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Abstract We introduce loose graph simulations (LGS), a new notion
about labelled graphs which subsumes in an intuitive and natural way
subgraph isomorphism (SGI), regular language pattern matching (RLPM)
and graph simulation (GS). Being an unification of all these notions, LGS
allows us to express directly also problems which are “mixed” instances
of previous ones, and hence which would not fit easily in any of them.
After the definition and some examples, we show that the problem of
finding loose graph simulations is NP-complete, we provide formal trans-
lation of SGI, RLPM, and GS into LGSs, and we give the representation
of a problem which extends both SGI and RLPM.

1 Introduction

Graph pattern matching is the problem of finding patterns satisfying a specific
property, inside a given graph. This problem arises naturally in many research
fields: for instance, in computer science it is used in automatic system verification,
network analysis and data mining [5, 15,25, 28]; in computational biology it
is applied to protein sequencing [24]; in cheminformatics it is used to study
molecular systems and predict their evolution [1,4]; in forensic science and social
network analysis to profile users and their behaviours [8].

Given a so wide range of applications, many definitions of patterns have been
proposed, each aiming to highlight different properties of a graph; for instance,
these properties can be specified by another graph, by a formal language, by a
logical predicate, etc. This situation has led to different notions of graph pattern
matching, such as subgraph isomorphism (SGI), regular language pattern matching
(RLPM) and graph simulation (GS). Each of these notions has been studied in
depth, yielding similar but different theories, algorithms and tools.

A drawback of this situation is that it is difficult to deal with matching
problems which do not fit directly in any of these variants. In fact, most often we
need to search for patterns that can be seen as a compositions of multiple notions
of graph pattern matching. An example is when we have to find a pattern which
has to satisfy multiple notions of graph pattern matching at once; due to the lack
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of proper tools, these notions can only be checked one by one with a worsening
of the performances. Another example can be found in [8,9], where extensions
of RLPM and their application in network analysis and graph databases are
discussed. A mixed problem between RLPM and SGI is presented in [2].

This situation would benefit from a more general notion of graph pattern
matching, able to subsume naturally the more specific ones find in literature.
This general notion would be a common ground to study specific problems and
their relationships, as well as to develop common techniques for them. Moreover,
a more general pattern matching notion would pave the way for more general
algorithms, which would deal more efficiently with “mixed” problems.

To this end, in this paper we propose a new notion about labelled graphs,
called loose graph simulation (LGS, Section 2). The semantics of its pattern
queries allow us to check properties from different classical notions of pattern
matching, at once and without cumbersome encodings. LGS queries have a nat-
ural graphical representation that simplifies the understanding of their semantic;
moreover, they can be composed using a sound and complete algebra (Section 3).
Various notions of graph pattern matching can be naturally reduced to LGSs, as
we will formally prove in Sections 4 to 6; in particular, the encoding of subgraph
isomorphism allows us to prove that computing LGSs is an NP-complete problem.
Moreover, “mixed” matching problems can be easily represented as LGS queries;
in fact, these problems can be obtained compositionally from simpler ones by
means of the query algebra, as we will show in Section 7 where we solve a sim-
plified version of the problem in [2]. Final conclusions and directions for further
work (such as a distributed algorithm for computing LGSs) are in Section 8.

2 Hosts, Guests and Loose Graph Simulations

Loose graph simulations are a generalized notion pattern matching for certain
labelled graphs. As often proposed in the literature, the structures that need to
be checked for properties are called hosts, whereas the structures that represent
said properties are called guests.

Before we formalise LGSs, let us fix some basic notions and notation.

Definition 1. A host graph is a triple (X, V, E) consisting of a finite set of
symbols X (also called alphabet), a set V' of nodes and a set E CV x X x V of
edges. For an edge e = (v,1,v") write s(e), o(e), and t(e) for its source node v,
label I, and target node v', respectively. For a vertex v write in(v) and out(v)
for the sets {e | t(e) = v} and {e | s(e) = v} of its incoming and outgoing edges.

When clear from the context, we refer host graphs simply as graphs and denote
them and their components as H and as (X, Vg, Ey) (and variations thereof).

Definition 2. A guest G = (X, V,E,M,U,E,C) is a (host) graph (X,V,E)
additionally equipped with:

— three sets M,U,E CV, called respectively must, unique and exclusive set.
— a choice function C : V. — P(P(E)), s.t. | JC(v) = out(v) for each v € V.
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Figure 1: The guest graphic notation (left) and an example (right).

Roughly speaking, a guest is graph whose:

— nodes are decorated with usage constraints telling whether they must appear
in the host, if their occurrence should be unique, and whether their occurrences
can also be occurrences of other nodes or are exclusive;

— edges are grouped into possible “choices of sets of ongoing edges” for any
given source node to be considered by a simulation.

The semantics of the three sets M, U, £ and the choice function C will be
presented formally in the definition of loose graph simulations (Definition 5).
We adopt the convention of denoting guests as G (and variations thereof) and
writing (X¢, Ve, Eq, M,U, E,C) for the components of the guest G.

Guests can be conveniently represented using the graphical notation shown
in Figure 1 (a formal algebra is discussed in Section 3). A node belonging to the
must, unique or exclusive set is decorated with the symbols 3, ! and i, respectively.
Choice sets are represented by arcs with dots places on the intersection with an
edge that belong the the given choice set. The empty empty choice set (0 € C(v))

is represented by the “corked edge” ("< ).

Example 1. Figure 1 shows the graphical representation of a guest with two
nodes u and v. The must set is {u,v}, the unique and exclusive sets are both
empty, and the choice function takes u to {{u,v}} and v to {0}.

Akin to graph simulations (Definition 11), a loose one is a suitable subgraph
of the product graph of guest and host that is coherent with the additional
information prescribing node and edge usage.
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Figure2: An LGS (center) between a guest (left) and a host (right).

Definition 3. Let Gy = (X1, V1, E1) and G = (X2, Va, Es) be two graphs. Their
tensor product graph is a graph defined as

Gix Gy 2 (1N Xy, Vi xVy, EX)
EX 2 {((u,v),a,(v,v")) | (u,a,v) € By A (u',a,v") € By}

Definition 4. For M = (X, V, E) a graph over a set of labels X, P is the set
of all paths in M :

Py £ U {(egy...,en) € E"|Vie{l,...,n} s(e;) =t(e;—1)}
neN

The source (s: Py — V), target (t: Py — V), and label (o: Py — XT)
functions are extended accordingly:

s((e0y- .- en)) = s(eg) t((eg, ... en)) 2tlen) ol(eo,-.. en)) = a(en)...o(en).

Let v,v' € V. Ppr(v,v") denote the set of all paths starting from v and ending in
v, ie Par(v,v') £ {p € Pas | s(p) = v At(p) =0’}

(1>

Note how paths are represented by sequences of edges, since a sequence of host’s
vertices can express the existence of multiple paths.

Definition 5. A loose graph simulation (LGS for short) of G in H is a subgraph
(Yo N Xy, VE7H EG=H) of G x H subject to the following conditions:

(LGS1) wvertices of G in the must set occur in VE=H
VueM I €V (u,u) e VETH,
(LGS2) wvertices in the unique set are assigned to at most one vertex of H:

Yu e U YU W €V (u,u) € VETH A (u,0) e VETH — o/ =0
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(LGS3) wertices of H assigned to a vertex in the exclusive set cannot be
assigned to other vertices:

VuecEVveVgVu' € Vig: (u,u') e VETHA(0,u)) e VETH — 4 =w;

(LGS4) for (u,v) € VEH  there is a set in C(u) s.t. each of its elements is
related to an edge with source v and only such edges occur in EG7H :

Y(u,u') € VE7H Iy € C(u) Y(u,a,v) €7 I € Vy
(w1}, a, (v,0)) € ESH

Y((u,u), a, (v,v')) € ES7H 3y € C(u) ((u,a,v) €y A
V(u,b,w) € v Fw' € Vg ((u,u),b, (w,w")) € EGHH);

(LGSS5) the simulation preserves the connectivity w.r.t. nodes marked as must:
for each (u,u’) € VEH gnd v € M if Pg(u,v) # 0 then there exists v' € Vi
such that P nx, ve-r go—m)((u,u), (v,0")) # 0.

The domain of all LGSs for G and H is denoted as SE7H

As already mentioned at the end of Definition 2, the definition of LGS
attributes a semantics for the must, unique, exclusive sets and the choice function.
Regarding the unique set, Condition LGS2 requires that every vertex of the
guest in this set to be mapped by at most one element of the host. Similarly,
Condition LGS3 requires the vertices of the host paired in the LGS with a node
of the exclusive set to be only paired with that node. Condition LGS4 defines
the semantics of the choice function: given a pair of vertices (u,u’) € VE=H,
it requires to select at least one set from C(u). The edges of these selected sets
(and only these edges, as stated by the second part of the condition) must be
paired in the LGS to edges in H with source «’. This condition can be seen as a
generalization of the second condition of graph simulations (Definition 11) that
requires all outgoing edges from u to be in relation with outgoing edges of u’'.

Conditions LGS1 and LGS5 define the semantics of the must set: the first
condition imposes that every vertex in this set must appear in the LGS, while
the second condition requires that, for each (u,u’) € VE¢7H each vertex in the
must set reachable in the guest from w is also reachable in the LGS, with a path
starting from (u,u’).

Ezample 2. Figure 2 shows a guest and its loose graph simulation over a host. In
this example M = {m} and & = £ = (). Moreover, the choice function is linear,
i.e. C = \x.{{e} | e € out(z)} U {0 | out(z) = 0}. LGSs of this guest represents
paths (eg, €1, ...,e,) of arbitrary length in the host such that Vi < n o(e;) = a
and o(e,) = b. The guest is therefore similar to the regular language a*b and a
LGS identifies paths in the host labelled with words in this language.

Proposition 1. Let G be a guest with choice function C defined as A\x.{out(z)},
let H be a host and let S = (Xq N Xy, VE7H EG=H) be q subgraph of G x H.
If S satisfies Condition LGS4 then it also satisfies Condition LGS5.
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Proof. Under the additional hypothesis that for all v € Vg C(v) = {out(v)}, if
(u,u’) € VE7H then Condition LGS4 requires that for all (u, a,v) € out(u) there
exists v’ such that (v,v") € VE7H and ((u, ), a, (v,v")) € ES7H . Coinductively,
since the same will hold for every of those pair (v,v’), it follows that whenever
there is a path in G from u to a node m € M in the must set, then there must
be a path in S from (u,u’) to a pair of vertices (m,w), where w € V. Hence,
Condition LGS5 is satisifed.

3 An algebra for guests

Guests are used to specify the patterns to look for inside a host; hence they
should be easy to construct and to understand. To this end, besides the graphical
notation described in Section 2, in this section we introduce an algebra for guests
which allows us to construct them in a compositional way.

Definition 6. Let emp be the empty guest. A guest with only one vertex and no
edges is a unary guest and is denoted as

pa=0.{p}0.{p|3c At {p|te A {plic AL {p—{0|ocA}})

where p is the only vertex and A C {3,!,i,@}. For a a name, P and Q unary
guests, the arrow operator from P to Q « is defined as

P i> Q = ({a}7{p7Q}7{(paaaQ)}7MP UMQ7Z/{P UZ/{Q,SP U5Q7C—>)

cpU{{(p,a,q)}}Ucqg ifp=qnrz=p
C7 & Xz ep U{{(p, 2, q)}} ifp#qhz=p
cQ ifp#qhz=q

The empty guest, all unary guests and all guests constructed with only the arrow
operator are also called elementary guests.

For example, a node p with only a self loop labelled o can be expressed with
the term p = p. Besides the elementary guests, the algebra is completed by
introducing two binary operators used to combine guests.

Definition 7. Let G1 and Gy be two guests. Their addition is the guest:
G1® Gy 2 (21U X5, Vi UVa, By U By, My U Mo, Uy Ulhs, & U E2,CP)
where the choice function C® is defined as

Cl(ZL')UCQ(.’ﬂ) ifiL’GVl ANz € Vo
C% £ 2z2.{ Ci () ifreW
CQ(.%‘) ifx eV,

The multiplication of G1 and Go is the guest:
G1® Gy = (X1 U, ViUV, By UEy, My UMa, Uy Ulks, & U E5,C%)
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where the choice function C® is defined as follows

{(MmUyn|meCi(z) Ay el(x)} fxeViAxzels
C® 2 \x.{ Cy() ifr eV
Co(x) if x € Vs

Notice how addition and multiplication operators differs only by the definition
of the choice function for vertices of both G; and Gs. In the case of addition,
the resulting choice function is the union of the two choice function C; and Cs,
whereas for the multiplication, given a vertex v € V4 N V3, every set of C®(v) is
the union of a set in C;(v) and one in Ca(v).

Proposition 2. The set of all guests with addition or multiplication is a com-
mutative monoid, these two operations are idempotent and the multiplication is
distributive over the addition.

As we will see in the next section, this algebra can be used to represent cleanly
loose graph simulations’ guests and can be used as a tool to build hybrid queries
w.r.t. this notions. Furthermore, a notion of normal form can be easily defined
for the syntactical terms of this algebra.

Definition 8. A guest syntactical term is considered in normal form iff it is
an addition of one or more subterms, where each subterm is a multiplication of
elementary guests.

Ezxample 3. The term ¢34} @ (p{g} Lpep LN ¢) is in normal form and
represent the guest

({a, b}, {p. ¢}, {(p, a,p), (, b, )}, {p, ¢}, 0,0, {p = {{(p, @, ), (0,0, @)} }, ¢ = {0}})
also shown in Figure 1 (right).

From the definitions of the algebraic operators we obtain the following result.

Proposition 3. For G = (X, V,E, M,U,E,C) a guest, its normal form is:

® (st 7 t<e>)>

ecry

@U{El\veM}u{!\vGM}U{HvES}U{@\(BEC(u)}@ @ (
veV veV

v€C(v)
In order to simplify the exposition, we end the definition of the guests’ theory
by introducing their renaming. Let V and F be a set of vertices and a set of
edges respectively. We define their renaming as follows:

4 ifpgV
Viv/d = {(v \ {p}) U{q} otherwise
(v,a,v") € F
Elp/q)={ (w,a,v)| (v #p = u=u)AN(=p = u=q)
W#p = v=0)AMW =p = v=yq)
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Let G = (X, V,E,M,U,E,C) be a guest. We define the renaming of p € V
w.r.t. a fresh name ¢ ¢ V as follows:

Glp/ql = (¥,VIp/ql, Elp/q], Mlp/q),U[p/ql, E[p/ 4], Cp.q¢)

where

o g dSW/alSec@)} fetpradg
P =\ (Sp/gl | S €Cp)} ifz=q

4 The LGS problem is NP-complete

In this section we analyse the complexity of computing LGSs by studying their
emptiness problem. Without loss of generality, we will now consider only guests
and hosts with the same X. In the following, let G = (¥X¢, Vg, Eq, M, U, E,C)
and H = (Xy, Vi, Ex) be a guest and a host respectively.

Definition 9. The emptiness problem for LGSs between G and H consists in
checking whether SE=H = ().

Proposition 4. Computing LGSs, as well as their emptiness problem, is in NP.

Proof. Let S = (X, V¢=H EG=H) be a subgraph of G x H. We will now prove
that there exists a polynomial algorithm w.r.t. the size of G and H that checks
whether S satisfy all the conditions of Definition 5. The satisfiability checking
of Condition LGS1 is in O(M x VE=H) since it is sufficient for every vertex in
the must set M to check whether a vertex of the host paired with it exists. For
similar reasons, Conditions LGS2 and LGS3 can also be checked in polynomial
time. Moreover, to check Condition LGS4 it is sufficient to check, for each
(u,v) € VE7H whether there is v € C(v) s.t. v C m o out((u,v)) and if for
all W € m oout((u,v)) there exists v € C(v) s.t. v/ € v C m o out((u,v)).
This can be done by a naive algorithm in O(Vy x Eg x (Vg x Eg +C x E%)).
Lastly, checking whether S satisfies Condition LGS5 requires the evaluation of the
reachability relation of G and S and therefore can be computed in O(V3 x V3)
using the Floyd-Warshall Algorithm [11]. Since every condition can be checked
in polynomial time we can conclude that the LGS problem is in NP. a

4.1 NP-hardness: Subgraph Isomorphisms via LGSs

We will now show the NP-hardness of the emptiness problem for LGSs by
reducing the emptiness problem for subgraph isomorphism to it. The subgraph
isomorphism problem requires to check whether a subgraph of a graph (host)
and isomorphic to a second graph (query) exists. Application of this problem can
be found in network analysis [15], bioinformatics and chemoinformatics [1,4].



Loose Graph Simulations 9

Definition 10. Let H = (X, Vg, Eg) and Q = (X, Vg, Eqg) be two graphs called
host and query respectively. There exists a subgraph of H isomorphic to Q
whenever there exists a pair of injections ¢ : Vo — Vg andn: Eg — Ey s.t. for
each edge e € FEg

ole) =con(e)  pos(e)=sonle)  ¢ot(e)=ton(e)

The subgraph isomorphism problem, as well as the emptiness problem associated
to it, is shown to be NP-complete by Cook [6]. Its complexity and its importance
makes it one of the most studied problem and multiple algorithmic solution
where derived for it [4,7,27]. We will now show that the emptiness problem for
subgraph isomorphism can be solved using LGSs.

Proposition 5. Let H = (X, Vy,Ey) and Q = (X,Vg, Eg) be a host and a
query for subgraph isomorphism respectively. Moreover, let

G =P vEnu@ouw-n ® | Q) (8(6) 2, t(€)>

veVg ecEq

There exists a subgraph of H isomorphic to Q iff there exists a LGS of G in H,
i.e. SG7H £,

Proof. From the definition of G, its must, unique and exclusive sets, as well as
its choice function, are M = U = £ = Vg and C = Az.{out(x)} respectively.
Suppose ¢ : Vo — Vi and n: Eg — Ey be two injections as in Definition 10.
Then the graph S = (X, VE=H ECH) where VEH & {(y,u') | v/ = ¢(u)}
and E¢7H & {((u,u),a, (v,v")) | (v, a,v") = n((u,a,v))} form a LGS for G.
Indeed, it satisfy Conditions LGS1 to LGS3, since ¢ is an injection. Moreover,
since n : Eg — Epy is also an injection and for each edge e € Eg it holds that
ag(e) =con(e), pos(e) =son(e) and ¢pot(e) =ton(e), S must be such that
for each (u,u’) € VE=H and for each (u, a,v) € out(u) there exists v’ such that
(v,0") € VE7H and ((u,u’), a, (v,0v")) € ES7H Tt follows that S is a subgraph
of G x H and Condition LGS4 is satisfied, since C(u) = {out(u)}. Moreover
the satisfaction of Condition LGS5 follows from Proposition 1. S is therefore
a LGS of G in H. Suppose that there is a LGS S = (X, VE>H EG=H) Let
¢ s.t. p(u) = v <= (u,u') € VE7H and n s.t. n((u,a,v)) = (v, a,v') <=
((u,u'),a, (v,0")) € EC7H. Since M =U = £ = Vg and S is a LGS, it holds
that ¢ is an injection defined on the domain Vg. Moreover 7 is also an injection,
since C = Az.{out(z)} and S satisfies Condition LGS4, and together with the
hypothesis that S is a subgraph of G x H it must also hold that for each edge
e€ Eqg o(e) =o00n(e), pos(e) =son(e) and ¢ ot(e) =tomn(e). There exists
therefore a subgraph of H isomorphic to Q. O

Note how the translation from subgraph isomorphism’s queries to guest for
LGSs defined in Proposition 5 is structure-preserving. Indeed, an example of
this can be seen in Figure 3. This property is important since it makes defining
LGSs’ guests to solve the subgraph isomorphism problem as intuitive as the
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Figure 3: A possible query for subgraph isomorphism (on the left) and its trans-
lation to a guest for LGSs (on the right).

respective queries for it. This is also the case for other notions commonly used

in the graphs’ pattern matching community. Moreover, since the translated guest

are as intuitive as the original query, this property strengthens the idea of using

guests and LGSs to represent and compute hybrid queries w.r.t. these notions.
From Proposition 4 and Proposition 5 follows that:

Theorem 1. The emptiness problem for LGSs is NP-complete.

5 Graph Simulations are Loose Graph Simulations

Graph simulations are relations between graphs used extensively by social net-
works companies to perform user analysis [8]. They also can be applied to
bioinformatics and urban planning [10]. The graph simulation problem requires
to check whether a portion of a graph (host) simulates another graph (query).

Definition 11. Let H = (X, Vg, Eg) and Q = (X, Vg, Eg) be two graphs called
host and query, respectively. There exists a graph simulation of @ in H iff there
is a relation R C Vg x Vi such that:

— for each node u € Vi there exists a node v € Vi such that (u,v) € R;
— for each pair (u,v) € R and for each edge e € out(u) there exists an edge
e’ € out(v) such that o(e) = o(e’) and (t(e),t(e’)) € R.

Checking whether a graph simulation exists between two graphs can be done
in polynomial time [3,13]. We will now show how to reduce the emptiness problem
for graph simulations to the emptiness problem for LGSs.

Proposition 6. Let H = (X, Vy,Ey) and Q = (X,Vg, Eg) be a host and a

query for graph simulation respectively. Moreover, let

o(e)
G= @ V{3}u{oout(v)=0} D ® s(e) AN t(e)
'UGVQ EGEQ

There is a graph simulation of Q in H iff SE—H £ ().
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Figure4: A possible query for graph simulation (on the left) and its translation
in a guest for loose graph simulations (on the right).

Proof. From definition of G, its must, unique and exclusive sets, as well as its
choice function, are M = Vg, U = € = () and C = Az.{out(x)} respectively. Let
R be a graph simulations. The graph S = (X, VE7H EG=H) where VE7H = R
and B9~ = {((u,u'),a, (v,v")) | (u,u'), (v,v") € R, (u,a,v) € Eg, (u,a,v") €
En}. is a loose graph simulations for G. U = & = () makes Conditions LGS2
and LGS3 always true, whereas the first condition of Definition 11, that requires
all vertices of Vg to appear in the first projection of R, makes Condition LGS1
satisfied. The second condition of Definition 11 requires that, given a pair (u,v) €
R, every edge of out(u) is associated with one edge of out(v) with the same label
and with targets paired in R. Condition LGS4 is therefore satisfied. Lastly, the
satisfaction of Condition LGS5 follows from Proposition 1. .S id therefore a loose
graph simulation of G in H. Suppose there exists a LGS S = (X, V¢—7H pG—H),
Then V¢ is a graph simulation. The definition of must set M = Vg ensures
that each vertex of Vy must appear in the first projection of VE=H: the first
condition of Definition 11 is satisfied. Moreover, the definition of the choice
function C = Az.{out(z)} and Condition LGS4 implies that for each (u,u’) €
VE=H and for all (u,a,v) € out(u) there exists v’ such that ((u,u’),a, (v,v")) €
ES~H and, since S is a subgraph of G x H, (v,v') € VE7H_ Thus, the second
condition of Definition 11 holds and V&~ is a graph simulation. a

Ezample 4. Figure 4 shows a query for graph simulations and the equivalent
guest for loose graph simulations. As already seen in Section 4.1, the translation
preserve the structure of the graph.

6 Regular languages pattern matching

Regular languages defines finite sequences of characters (called words or strings)
from a finite alphabet X [14]. Although widely used in text pattern matching,
they are also used in graph pattern matching [2,20]. In this section we will restrict
ourselves to e-free regular languages, i.e. regular languages without the empty
word e [29]. This restriction is quite common in the pattern matching setting,
since the empty word is matched by any text or graph and therefore it doesn’t
represent a meaningful pattern.

Definition 12. Let X be an alphabet. () is a e-free regular language. For each
a € ¥, {a} is a efree regular language. If A and B are e-free regular language,
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so are the following:
A-BE{w|vePAweQ} A|BE£AUB AT &£, A"

In [29] it is shown that every regular language without the empty string e can be
expressed with the operations defined for e-free reqular languages. We will now
introduce the pattern matching problem for non-empty e-free regular languages.
In the following let H = (X, Vi, Ex) and L be respectively a host and a e-free
regular language such that £ # (.

Definition 13. The Emptiness problem for Regular Language Pattern Matching
(RLPM) consist in checking if there is a path p € Py such that o(p) € L.

To solve this problem using LGSs we will use the equivalence between regular
languages and non-deterministic finite automata [26].

Definition 14. An NFA is a 5-tuple, N = (X,Q, A, qo, F) consisting of an
alphabet X, a finite set of states @), an initial state qo, a set of accepting (or
final) states FF C Q and a transition function A: Q x X — P(Q).

Let w = ag,a1,...,a, be a word in X*. The NFA N accepts w if there
is a sequence of states 1o,T1,...,"pe1 N Q S.t. 7o = qo, rit1 € A(ry,a;) for
i=0,...,n, and 41 € F. With L(N) we denote the set of words accepted by
N, i.e. its accepted language.

Remark 1. Any non-empty regular language without € can be translated to a
non-deterministic finite automaton where the initial state does not have any
incoming transitions and the only accepting state does not have any outgoing
transitions. Indeed, let N = (X, Q, A4, qo, F') be a NFA capturing a non-empty
regular language without e, then:

— the initial state g is not a final state. We can therefore construct an equi-
valente NFA where g9 does not have any incoming transitions from N by
adding a new initial state that ¢, that mimic the outgoing transitions of qo;

— we add a new accepting state f and add all incoming transition from a state
to a final state to the incoming transitions of f. Lastly, we update the set of
accepting states to be {f}. As such, f is the only accepting state and does
not have any outgoint transitions.

Formally, from N we therefore build N' = (X, QU {q(, f'}, 4’, ¢{, {f}) where:
— foralla € ¥, A'(q),a) = A(qo,a) and A'(f,a) = 0;
—forallge Qand a € X, A'(q,a) = A(g,a) U{f | FN Alg,a) # 0}.

It is easy to show that L(N) = L(N).

Proposition 7. Let N = (Q, X, A, qo, {f}) be a NFA where the initial state qo

does not have any incoming transitions and the only final state f does not have
any outgoing ones. Let H = (X, Vg, Ey) be a host. Let

G =4qoz @ faey @ 692%&% (q L q’)
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Figure 5: A possible query for regular languages, represented by the NFA on the
left, and its translation in a guest for loose graph simulations (on the right). The
language accepted by the NFA is (ab)™.

There exists a path p € Py in H s.t. o(p) is accepted by N iff there exists a loose
graph simulation of G in H, i.e. SC7H £ ().

Proof. If there exists (eq,...,en) € Py s.t. o(p) is accepted by N then from
definition of acceptance condition of NFAs there must exists a sequence

(po> 5(e0)) 2 (py, s(er)) 25 . L s(en)) T (paya, tlen))

such that pg = o and p,y1 = f; for all i € {1,...,n} t(e;—1) = s(e;); for all
i €40,...,n} piy1 € A(p;). It is easy to show that the graph S represented
by this sequence is a loose graph simulation in S°7# . Since G is constructed
from N by preserving the transition relation A, S is a subgraph of G x H.
Conditions LGS1 to LGS3 trivially holds since pg = qg, pp = f and U = £ = ().
From definition of C, we have that for all ¢ € {0,...,n} {(pi,o(e;),pi+1)} € C(p;)
and therefore Condition LLGS4 holds. Condition LGS5 is also verified since the
path obtained by projecting the graph to its first component is a path from ¢ to
f. Lastly, the space required by G is polynomial w.r.t. the size of N. If there exists
a loose graph simulation of G in H, then Condition LGS5 ensures that there
must exists a path p = (eg, ..., ey) in it such that m 0s(p) = qo and 71 0t(p) = f.
Since a LGS in SY7# is a subgraph of the product G' x H, then by definition of £
the path p must be coherent with A, i.e. Vi € {0,...,n} mot(e;) € Aomos(e;).
Thus, the path m2(p) obtained by projecting p to its second component, i.e.
ma(p) = ((m2 0 s(eg),0(ep), ™2 0 t(eg)), ..., (w2 0 s(e,), o(en), m2 0 t(ey))), is such
that o(m2(p)) is accepted by the automaton N. O

Ezample 5. Figure 5 shows the result of the translation of a NFA (left) accepting
the regular language ({a} - {b})T. As already seen in the previous section, the
resulting guest (right) preserve the structure of the NFA.

7 Subgraph isomorphism with regular path expressions

Many approaches found in literature define hybrid notions of similarities between
graphs w.r.t. more known ones such as graph simulations, subgraph isomorphism
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and RLPM [2,9]. In this section we will see how to use LGSs to solve these types
or problems by studying a problem similar to the one in [2]. In this problem,
called Subgraph isomorphism with regular languages (RL-SGI), queries are graphs
where each edge is decorated with a regular language.

Definition 15. A graph decorated with regular languages is a tuple (X, V, E, L)
consisting of an alphabet X, a set V' of nodes, a set E CV xV of edges and a
labelling function L : E — REy decorating each edge with a mon empty e-free
regular language over X..

Definition 16. Let H = (X, Vy, Ey) be a host and let Q = (X, Vg, Eq, L) be
a graph decorated with regular languages. There is a subgraph of H isomorphic
to a partial unfolding of Q w.r.t. L iff there is a pair of injections ¢ : Vg — Vg
andn: Eqg — Py s.t. for each e € Eg ¢pos(e) =son(e), pot(e) =ton(e), and
oonle) € L(e). Vertexes of paths in n(Eq) cannot appear in (Vo) except for
their source and target, i.e.: V(eo,...,en) € n(Eg) Vi € {1,...,n} s(e;) & ¢(Vo).

RL-SGI can be seen as a hybrid notion between subgraph isomorphism and
RLPM. We will now show how to solve this problem with loose graph simulations
by defining a proper translation from its queries to guests.

Proposition 8. Let Q = (¥,Vg, Eq, L) be a query for RL-SGI. Let

G= vy @ Q) Gelae/s(e)l[fe/t(e)]

veVg ecEqg

s.t. G is the translation of the automaton N = (X, Ve, de, qe, {fe}) for L(e), as
per Proposition 7 and where q. and f. are merged if s(e) = t(e). For each host
H = (%,Vy, Ey) there exists a RL-SGI of H w.r.t. Q iff S*7H £ ).

Proof (Proposition 8). By definition of G, the two following properties holds:

— Vi is a subset of the vertices of G and M =U =& = Vy;

— let C the choice function of G and let v € V. Each set v € C(v) contains
exactly one edge for every e € out(v) of @, that correspond to one possible
transition from the initial state v in the automaton N,.

Similarly to the proof of Proposition 5, Conditions LGS1 to LGS3 together
with the first property ensures that each LGS over G correspond to an injection
w.r.t the vertices of V. Moreover, following the results in Proposition 7, Condi-
tions LGS4 and LGS5 and the second property ensures that every LGS over G
will contains, for each e € Eg a path correspondent to a word in £(e), starting
and ending with two vertices in Vg x Vg, whereas all other vertices of the path
are in (Vo \ Vi) x Vi, where Vi is the set of all vertices of G. It follows that
G can be used to verify the existence of a RL-SGI for Q, w.r.t. a host H, by
checking if SE= £ ). O
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8 Conclusions and future work

In this paper we have introduced loose graph simulations, a notion of relation
between graphs that can be used to check structural properties of labelled hosts.
Loose graph simulations’ guests can be represented using a simple graphical
notation, but also compositionally by means of an algebra which is sound and
complete. We have shown formally that computing LGSs is an NP-complete
problem, where the NP-hardness is obtained via a trivial reduction of subgraph
isomorphism to them. Moreover, we have shown that many other classical no-
tions of graph pattern matching are naturally subsumed by LGSs. Loose graph
simulations can therefore be seen as a simple common ground between multiple
well-known notions of graph pattern matching and they can be used to define
new hybrid fragments of these notions and develop common techniques for them.

An algorithm for computing LGSs in a decentralised fashion and inspired to
the “distributed amalgamation” strategy is introduced in [16]. Roughly speaking,
the host graph is distributed over processes; each process uses its partial view
of the host to compute partial solutions to exchange with its peers. Distributed
amalgamation guarantees all solutions are eventually found.

The same strategy is at the core of distributed algorithms for solving problems
such as bigraphical embeddings and the distributed execution of bigraphical
rewriting systems [17,19,22]. Bigraphs [12,21,23] have been proved to be quite
effective for modelling, designing and prototyping distributed systems, such as
multi-agent systems [18]. This similarity and the ability of LGS to subsume
several graph problems suggests to investigate graph rewriting systems where
redex occurrences are defined in terms of LGSs.

Another topic for further investigation is how to systematically minimise
guests or combine sets of guests into single instances, while preserving the
semantics of LGSs. A result in this direction would have a positive practical
impact on applications based on LGSs.
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