immediately. Otherwise
the start state is called with q0(a, b, c). Unique start nodes can be determined
by a procedure devised in [5, Sect. 4], which computes the possible incidences of
all nodes created by a grammar.

Sε → � Nxyz
Nxyz→ � MxuvMuywMvwzNuwv
Nxyz→ � Mxyz

q0(x, y, z)

Nxyz→Mxuv � MuywMvwzNuwv
q1(x, y, z, u, v)

Nxyz→MxuvMuyw � MvwzNuwv
q2(x, y, z, u, v, w) Nxyz →MxuvMuywMvwz � Nuwv

Nuwv→ � MursMrwtMstvNrts
Nuwv→ � Muwv

q3(x, y, z, u, v, w)

Nxyz→MxuvMuyw MvwzNuwv �
q4(x, y, z, u, v, w)

Nuwv→Muwv �
q5(u,w, v)

Sε→Nxyz �
q6(u,w, v, r, s)

q0(a, b, c)

Mxyz
q5(x, y, z)

Mxuvq1(x, y, z, u, v)

Nxyz

q6(x, y, z)

Muywq2(x, y, z, u, v, w)

Mvwz

q3(x, y, z, u, v, w)

Muwv q5(u,w, v)
Mursq1(u,w, v, r, s)

Nuwv q4(x, y, z, u, v, w)

Fig. 2. The characteristic finite automaton for nested triangles

Generating Efficient PSR Parsers for HR Grammars 5

Example 2 (A CFA for Nested Triangles). In Fig. 2 we show the transition dia-
gram of the CFA of Example 1. The states q1, q3, q4, q5 are as discussed above.

A PSR parser pushes concrete states and transitions of its CFA onto a stack
while it performs transitions. In the states and transitions stored on the stack,
variables in the abstract states and transitions of the CFA are replaced by con-
crete nodes matching them in the input graph.

The topmost stack entry, a state, determines the next action of the parser.
This may be a shift under a terminal literal, or a reduction of some rule. (Tran-
sitions under nonterminal literals are handled as final part of a reduction.) The
actions for some topmost state q are as follows:

Shift: If q calls for a terminal transition under some literal `(x1, . . . , xk), lookup
the concrete nodes of q matching some of these variables, and match the edge
` with an edge e = `(v1, . . . , vk) in the host graph. Push e onto the stack,
remove it from the input, and push the target state, replacing variables with
the concrete nodes determined by q and e.

Reduce: If q calls for a reduction of some rule r, pop all literals of the right-
hand side of r from the stack, with their corresponding states. The state that
is on top has a transition under the left-hand side of r; push the left-hand
side and its target state, replacing the variables with the nodes determined
by the popped states. If the rule r is the start rule, and the input graph is
empty, accept the input as a graph of the language.

Note that the parser has to choose the next action in states that allow for
different shifts and/or reductions; in our example, q0 and q3 allow two shifts, see
Fig. 2. The parser predicts the next step by inspecting the unconsumed edges.
We will discuss in the next section how the conditions to be used for inspection
are computed. In the example, the shifts according to rule 3 (in states q0 and
q3) have to be chosen if and only if the input is empty.

Even if a particular shift transition has been chosen, a PSR parser may still
have to choose between different edges matching the literal. (Such a situation
does not occur in our example (but with the trees in [6, Sect. 4]). In such a case,
the PSR parser generator has to make sure that the free edge choice property
holds, i.e., that any of the matching edges can be chosen without changing the
result of the parser.

Example 3 (A PSR Parse for Nested Triangles). A parse of the graph derived
in Example 1 is shown in Fig. 3. We write the parameters of states as exponents,
just as for literals.

4 Conflict Analysis

A CFA can be constructed for every HR grammar; the general procedure works
essentially as described above. In this paper, we focus on the implementation of
parsers for HR grammars that are PSR-parsable. Criteria for an HR grammar to

6 Berthold Hoffmann and Mark Minas

q123
0 � M145M426M563M478M769M895M798

` q123
0 M145q12345

1 � M426M563M478M769M895M798

` q123
0 M145q12345

1 M426q123456
2 � M563M478M769M895M798

` q123
0 M145q12345

1 M426q123456
2 M563q123456

3 � M478M769M895M798

` q123
0 M145q12345

1 M426q123456
2 M563

q123456
3 M478q46578

1 � M769M895M798

` q123
0 M145q12345

1 M426q123456
2 M563

q123456
3 M478q46578

1 M769q465789
2 � M895M798

` q123
0 M145q12345

1 M426q123456
2 M563

q123456
3 M478q46578

1 M769q465789
2 M895q465789

3 � M798

` q123
0 M145q12345

1 M426q123456
2 M563

q123456
3 M478q46578

1 M769q465789
2 M895q465789

3 M798q465
5 �

`3 q123
0 M145q12345

1 M426q123456
2 M563

q123456
3 M478q46578

1 M769q465789
2 M895q465789

3 N798q465789
4 �

`2 q123
0 M145q12345

1 M426q123456
2 M563q123456

3 N478q123456
4 �

`2 q123
0 N123q123

6 �

Fig. 3. A PSR parse for the triangle derived in Example 1

be PSR-parsable have been discussed in [6]. In particular, such a grammar must
be conflict-free. In the following, we roughly recall this concept since it is needed
for the implementation of efficient PSR parsers, which is described in Sect. 5.

A graph parser must choose the next edge to be consumed from a set of
appropriate unconsumed edges. We define a conflict as a situation where an
unconsumed edge is appropriate for one action, but could be consumed also if
another action was chosen. Obviously, the parser can always predict the correct
action if the grammar is free of conflicts.

We now discuss how to identify host edges that are appropriate for the action
caused by an item. For this purpose, let us first define items in PSR parsing more
formally: An item I = 〈L→ R̄ �R | P 〉 consists of a rule L→ R̄R ∈ R with a dot
indicating a position in the right-hand side, and of the set P of parameters, i.e.,
those nodes in the item which do already have matching nodes in the host graph.
These host nodes are not yet known when we construct the CFA and the PSR
parser, but we can interpret parameters as abstract host nodes. A “real” host
node assigned to a parameter during parsing is mapped to the corresponding
abstract node. All other host nodes are mapped to a special abstract node −.
Edges of the host graph are mapped to abstract edges being attached to abstract
nodes, i.e., P ∪ {−}, and each abstract edge can be represented by an abstract
(edge) literal in the usual way. Note that the number of different abstract literals
is finite because P ∪ {−} is finite.

Consider any valid host graph G in L(Γ), generated by the derivation S =
G1 ⇒ · · · ⇒ Gn = G. We assume that the ordering of edge literals is preserved
in each derivation step. We then select any mapping of nodes in G to abstract

Generating Efficient PSR Parsers for HR Grammars 7

nodes P ∪ {−} such that no node in P is the image of two different host nodes.
Edge literals are mapped to the corresponding abstract literals. The resulting
sequence of literals can then be viewed as a derivation in a context-free string
grammar Γ (P) that can be effectively constructed from Γ in the same way as
described in [5, Sect. 4]; details are omitted here because of space restrictions.
Γ (P) has the nice property that we can use this context-free string grammar
instead of Γ to inspect conflicts. This is shown in the following.

Consider an item I = 〈L → R̄ �R | P 〉. Each edge literal e = l(n1, . . . , nk)
has the corresponding abstract literal abstrP (e) = l(m1, . . . ,mk) where mi = ni
if ni ∈ P , and mi = − otherwise, for 1 6 i 6 k. Let us now determine all
host edges, represented by their abstract literals, which can be consumed next
if the action caused by this item is selected. The host edge consumed next must
have the abstract literal FirstP (R) := abstrP (e) if I is a shift item, i.e., R starts
with a terminal literal e. If I, however, causes a reduction, i.e., R = ε, we can
make use of Γ (P). Any host edge consumed next must correspond to an abstract
literal that is a follower of the abstract literal of L in Γ (P). We refer to [6] for
a discussion of the general case. Here, we discuss the concept at hand of our
running example.

As an example, consider state q3(x, y, z, u, v, w) in Fig. 2 with its items Ii =
〈Li → R̄i � Ri | Pi〉, i = 1, 2, 3, with P1 = {x, y, z, u, v, w} and P2 = P3 =
{u, v, w}. For the second item, one can compute

FirstP2(R2) = abstrP2(Murs) = Mu−−,

i.e., the shifted edge in this step (called shift step 1 in the following) must be a
triangle edge being attached to the host node assigned to u with its first arm,
and nodes that have not yet been consumed by the parser with its other arms.

For the third item, one can compute

FirstP3(R3) = abstrP3(Muwv) = Muwv,

i.e., the shifted edge in this step (called shift step 2 in the following) must be a
M edge being attached to host nodes that are assigned to u, w, and v, respectively.

The parser needs a criterion for deciding the correct step when it has reached
q3(x, y, z, u, v, w). It is clear that shift step 1 must be taken when the host graph
contains an unconsumed edge matching Mu−−, but not Muwv, and shift step 2
if it contains an unconsumed edge matching Muwv, but not Mu−−. However, the
parser would be unable to decide the next step if the host graph contained
two unconsumed edges matching Mu−− and Muwv, respectively. Conflict analysis
makes sure that this situation, called shift-shift conflict, cannot occur here. This
is outlined in the following.

Let us assume that this conflicting situation occurs, i.e., Muwv may follow
later when shift step 1 is taken, or Mu−− may follow later when shift step 2 is
taken. Conflict analysis, therefore, must compute from Γ (P) the (finite) set of all
abstract edges that may follow when either shift step is taken. Let us denote this
set as Follow∗P (Ii), i = 2, 3. Its computation is straightforward and well-known

8 Berthold Hoffmann and Mark Minas

from string grammars. In our example

Follow∗P2
(I2) = {Mu−−,M−w−,M−−v,M−−−}

Follow∗P3
(I3) = {Muwv}

Of course, FirstPi
(Ri) ∈ Follow∗Pi

(Ii) for i = 2, 3. As one can see, Mu−− /∈
Follow∗P3

(I3) and Muwv /∈ Follow∗P2
(I2), i.e., such a shift-shift conflict cannot

occur, and the parser can decide in state q3 which step shall be taken, by checking
whether there exists a yet unconsumed edge matching Mu−− or Muwv.

Similar arguments apply when the parser has to decide between a shift and
a reduce step and between two reduce steps, potentially causing shift-reduce or
reduce-reduce conflicts as discussed in [6]. But these situations do not occur in
the CFA of our running example.

5 Efficient Implementation of PSR Parsers

We shall now describe how PSR parsers can be implemented efficiently so that
their runtime is linear in the size of the input graph. We shall first describe the
implementation at hand of our running example, and then the general procedure.

In the following, we assume that nodes and edges are represented by separate
data structures. Each edge keeps track of its label and all attached nodes. We will
discuss later what information must be stored at node objects to make parsing
efficient.

The implementation of the parser outlined in Sect. 3 is rather straight-
forward: The parsing stack described in Sect. 3 holds (terminal) host edges as
well as nonterminal edges produced by reduce steps, and CFA states with their
parameters bound to host nodes that have already been consumed by the parser.
In Example 3, we have represented such a state qi(x1, . . . , xk) together with its
binding match µ : {x1, . . . , xk} → X(G) by qµ(x1)...µ(xk)

i . In the implementation,
we represent each state just by its number i, and its binding by an array params
of host nodes such that params[j] = µ(xj) for each j = 1, . . . , k. And, instead
of just a single stack, we shall use three stacks: a stateStack of state numbers,
a paramStack of node arrays representing binding matches, and an edgeStack
of (terminal) host edges and nonterminal edges produced by reduce steps. The
elements stored in stateStack and in paramStack correspond to each other; each
corresponding pair represents a state qµ(x1)...µ(xk)

i with a binding match µ. The
parser is then implemented as the procedure parse shown in Fig. 4. The start
nodes, which have been determined before parsing begins (see Sect. 3), repre-
sented by an array startNodes, are passed as a parameter. The parser initializes
its stacks with the start state, which we assume to have number 0, together with
the binding match defined by the start nodes. The actual parsing actions are
implemented in procedures actioni, one for each CFA state qi(x1, . . . , xk). It is
their task to operate on the stacks and to terminate the seemingly infinite loop.

Fig. 5 shows the action-procedure for the accept state q6(x, y, z) of the nested
triangle CFA (Fig. 2); the parser terminates with success iff all nodes and edges

Generating Efficient PSR Parsers for HR Grammars 9

procedure parse (startNodes: array of Node)
push 0 on stateStack;
push startNodes on paramStack;
while true do

i ← top of stateStack;
call actioni

end
end

Fig. 4. The parsing procedure

procedure action6
if all edges and nodes

have been consumed
then

stop with success
end;
stop with error

end

Fig. 5. Action for state q6

of the host graph have been consumed when this state is reached. The action
procedures for states q3(x, y, z, u, v, w) and q5(x, y, z) are shown in Fig. 6. Pro-
cedure action3 must check which of the two shift transitions leaving q3 must be
taken. The third transition leaving q3, labeled with nonterminal edge Nuwv, is
implemented in procedure goto3 and described later. Procedure action3 first tries
to find a yet unconsumed edge of the host graph that corresponds to Murs, where
u is a parameter node, i.e., bound to a host node that is stored at position 4
of the current parameter array, whereas r and s must correspond to host nodes
that have not yet been consumed. Such a host edge is looked for in lines 6–7.
Grammar analysis shows that a host graph in the language of nested triangles
cannot contain more than one edge like that. (We will discuss later how the
parser generator can do so.) The parser, therefore, looks whether it finds any
such edge and, if successful, stores it in e. The parser takes the corresponding
shift transition to q1(u,w, v, r, s) if such an edge exists and if its other two con-
nected nodes have not been consumed before (line 8). The shift step marks the
identified edge e and nodes β and γ as consumed and computes the parame-
ter array of the next state q1(u,w, v, r, s). (Details on the corresponding data
structures are discussed later.) The host nodes corresponding to u, w, and v are
already known from the current parameter array, but r and s (at positions 4
and 5 of the array) are the nodes β and γ visited by edge e. The procedure then
returns, and the parsing loop can continue with the next iteration.

Procedure action3 checks the other shift transition if the test in line 8 fails.
Lines 19–28 are similar to lines 8–17. Note that the parser need not look for
another edge than the one found in lines 6–7 once such an edge has been found.
Finally, the parser must stop with an error if the test in line 19 also fails, because
a valid host graph must contain an edge satisfying one of the two conditions.

Procedure action5 shows the implementation of the reduce step to be taken
in state q5(x, y, z). Lines 54–55 create the nonterminal edge corresponding to
Nxyz produced by the reduce step (see Fig. 2). Lines 56–57 pop the elements
corresponding to the right-hand side of the rule from the stacks, i.e., the CFA
returns to state qi (line 58) where a transition labelled with the newly created
edge e must be taken (line 59). Such a goto-procedure for state q3(x, y, z, u, v, w)
is shown in lines 31–48. Lines 37–38 check whether the parameter edge matches
the one defining the transition. This is actually not necessary here where we

10 Berthold Hoffmann and Mark Minas

1 procedure action3
2 params ← top of paramStack;
3 u ← params[4]; v ← params[5];
4 w ← params[6];
5 /∗ shift Murs ∗/
6 e ← any unconsumed edge Mαβγ
7 in the host graph with α = u;
8 if e exists and β, γ are unconsumed
9 then

10 mark e, β, and γ as consumed;
11 nextParams ←
12 new array {u, w, v, β, γ};
13 push e on edgeStack;
14 push 1 on stateStack;
15 push nextParams on paramStack;
16 return
17 end;
18 /∗ shift Muwv ∗/
19 if e exists and β = w and γ = v
20 then
21 mark e as consumed;
22 nextParams ←
23 new array {u, w, v};
24 push e on edgeStack;
25 push 5 on stateStack;
26 push nextParams on paramStack;
27 return
28 end;
29 stop with error
30 end

31 procedure goto3(e : Edge)
32 params ← top of paramStack;
33 x ← params[1]; y ← params[2];
34 z ← params[3]; u ← params[4];
35 v ← params[5]; w ← params[6];
36 /∗ Nuwv ∗/
37 if e has label N and
38 visits nodes (u,w, v)
39 then
40 nextParams ←
41 new array {x, y, z, u, v, w};
42 push e on edgeStack;
43 push 4 on stateStack;
44 push nextParams on paramStack;
45 return
46 end;
47 stop with error
48 end

49 procedure action5
50 params ← top of paramStack;
51 x ← params[1]; y ← params[2];
52 z ← params[3];
53 /∗ reduce rule 2 ∗/
54 e ← new edge with label N and
55 visiting nodes (x, y, z);
56 pop 4 elements from edgeStack,
57 stateStack, and paramStack;
58 i ← top of stateStack;
59 call gotoi(e)
60 end

Fig. 6. Some procedures implementing the PSR parser for nested triangles.

have just a single transition with a nonterminal edge; but in general, there may
be several leaving transitions with different nonterminal edges, and the goto-
procedure must select the correct one. Lines 40–44 move the parser into the
next state q4(x, y, z, u, v, w).

The other action and goto procedures are similar to the presented ones. Let
us now consider the general case. Each state of a CFA provides a set of operations
which can be shift, reduce, accept, or goto operations. Shift and goto operations
correspond to transitions to other states; shift transitions are labelled by terminal
edge literals and goto transitions by nonterminal edge literals. The latter are
easily implemented by goto procedures similar to goto3 in Fig. 6. Each goto
procedure must check a fixed number of different cases, which can be performed
in constant time. The action procedures are responsible for choosing among the

Generating Efficient PSR Parsers for HR Grammars 11

shift, reduce, and accept operations provided by the corresponding states. For
each of these operations, the parser generator must identify a condition that
controls when the parser shall select its operation to be executed next. In the
example, procedure action3 selects the shift over Mwrs iff the condition in line 8
is satisfied, and a shift over Muwv if the condition in line 8 is not satisfied, but
the one in line 19. Moreover, the parser must be able to efficiently check these
conditions, i.e., in constant time.

The conditions can be easily derived from the conflict analysis described
in the previous section. Conflict analysis determines, for each item of a state, a
finite characterization of terminal edges of the host graph that must be consumed
next (for shift steps) or that may be consumed in later steps (for reduce steps).
There are no conflicts if an HR grammar is PSR, i.e., the parser can use these
conditions to always correctly select the next operation.

Now, how do these conditions look like? Each one is an abstract literal char-
acterizing (yet unconsumed) terminal edges of the host graph determining their
label and some of their nodes, whereas the other attached nodes are yet uncon-
sumed. A naïve procedure for searching for such an edge would be to iterate over
all unconsumed edges and to select an edge that has attached nodes as speci-
fied. This would take linear time instead of the required constant time; proper
preprocessing of the host graph prior to parsing is necessary. The parser genera-
tor knows about all abstract literals that are used in any condition. The idea is
to preprocess the host graph so that each abstract literal corresponds to a data
structure of all unconsumed edges that match the abstract literal, and to update
the corresponding data structures whenever an edge is consumed. The parser,
when searching for an unconsumed edge matching an abstract literal, then just
has to look into the corresponding data structure. Hash tables are an appropriate
data structures for this purpose. For each abstract literal a = l(m1, . . . ,mk), we
assign a hash table to label l. Prior to parsing, each edge e matching this literal
is added to this hash table. More specifically, all nodes attached to e and being
determined by the abstract literal define a tuple Keya(e) of nodes. Keya(e) is
mapped to a list in the hash table; this list contains e and (when the complete
graph has been preprocessed) all edges that have the same key Keya(e). Search-
ing for an edge being attached to some predefined nodes specified by an abstract
literal then consists of just computing the corresponding key and looking up the
mapped list in the appropriate hash table.

The speed of looking up this list is constant on average because the hash
table is fixed after preprocessing; only the contents of the list are modified when
edges are consumed. This can be done in constant time, too, when lists are
implemented by doubly linked lists and each edge keeps track of the list nodes
of all lists in which the edge is stored. Because the number of abstract literals
is fixed for a grammar, all these data structures (hash table, lists, and keeping
track of list nodes) require linear space in the size of the host graph if each hash
table size is chosen proportional to the number of all edges. Moreover, setting
up these data structures requires, on average, linear time in the size of the host
graph.

12 Berthold Hoffmann and Mark Minas

However, looking up unconsumed edges matching certain host nodes specified
by an abstract literal can be simplified in many cases (for instance in our running
example of nested triangles) so that hash tables become obsolete in many cases,
or altogether: Grammar analysis may reveal, for a state qi(x1, . . . , xk) of the
CFA, a terminal edge label l ∈ T , a parameter node xi and an “arm” j, 1 6
j 6 arity(l), that a host graph cannot have more than one unconsumed edge
with label l and being attached to µ(xi) with its j-th arm when the parser has
reached qµi . If an abstract literal used for edge lookup refers to such a node,
called determining node in the following, one can use just this node as a key
in the hash table. However, this makes the hash table unnecessary: Instead of
mapping a node to a list of attached edges, one can simply keep this list in the
node data structure. Such a list is just a plain association list which must be
maintained when consuming edges.

Grammar analysis can identify determining nodes by using the same tech-
niques as for conflict analysis, which computes sets of abstract edges that may
follow during parsing. If this computation shows that a parameter node is at-
tached to a shift edge, but to no other edge with the same label and using the
same arm later in the derivation process, one can conclude that such a param-
eter node is determining for the corresponding edge label and arm. Amazingly,
experiments with many PSR grammars have shown that almost all of them can
be processed without any hash table, i.e., run in linear time even in the worst
case and not only on average.

Finally note that PSR parsers not only process syntactically correct graphs
in linear time, but also erroneous graphs. This is so because each step of the
parser still takes constant time (at least on average), and the number of steps
linearly depends on the graph size.

6 Evaluation of Generated PSR Parsers

In order to demonstrate that PSR parsing is linear in the size of the host graph,
we have conducted some experiments with some example HR grammars. For
each grammar, we generated a PSR as well as a PTD parser using Grappa, and
also a CYK parser using DiaGen.4 We then measured parsing time for input
graphs of different size for each of these parsers. The results can be found at
www.unibw.de/inf2/grappa; here, we present the results for our running example
of nested triangles and also for Nassi-Shneiderman diagrams [12].

Each triangle graph consists, for some positive integer n, of 3n nodes and
3n − 2 edges. Fig. 7a shows the runtime of the PSR and PTD parsers when
processing triangle graphs with varying value n. Runtime has been measured
on a MacBook Pro 2013, 2,7 GHz Intel Core i7, Java 1.8.0, and is shown in
milliseconds on the y-axis while n is shown on the x-axis. Note the apparent
linear behavior of the PSR parser and the, slightly slower, PTD parser. Fig. 7b
shows the corresponding diagram for the CYK parser. Note that the runtime of
4 Homepage: www.unibw.de/inf2/DiaGen

https://www.unibw.de/inf2/grappa/
https://www.unibw.de/inf2/DiaGen/

Generating Efficient PSR Parsers for HR Grammars 13

0

20

40

60

80

100

120

140

160

180

200

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

PSR PTD

(a)

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

CYK

(b)

Fig. 7. Runtime (in milliseconds) of the PSR as well as the PTD parser (a) and the
CYK parser (b) for nested triangles. Note that the scales in (a) and (b) differ.

y n
cond

stmt stmt

Di+1:D1: y ncond

stmt
stmtDi y ncond

stmt stmt

cond
cond

y

y

n

n

stmt
stmt

stmt stmt

D3:

Fig. 8. Nassi-Shneiderman diagrams Di, i = 1, 2, 3,

the CYK parser is not linear in the size of the triangle graph. Note also that
PTD parsing and, in particular, PSR parsing is, by several orders of magnitude,
faster than CYK parsing. For instance, the CYK parser needs 700ms to parse a
triangle graph with n = 1000 whereas the PTD parser needs just 0.97ms, and
the PSR parser just 0.44ms.

We also conducted experiments with the more complicated language of
Nassi-Shneiderman diagrams that represent structured programs with condi-
tional statements and while loops. Fig. 8 shows such diagrams. Each diagram
can be modelled by a graph where statement, condition, and while blocks are
represented by edges of type stmt, cond, and while, respectively. Diagram D1
in Fig. 8, for instance, is represented by a graph condabcdstmtcefgstmtedgh. The
language of all Nassi-Shneiderman graphs is defined by an HR grammar with
the following rules:

Sε → NSDxyuv

NSDxyuv → NSDxyrs Stmtrsuv | Stmtxyuv

Stmtxyuv → stmtxyuv | condxyrs NSDrmun NSDmsnv | whilexyrsut NSDrstv

We use the shorthand notation L → R1 | R2 to represent rules L → R1 and
L→ R2 with the same left-hand side.

Runtime of the different parsers has been measured for Nassi-Shneiderman
graphs Dn with varying values n. Fig. 8 recursively defines these graphs Di for
i = 1, 2, 3, . . . and also shows D3 as an example. Each diagram Di consists of
2 + 6i nodes and 3i edges.

14 Berthold Hoffmann and Mark Minas

0

200

400

600

800

1000

1200

1400

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

PTD PSR

(a)

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900 1000

CYK

(b)

Fig. 9. Runtime (in milliseconds) of the PSR as well as the PTD parser (a) and the
CYK parser (b) for Nassi-Shneiderman graphs built as shown in Fig. 8. Note that the
scales in (a) and (b) differ.

Sε → Treexy

Treexy → pairxy |
Childxyu Treexy

Childxyu → edgexyuv Treeuv Nextxyu

Nextxyu → Childxyu |
ε

Fig. 10. Blowball graph grammar. Fig. 11. Blowball graph B10.

Fig. 9a shows the runtime of the PSR and the PTD parser for graphs Dn with
n being shown on the x-axis and the runtime in milliseconds on the y-axis. Fig. 9b
shows the corresponding diagram for the CYK parser. The PSR parser and the
CYK parser have been generated from the HR grammar presented above. For
generating the PTD parser, a slightly modified grammar with merging rules [4]
had to be used because the presented grammar is not PTD.

Note that the runtime of the PSR parser and the slower PTD parser is linear
in the size of the input graph whereas the runtime of the CYK parser is not
linear. Note again that the scales in the diagrams shown in Fig. 9a and b differ
and that PTD parsing and, in particular, PSR parsing is, by several orders of
magnitude, faster than CYK parsing. For instance, the CYK parser needs 1.2s
to parse D1000 whereas the PTD parser needs just 12ms, and the PSR parser
just 1.0ms.

The PSR parsers for triangle and Nassi-Shneiderman graphs make use of
determining nodes and, therefore, do not require hash tables to obtain linear

Generating Efficient PSR Parsers for HR Grammars 15

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

PSR	(hash) PSR	(no	hash)

(a)

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16

CYK

(b)

Fig. 12. Runtime (in milliseconds) of the PSR parser (a) with hash tables (faster) and
without hash tables (slower) and the CYK parser (b) for blowball graphs Bn. Note
that the scales in (a) and (b) differ.

parsing time. In order to demonstrate the speed-up produced by hash tables,
we constructed an HR grammar (see Fig. 10), called blowball grammar because
of the shapes of its graphs. Its PSR parser must perform some edge look-ups
without determining nodes. Grappa has been used to generate two versions of a
PSR parser: Version PSR (hash) uses hash tables to speed up these edge look-
ups, whereas version PSR (no hash) iterates over lists of candidates instead.
Moreover, a PTD and a CYK parser have been generated. For the experiments,
we considered blowball graphs Bn, n > 1, like B10 shown in Fig. 11: Bn consists
of n pair edges (represented by arrows in Fig. 11), one in the center and the
rest forming stars where the number of edges in each star is as close to the
number of stars as possible. Runtime of the different parsers has been measured
for these graphs Bn with varying values n. Fig. 12a shows the results of the two
PSR parsers. The PSR (no hash) parser has quadratic parsing time and is much
slower than the PSR (hash) parser with linear parsing time. For instance, PSR
(no hash) needs 360ms to parse B10000, whereas PSR (hash) needs just 10ms.
Parsing time of the PTD parser is similar to the PSR (no hash) parser and is
not shown here. Fig. 12b shows the results of the CYK parser, which is again
by several orders of magnitude slower than the other parsers. For instance, the
CYK parser needs 1.6s to parse B16 whereas the PTD parser needs just 9µs,
and the PSR parsers (both versions) just 5µs.

7 Conclusions

We have described the implementation of efficient predictive shift-reduce parsers
for HR grammars that can be automatically generated by the Grappa parser gen-
erator. Measurements for the generated parsers confirm that they run in linear
time, as postulated in [6]. In that paper, we have established some relationship
between HR grammars generating string graphs: PSR parsing turned out to be
a true extension of De Remer’s SLR(1) parsing and also of PTD parsing [4].

16 Berthold Hoffmann and Mark Minas

Earlier, now abandoned work on predictive graph parsers [9,11] has been based
on fairly restricted subclasses of node replacement grammars [8] and on edge
precedence relations.

Like PTD parsing, PSR parsing can be lifted to contextual HR grammars
[2,3], a class of graph grammars that is more relevant for the practical definition
of graph languages. This remains as part of future work. Moreover, it might be
worthwhile to extend PSR to the more powerful Earley-style parsers that use a
more general kind of control automaton, and pursue several goals in parallel [7].

References

1. B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic –
A Language-Theoretic Approach, volume 138 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 2012.

2. F. Drewes and B. Hoffmann. Contextual hyperedge replacement. Acta Informatica,
52:497–524, 2015.

3. F. Drewes, B. Hoffmann, and M. Minas. Contextual hyperedge replacement. In
A. Schürr, D. Varró, and G. Varró, editors, Applications of Graph Transformation
with Industrial Relevance (AGTIVE’11), LNCS 7233, pages 182–197. 2012.

4. F. Drewes, B. Hoffmann, and M. Minas. Predictive top-down parsing for hyperedge
replacement grammars. In F. Parisi-Presicce and B. Westfechtel, editors, Graph
Transformation - 8th Int. Conf., ICGT 2015. Proceedings, LNCS 9151, pages 19–
34. 2015.

5. F. Drewes, B. Hoffmann, and M. Minas. Approximating Parikh images for gen-
erating deterministic graph parsers. In P. Milazzo, D. Varró, and M. Wimmer,
editors, Software Technologies: Applications and Foundations - STAF 2016 Col-
located Workshops: DataMod, GCM, HOFM, MELO, SEMS, VeryComp, Vienna,
Austria, July 4-8, 2016, Revised Selected Papers, LNCS 9946, pages 112–128. 2016.

6. F. Drewes, B. Hoffmann, and M. Minas. Predictive shift-reduce parsing for hyper-
edge replacement grammars. In J. de Lara and D. Plump, editors, Graph Trans-
formation - 10th Int. Conf., ICGT 2017. Proceedings, LNCS. 2017. To appear.

7. J. Earley and H. Sturgis. A formalism for translator interactions. Comm. of the
ACM, 13(10):607–617, 1970.

8. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In G. Rozen-
berg, editor, Handbook of Graph Grammars and Computing by Graph Transfor-
mation. Vol. I: Foundations, chapter 1, pages 1–94. World Scientific, Singapore,
1997.

9. R. Franck. A class of linearly parsable graph grammars. Acta Informatica,
10(2):175–201, 1978.

10. A. Habel. Hyperedge Replacement: Grammars and Languages. LNCS 643. 1992.
11. M. Kaul. Practical applications of precedence graph grammars. In H. Ehrig,

M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Graph-Grammars and Their
Application to Computer Science, LNCS 291, pages 326–342, 1986.

12. M. Minas. Diagram editing with hypergraph parser support. In Proc. 1997 IEEE
Symp. on Visual Languages (VL’97), Capri, Italy, pages 226–233. IEEE Computer
Society Press, 1997.

13. M. Minas. Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Science of Computer Programming, 44(2):157–180, 2002.

	Generating Efficient Predictive Shift-Reduce Parsers for Hyperedge Replacement Grammars

