
Rule-Based Repair of EMF Models:
Formalization and Correctness Proof

Nebras Nassar1(�), Jens Kosiol1, Hendrik Radke2

1 Philipps-Universität Marburg, Germany,
{nassarn,kosiolje}@informatik.uni-marburg.de

2 SAP SE, Germany,
hendrik.radke@sap.com

Abstract. In model-driven engineering (MDE), resolving model incon-
sistencies in a semi-interactive way promises to increase the productivity
and quality of software development. In this paper, we discuss properties
of an approach for model repair: The proposed algorithm can trim and
complete models based on the Eclipse Modeling Framework (EMF), and
thereby resolve their cardinality violations. We use rules, as defined in
the theory of algebraic graph transformation, to declare the different ac-
tions executed during the particular steps of the algorithm. This formal
background is used to reason for the correctness of the algorithm and to
present conditions under which it always terminates. Possible adaptions
of and more general use cases for the algorithm are discussed.

Keywords: Eclipse Modeling Framework (EMF) · Model Repair · Al-
gebraic Graph Transformation · Correctness Proof

1 Introduction

Model-driven engineering (MDE) has become increasingly popular in various en-
gineering disciplines, especially in software development. In MDE, models are the
primary artifacts, whereas model transformations are the most important opera-
tions to change models. Domain-specific modeling languages promise to increase
the productivity and quality of software developments. During the modeling pro-
cess, a variety of model inconsistencies, e.g., cardinality violations, may occur
for different reasons such as lack of information, misunderstandings, or the mod-
els’ complexity. Thus, the modeling process has to be provided with tools, e.g.,
model repair in domain-specific model editors would raise their convenience.

There are a number of model repair approaches in the literature which,
however, function either interactively such as [5,6,13,14] or automated, e.g.,
[1,9,10,19]. In [11] we present a rule-based approach to resolve cardinality viola-
tions in a semi-interactive way, i.e., the approach does not leave the resolution
strategy completely to the modeler as in pure rule-based approaches. Instead,
it semi-interactively guides modelers to yield valid models. The rule-based ap-
proach and the developed tool support are based on the Eclipse Modeling Frame-
work (EMF) [8] and the model transformation language Henshin [2]. The tool



can repair EMF models automatically or semi-interactively. Additionally, the
approach is promising to be scalable.

In this paper, we formalize the approach presented in [11] using the theory of
algebraic graph transformation and discuss its soundness: Two theorems state
under which conditions the algorithm terminates and yields valid models. Two
corollaries make further features of the algorithm explicit, e.g., reliability in
the sense that the algorithm does not change valid models. We discuss possible
adaptions of the algorithm and its usefulness in more general cases.

The rest of the paper is organized as follows: Section 2 introduces our running
example. Section 3 presents the formal background of EMF-model graphs and
transformations. In Sect. 4, we recall the rule-based algorithm for model repair.
Section 5 proves the correctness of the rule-based algorithm and other features.
In Sect. 6, we discuss the usefulness of the algorithm in more general settings. An
overview on related work is given in Sect. 7, while Sect. 8 concludes the paper.

2 Running Example

In this section, we present the running example we will use to illustrate the
algorithm and many of our definitions. Figure 1 shows the meta-model of a
paper template. The root node is Paper. A Paper contains exactly one Abstract
and Bibliography, at least one Section and maybe some FloatObjects, which
are displayed in Sections. The class FloatObject is abstract and can either
be instantiated by a Table or a Figure. A Section can contain Sections as
subsections and Sentences. Up to three HyperLinks, which is an abstract class
from which Reference and Citation inherit, are contained in a Sentence. They
refer to FloatObjects or cite BibItems contained in the Bibliography.

PaperAbstract Section Sentence HyperLink

Reference Citation
Bibliography

BibItem

FloatObject

Figure Table

[1..1] abs [1..*] sections [0..*] sentences [0..3] hyperlinks

[1..1] bibliography

[1..*] bibitems

[1..1] displayedin

[0..*] floatobject [1..*] references

[1..1] refobject

[1..*] citations

[1..1] refitem

[0..*] subsections

Fig. 1: Paper template meta-model

In Ex. 4 we present how the algorithm repairs an invalid instance shown in
Fig. 2. The solid-line elements there represent the invalid instance. It consists
of one root node Paper which contains a Figure-node and two Bibliography-
nodes with one BibItem-node each. Several conditions of a valid instance are
not met, e.g., an Abstract-node is missing, the Figure-node is not referenced
and not displayed in any Section-node, and the number of Bibliography-nodes
exceeds the upper bound, i.e., the upper bound of edge type bibliography is
violated.



:Paper

:Bibliography

:BibItem

:Bibliography

:BibItem

:Abstract

:Figure

:Section :Reference

:Citation

:Sentence

:abs

:floatobject

:bibliography:bibliography

:bibitems:bibitems

:sections

:sentences

:hyperlinks

:hyperlinks

:refobject

:references

:refitem

:citations

displayedin

(I.1)

(I.2)

(I.1)

(I.4.2)

(II.4.1)

(III.2)

(III.4.1)
(IV.2)

Valid Instance Model

(I.c1)

(I.c2)

Fig. 2: The abstract syntax of the invalid Paper model being repaired

3 EMF Model Graphs and Consistent Transformations

Our goal is to repair instance models w.r.t. a given EMF model [20] using model
transformations. A suitable formal framework to conduct this work is the theory
of algebraic graph transformation [7]. When formalizing meta-modeling by this
means, graphs occur at two levels: the type level (meta-models) and the instance
level (models). This is reflected by the concept of typed graphs, where a fixed
graph TG serves as an abstract representation of the type structure of a meta-
model. Correct typing of instances is formalized by structure-preserving map-
pings of instance graphs to type graphs. Since setting values to empty required
attributes is straightforward in EMF, we concentrate on multiplicity violations
and EMF constraints in this paper. Thus, the theory of attributed typed graphs
is not presented and the attributes are omitted in our example. This section
recalls the background information needed to design valid EMF models and to
change them in a consistency-preserving way. It is partially based on [4].

Definition 1. A graph G = (VG, EG, sG, tG) consists of a set VG of nodes (or
vertices), a set EG of edges, and source and target functions sG, tG : EG → VG.

For graphs G and H, a graph morphism f = (fV , fE) is a pair of functions
fV : VG → VH and fE : EG → EH such that fV ◦ sG = sH ◦ fE and fV ◦ tG =
tH ◦ fE. If fV and fE are inclusions, then G is a subgraph of H, short G ⊆ H.

Definition 2. A type graph TG = (T, I, A,C,OE,mult) consists of a graph
T = (VT , ET , sT , tT ), an inheritance relation I ⊆ VT × VT , a set A ⊆ VT of
abstract nodes, a set C ⊆ ET of containment edges, a relation OE ⊆ ET ×ET

of opposite edges, and a function mult : ET → N × (N ∪ {∗}) subject to the
following conditions: The inheritance relation I is a partial order and for each
(i, j) ∈ mult(ET ) it holds that i ≤ j and j 6= 0 (where ≤ is the standard order
of natural numbers supplemented by i < ∗ for all i ∈ N ).

We omitted the axioms that ensure that the relation OE models opposite edges.
The following concepts and notations will be used throughout the work and

further clarify the correspondence between type graphs and EMF models: For
e ∈ OE we denote its opposite edge by e−1. The inheritance clan of a node
n ∈ VT is defined by clanI(n) = {m | (m,n) ∈ I}. We write m ≤ n for



m ∈ clanI(n). We use the set of containment edges C to define a containment
relation contTG ⊆ VT×VT , which is given as the transitive closure of the relation
{(n,m) | ∃c ∈ C : n ≤ s(c) ∧ m ≤ t(c)} and write n w m for (n,m) ∈ contTG.
In the following, by NC := ET \ C we refer to the non-containment edges. The
function mult maps each edge of ET to a multiplicity. A value of ∗ indicates an
unconstrained number of edges. For mult(e) = (i, j), i is called the lower bound,
j is called the upper bound of e, and we define functions low : ET → N , upp :
ET → N ∪ ∗ which assign the respective bounds to each edge.

Example 1. The class diagram in Fig. 1 can be interpreted as type graph. For
example Section w HyperLink, Figure < FloatObject, mult(sentences) =
(0, ∗), or refobject−1 = references.

Structure preserving maps establish the relationship between TG and instances:

Definition 3. A graph G is called typed over TG if there exists a graph mor-
phism typeG = (typeVG

, typeEG
) : G → TG s.t. typeVG

(sG(e)) ≤ sT (typeEG
(e))

and typeVG
(tG(e)) ≤ tT (typeEG

(e)) for all e ∈ EG; typeG is called typing mor-
phism. A typed graph morphism between graphs G and H, which are both typed
over TG, is a graph morphism f = (fV , fE) : G→ H such that typeVH

◦fV (n) ≤
typeVG

(n) for all n ∈ VG and typeEH
◦ fE = typeEG

.

The typing of a graph G over TG with typeG induces a containment relation
on G. We write CG := {e ∈ EG | typeEG

(e) ∈ C} and contG is the transitive
closure of the relation {(sG(c), tG(c)) | c ∈ CG}. As above, we denote (n,m) ∈
contG by writing n w m. Analogously, we introduce the sets NCG and OEG.

To define typed graphs, which also respect the constraints of EMF and to
later present our algorithm, we now give a list of certain properties typed graphs
can possess and express these properties as logical formulas. Let G be a graph
typed over TG by typing morphism typeG:

– At-most-one-container: No node of G has more than one container:

∀c1,c2∈CG.tG(c1)=tG(c2)⇒c1=c2 .

– No-containment-cycle: No cycles of containment edges occur in G:

∀n∈VG.n6wn .

– No-parallel-edges: No parallel edges exist, i.e., there are no two edges of
the same type from the same source to the same target node:

∀e,e′∈EG

((
typeEG

(e)=typeEG
(e′)∧ sG(e)=sG(e′)∧ tG(e)=tG(e′)

)
⇒e=e′

)
.

– All-opposite-edges: Each edge of opposite edge type has its inverse edge:

∀e∈OEG.∃e′∈OEG

(
sG(e)=tG(e′)∧ tG(e)=sG(e′)∧ typeEG

(e)=typeEG
(e′)−1

)
.

– Concreteness: It instantiates no node of abstract type:

∀n∈VG.typeVG
(n)/∈A .

– Rootedness: There exists a node r in VG, called root node, such that all
nodes of G, except for r, are transitively contained in r:

∀n∈VG

(
n6=r⇒rwn

)
.



– No-bound-violation: For every node n ∈ VG and every edge type eT ∈ ET ,
for which n can serve as source node, the number of outgoing edges of type
eT from n is between eT ’s lower and upper bound:

∀n∈VG.∀eT∈ET

(
typeVG

(n)≤sT (eT )⇒low(eT )≤#{e∈EG | typeEG
(e)=eT∧sG(e)=n}≤upp(eT )

)
.

This property, or partial satisfaction like No-ub-violation, can also be ex-
pressed using the following four ones:
• No-nonCont-ub-violation: For each node and each type of non-con-

tainment edges the number of outgoing edges of this type is smaller or
equal to the upper bound of this edge type:

∀n∈VG.∀eT∈NC.#{e∈EG | typeEG
(e)=eT∧sG(e)=n}≤upp(eT ) .

• Cont-ub-violation: There exists a node with to many outgoing edges
of a certain containment type:

∃n∈VG.∃c∈C.#{e∈EG | typeEG
(e)=c∧ sG(e)=n}>upp(c) .

• No-Cont-lb-violation: Each node has (at least) the required number
of outgoing containment edges:

∀n∈VG.∀c∈C
(
typeVG

(n)≤sT (c)⇒#{e∈EG | typeEG
(e)=c∧ sG(e)=n}≥low(c)

)
.

• nonCont-lb-violation: For (at least) one node an outgoing edge of a
certain non-containment type is missing:

∃n∈VG.∃eT∈NC
(
typeVG

(n)≤sT (eT ) ∧ #{e∈EG | typeEG
(e)=eT ∧ sG(e)=n}<low(eT )

)
.

– Missing-edge(eT ): An edge of non-containment type eT is missing:

∃n∈VG

(
typeVG

(n)≤sT (eT ) ∧ #{e∈EG | typeEG
(e)=eT ∧ sG(e)=n}<low(eT )

)
.

– No-target-exists(eT ): No node of G can serve as target node for a non-
containment edge of type eT without violation of upper bounds:

∀n∈VG

(
typeVG

(n)6≤tT (eT ) ∨
(
eT∈OE ∧#{e∈EG | typeEG

(e)=eT ∧ tG(e)=n}=upp(e−1
T )

))
.

– No-target-creation-possible(eT ): For an edge of non-containment type
eT it is not possible to directly create a node, which can serve as target for
an edge of this type:

∀n∈VG.∀cT∈C
(
typeVG

(n)≤sT (cT )∧ tT (eT )≤tT (cT )

⇒ #{c∈CG | typeEG
(c)=cT ∧ sG(c)=n}=upp(cT )

)
.

For later use we additionally need to introduce two counters: For a given typed
graph G the counter ContUbViol(G) gives the number of upper bound viola-
tions of containment type edges in G, which can be interpreted as the number
of surplus nodes, while nonContLbViol(G) counts the number of lower bound
violations of edges of non-containment type, i.e., the number of missing edges.

Different degrees of conformity to the EMF constraints are needed:

Definition 4. A graph G typed over TG = (T, I, A,C,OE,mult) with typing
morphism typeG is an EMF-model graph over TG (or w.r.t. TG) if the condi-
tions At-most-one-container, No-containment-cycle, No-parallel-edges, and All-
opposite-edges hold.

When considering EMF-model graphs as instances of a meta-model, one ex-
pects them to be concrete and typically to be rooted. We did not include this in



the above definition to be able to define rules more conveniently. But when re-
pairing an instance, we suppose the input to be concretely typed and rooted and
our aim is to receive such an EMF-model graph as output, since that is common
practice in EMF. So, unless stated otherwise, when talking about EMF-model
graphs in the following, we always assume them to be concrete and rooted; we
use EMFC as a shortcut for this.

Definition 5. A concrete and rooted EMF-model graph G is called valid, short
vEMFC, if it additionally satisfies the No-bound-violation property.

Usually, EMF models are expected to have at least one non-empty finite
instance model or for each non-abstract class of the EMF model one instance
which instantiates this class. We need to additionally introduce a stricter notion.
We expect instances, which may violate lower, but no upper bounds, to be
capable of being complemented into a valid EMF-model graph (without deletion
of elements):

Definition 6. An EMF model is called finitely satisfiable (f.s.) if there exists
a non-empty finite instance. It is called finitely instantiable (f.i.) if for every
non-abstract class there exists a finite EMF instance model, instantiating it. It
is called fully finitely instantiable (f.f.i.) if it satisfies the property that for every
given finite EMF-model graph G which respects upper, but may violate lower
bounds there exists a finite EMF-model graph G′, s.t. G is a subgraph of G′.

By definition the following implications hold: f.f.i.⇒ f.i.⇒ f.s.

Example 2. (a) Fully finitely instantiable: The meta-model presented in Fig. 1
is f.f.i.: Since no containment cycle with all lower bounds ≥ 1 exists, the creation
of missing nodes to fulfill all lower bounds of containment type edges will always
result in a finite model. Thereafter, a Section-node will always exist so that all
FloatObject-nodes can be displayed and the needed number of Sentence-nodes
can be created inside, to ensure that all FloatObject-nodes can be referenced
and all BibItem-nodes be cited. More generally, let TG be a type graph without
cycles over containment edges with all lower bounds > 0 s.t. for every node
n ∈ (VT \ A) the upper bound of at least one incoming containment relation
is higher than the lower bound of all non-containment edges for which n can
serve as target node. Then TG is f.f.i. This is particularly the case if all edges
have unlimited upper bounds. (b) Finitely instantiable: Suppose the multiplicity
of reference in Fig. 1 to be [1..1], s.t. every FloatObject is referenced by
exactly one HyperLink, and the upper bound of floatobject to be limited, e.g.
to 5. The result is a meta-model which is f.i., but not f.f.i.: One easily creates
valid instances, but invalid instances with 6 or more nodes of type Reference,
which do not violate any upper bound, cannot be complemented into a valid
instance since maximally 5 nodes of type FloatObject can exist in a valid model
and therefore the needed references can never be inserted. (c) Not finitely
satisfiable: Suppose the containment type edge subsection in Fig. 1 to have
multiplicity [1..∗]. This is a typical example of a meta-model which is not f.s. or
f.i.: The lower bound of 1 leads to an infinite chain of subsections.



When formalizing transformations of EMF models by the means of the the-
ory of algebraic graph transformation, they are specified by transformation rules.
Such rules consist of a left-hand side L and a right-hand side R specifying which
elements are deleted or created. Elements in K = L ∩ R are preserved. In ad-
dition, positive (PACs) and negative (NACs) application conditions may ensure
or forbid the existence of certain model patterns.

Definition 7. A transformation rule over type graph TG is given by p = (L ⊇
K ⊆ R, type, NAC , PAC ), where L,K and R are EMF model graphs (not
necessarily rooted), type is a triple of typing morphisms from L, K and R to
TG, and NAC and PAC are sets of pairs (N, typeN ) with L ⊆ N such that the
following conditions hold: (1) Model elements are not retyped: typeL ⊇ typeK ⊆
typeR, (2) newly created nodes are concretely typed: typeVR

(VR \ VK) ∩ A = ∅,
and (3) types in NACs and PACs are always equal or finer than in L: for all
(N, typeN ) in NAC or PAC and x in L, typeN (x) ≤ typeL(x).

A transformation step G
p,m
=⇒ H between two model graphs G and H is defined

by first finding an injective typed morphism m, called match, of the left-hand
side L of rule p to the current model graph G and then constructing H in two
passes: (1) building D := G \ m(L \ K), i.e., erasing all the graph items that
are to be deleted, and (2) constructing H := D ∪ (R \ K), i.e., adding all the
graph items that are to be created. The image of K under m determines the
“location” of the creation. Moreover, a rule is only applicable with given match,
if it is possible to extend the match to every PAC, but to no NAC. Note, m has
to fulfill the dangling condition, i.e., all adjacent edges of a node to be deleted
have to be deleted as well, such that D becomes a graph. A transformation step
can also be formalized as double pushout, see [4, Def. 7].

One needs to pose further constraints on rules to ensure that they not only
transform a concretely typed graph into a concretely typed graph, but an EMF-
model graph into an EMF-model graph:

Example 3. Figure 4 shows an example for a rule in Henshin syntax: An edge of
type displayedin gets inserted between two existing nodes of types FloatObject
and Section, as long as no such edge already exists between those two nodes
and the FloatObject is not already displayed. The design of the rule ensures
two things: No parallel edge is created and the rule is only applicable as long
as the lower bound of displayedin (here 1) is not already met. Note, that this
also ensures that no upper bound violation (here also 1) is introduced, when
applying this rule. The reason for choosing the lower and not the upper bound
will become apparent, when we explain how we use this kind of rules in our
algorithm in Sect. 4. Figure 3 gives a general design scheme for such rules in an
intuitive notation: Given a non-containment edge type ref with a lower bound
m > 0, the condition NACp forbids to insert an edge from a source node of
type A to a node of type B if there is already one of that type. Condition NACm
checks if the lower bound m has not yet been reached.

There are more EMF constraints to be respected, e.g., every newly created node
has to be (transitively) contained in the root node. [4] give a set of conditions for



src:A src:A

tgt:B

src:A

:B :B

m:ref :ref

tgt:B

Rule Negative Application Condition

InsertingRequiredEdge(src,tgt) NACmNACp

NAC = NACp and NACm

:ref

src:A

tgt:B

:ref

Fig. 3: Rule scheme for inserting
a required non-containment edge

Fig. 4: An example rule for inserting a
required displayedin-edge

such consistent transformation rules and prove it to be sufficient. We designed
the rules we use to meet those conditions. I.e, applying any of these rules to an
EMF-model graph results in an EMF-model graph again. All the different kinds
of rules used are presented in [12], so our claim on their design can be checked.

4 A Rule-Based Approach of EMF Repair: An Overview

In this section, we first recall the rule-based algorithm for model repair presented
in [11]. The algorithm consists of two main phases. Each phase is made up of
several steps. The steps are declarative and use rules automatically derived from
a given meta-model: For each step there exists a set of rules of a certain kind. In
most steps, these rules are randomly applied as often as possible and the next
step is called as soon as no rule is applicable anymore. More information about
the algorithm and the design and derivation of the rules is found in [11,12].

Above the description given there, we here introduce pre- and postconditions
for each step. We will present those in a way reminding of Hoare triples: By
〈PreX, Step (X), PostX 〉 we assert that, given a graph G satisfying PreX, the
execution of Step (X) will lead to a graph G′ satisfying PostX. In the following,
we first present the algorithm’s steps and afterwards the kinds of rules used in
them; Fig. 5 shows the control flow of the algorithm.
Model trimming: This phase eliminates supernumerous model elements. It
consists of the following steps: Step (a) removes all supernumerous edges, i.e.,
non-containment edges that exceed the upper bound of their respective type:
〈EMFC , Step (a), EMFC ∧ No-nonCont-ub-violation 〉.

Step (b) checks if there is a supernumerous node, i.e., a node which exceeds
the upper bound of a containment edge: 〈Post(a), Step (b), Post(a) 〉.

If there is none, the model is ready to be completed (Step (e)). Otherwise,
this node and its content have to be deleted. This is done in Step (c). It deletes
all the incoming and outgoing edges of this node and its content nodes, and then
deletes the content nodes in a bottom-up way (Step (c1)); thereafter, it deletes
the node itself (Step (c2)): 〈Post(a) ∧ Cont-ub-violation, Step (c), Post(a) ∧
(ContUbV iol(G) > ContUbV iol(G′)) 〉. Step (d) calls Step (b) again to check if
there is another supernumerous node.

Model completion: This phase adds required model elements. It consists of
the following steps: Step (1) creates all missing required nodes, i.e., nodes that
are needed to fulfill the lower bound of a containment edge type: 〈EMFC ∧



Model Trimming

Remove all supernumerous edges 

Delete content and incoming 
edges of the supernumerous 

node in a bottom-up way

a

Input: Model

Delete the supernumerous node 

Find a supernumerous node

c1

Create all missing required nodes 
by fulfilling the lower bound of each containment 

Insert as many missing required edges as possible
by connecting the correlated nodes using non-containments 

to fulfill the lower bound of each non-containment

no missing missing

Set values to 
required attributes

Valid model

1

2

3

6

7

Output: Valid Model

Try to create the missing 
correlated node directly 

Create one contanier node of 
the missing correlated node 

Not created

One container node of 
the missing node is created

4.1

4.2

b

c2

C. Delete the supernumerous node

4. Create one missing correlated node

5

Model Completion

Model Completion

d

Model Trimming

e

Check relation validity

The missing node 
is created

There is no 

 supernumerous element

A supernumerous node 

is found

Fig. 5: Model trimming and completion algorithm

No-ub-violation, Step (1), EMFC ∧ No-ub-violation ∧ No-cont-lb-violation 〉.
At the end of this stage, the model may contain nodes which are not connected
by required non-containment edges.

Step (2) tries to insert all missing required edges by adding non-containment
edges to the nodes in the model, in order to fulfill the lower bound of each non-
containment edge type. This step may stop without having inserted all required
edges due to potentially missing target nodes, i.e., it may happen that there is no
further free node of a required type. Thus, we get 〈Post(1), Step (2), Post(2) 〉.
Post(2):=

(
EMFC ∧ no-bound-violation

)
∨

(
Post(1) ∧ ∃ eT ∈ NC

(
Missing-edge(eT ) ∧ No-

target-exists(eT )
)
∧ NonContLbViol(G) ≥ NonContLbViol(G’)

)
.

Step (3) checks if a lower bound of a non-containment edge type is still
violated. If all the required edges are already inserted, then we have a valid
EMF-model graph. Otherwise, there is still at least one required edge missing.
So, Step (3) checks which of the two possibilities of Post(2) is actually true and
additionally returns the type eT of one missing non-containment edge (if true),
but does not change the instance.

If an edge was missing, Step (4) tries to create a target node for the missing
edge type. Although there may be more than one target node missing, only one
is added in Step (4). If it cannot be created directly (Step 4.1), a (transitive)
container node of it is created (Step 4.2). So we receive the following pre- and
postconditions for these steps, where eT was returned by Step (3):

Pre(4.1):= EMFC ∧ No-ub-violation ∧ No-cont-lb-violation ∧ Missing-edge(eT ) ∧ No-target-
exists(eT ).

Post(4.1):= EMFC ∧ No-ub-violation ∧ Missing-edge(eT ) ∧(
target-exists(eT ) ∨ (No-target-creation-possible(eT ) ∧ No-cont-lb-violation)

)
.



Pre(4.2):= EMFC ∧ No-ub-violation ∧ No-cont-lb-violation ∧ Missing-edge(eT ) ∧ No-target-
creation-possible(eT ).

Post(4.2):= EMFC ∧ No-ub-violation ∧ Missing-edge(eT ) ∧ ∃n ∈ VG′
(
n /∈ VG ∧ typeV

G′
(n) w

tT (eT )
)
.

Note that the type of a missing target node may have several subtypes. In this
case, there may be several possibilities to create a missing node, choosing one of
these subtypes. A further variation point are node types with several containers.
This non-determinism may be solved by user interaction or automatically by
randomly picking one.

After Step (4), the next iteration of model completion starts by calling
Step (1) again: Adding a node to the model may lead to new required nodes
and edges. Starting a new iteration ensures that all those model elements are
generated and that all missing nodes and edges will be created in the end. Once
the model is a valid EMF model, i.e., EMF constraints and multiplicities are
met, the values of all the empty required attributes are set (Step (6)).

Example 4 (Repairing the instance model). We illustrate our algorithm by ap-
plying it to the invalid instance shown in Fig. 2. Note, the annotations at the
model elements there refer to the corresponding algorithm pass and step num-
bers, whereas the dashed elements are elements created during the repair process.
During the model trimming phase, no supernumerous edge has to be removed
(Step (a)); Step (b) returns one Bibliography as supernumerous node. Its con-
tent gets deleted (c1) and then the Bibliography itself (c2). The next call of
Step (b) does not return further supernumerous nodes and the second phase
of the algorithm starts: In Step (1) of the first pass, an Abstract-node and a
Section-node get created, since their respective incoming containment edges
have lower bounds greater 0. The required displayedin-edge is inserted in Step
(2) since a Section-node now exists. Step (3) then either returns an edge type
references or an edge type citations as missing; we assume the first one to
be the case. Since it is not possible to add a node of type Reference directly,
a container (Sentence-node) for it is added in Step (4.2). In Step (4.1) in the
second pass of the algorithm, the needed node of type Reference now is created.
In the third pass it is possible to insert the edge of type references; in Step (3)
of the third pass, an edge of type citations is recognized as missing and since a
node of type Sentence now exists, the missing node of type Citation is added
in Step (4.1). In the fourth pass, the last missing edge (citations) is inserted
in Step (2). No further missing edges are recognized in Step (3) and thus the
algorithm stops.

The Kinds of Rules: In Table 1 we give an overview over the kinds of rules we
use in the different steps of the algorithm. We presented the design-scheme of
Required-edge-insertion rules in Fig. 3: They create all possible, but only required
edges, because NACm respects the lower bound. The other kinds of rules are
designed in a similar fashion. A complete overview with example for every kind
of rule is given in [12].



Table 1: Kinds of rules

Kind of the rule Description

Required-node-creation Create a node with its containment edge if the lower bound
of its containment type is not yet reached (Step (1))

Required-edge-insertion Insert a non-containment edge if the lower bound of the corre-
sponding non-containment type is not yet reached and there
is no parallel edge (Step (2))

Required-edge-checking Check if a required non-containment edge is missing
(Step (3))

Additional-node-creation Add a node with its containment edge if the upper bound of
its containment type is not yet reached (Step (4))

Exceeding-edge-removing Remove a non-containment edge if the upper bound of the
corresponding non-containment type is exceeded (Step (a))

Exceeding-node-finding Find a node that exceeds the upper bound of the correspond-
ing containment type (Step (b))

Node-content-deleting Delete a (transitively) contained leaf node with its contain-
ment edge from a given node (Step (c))

Element-deleting Delete a given element (i.e., a non-containment edge or a leaf
node with its containment edge) directly (Step (c))

5 Correctness Proof of the Algorithm

In this section, we present and proof some properties of the algorithm. During
the proofs we will not argue that the condition EMFC stays satisfied since that
is true by construction of the rules (compare the end of Sect. 3). In the following,
let TG be a fixed type graph over which all the occuring graphs are typed.

Our trimming of models restores integrity with respect to upper bounds:

Theorem 1. The model trimming algorithm in Sect. 4 is correct, i.e., given
an EMF-model graph G, the algorithm terminates in a finite number of steps,
yielding an EMF-model graph G′ that satisfies all upper bounds of TG.

Proof. For a graph G, let ub(G) denote the sum of the number of upper bound
violations of (1) containment and (2) non-containment relations. Let G′ denote
a graph resulting from the application of one of the rules of kinds that constitute
the Steps (a) – (c) of the algorithm (compare Table 1) on graph G. If all upper
bounds of G are satisfied, ub(G) = 0, Step (a) and (b) do not change the graph,
and the trimming algorithm terminates.

Otherwise, an upper bound is unsatisfied. Step (a) removes all supernu-
merous edges that violate the upper bounds of a non-containment relation,
so ub(G′) ≤ ub(G) and No-nonCont-ub-violation is certainly true afterwards.
Step (b) checks for supernumerous nodes that violate the upper bounds of a
containment relation, without changing the graph, so ub(G) = ub(G′) and the
postcondition of this step equals its precondition. Step (c1) does two things to a
supernumerous node v: (1) If v is a container, all content nodes of v (and their
edges) are deleted in a bottom-up way. This may remove, but not add supernu-
merous nodes, so contUbV iol(G′) ≤ contUbV iol(G) and equally ub(G′) ≤ ub(G).
If v is not a container, the graph remains unchanged. (2) Incoming edges of v are



removed. In Step (c2), node v itself is removed, so ub(G′) < ub(G) and equally
contUbV iol(G′) < contUbV iol(G).

Because ub(G) decreases with every iteration, the algorithm terminates with
a graph which does not violate any upper bound as result. ut

For the completion phase of our algorithm to work, we need the meta-model
to exhibit certain qualities: It needs to be always possible to create missing
target nodes for required edges (guaranteed by full finite instantiability) and
the creation of one (of the) possible target node(s) for a required edge may not
lead to the need to create a node of the same type again infinitely often. We
characterize precisely how to prevent this second problem:

Sometimes, when a node has to be created to serve as target for a required
non-containment edge, there exist essentially different ways to do that. This can
be due to two causes: There exist different containment paths from the root
to the target node in the sense that in one path a node type occurs that does
not occur in another path. Or because of inheritance there are different possible
node types that can serve as target node. We need to pay closer attention to
situations like these if the required edge is an opposite edge.

Definition 8. An opposite edge e ∈ OE is called critical if low(e) ≥ 1 and there
either exists more than one possible target node type, i.e., #(clanI(tT (e))∩(VT \
A)) > 1, or there are containment paths p, p′ for a target node type for e s.t. a
node type occurs in one path that does not occur in the other.

If e is such a critical edge, we require one of the following two conditions to
hold: (a) The opposite edge e−1 has unlimited upper bound, or (b) (one of) the
target node type(s) has at least one incoming containment edge with unlimited
upper bound and if there are different possible target node types, they have to
be able to serve as sources of exactly the same edge types:

Definition 9. A type graph TG satisfies the critical edge check condition (CECC)
if every critical edge e satisfies condition (a) or condition (b), presented below:
Condition (a) on e demands upp(e−1) = ∗. Condition (b) on e demands (b1)
that there exists a containment edge c ∈ C with tT (e) ≤ tT (c) and upp(c) = ∗.
And if clanI(tT (e)) 6= {tT (e)} it additionally demands (b2) that for each two
nodes n, n′ ∈ clanI(tT (e)) and every edge e′ ∈ ET

n ≤ sT (e′)⇔ n′ ≤ sT (e′) . (1)

Theorem 2. Let TG be a fully finitely instantiable type graph that meets the
critical edge check condition. Then the model completion from Sect. 4 is correct,
i.e., given an EMF-model graph G, which satisfies No-ub-violation, the algorithm
terminates after a finite number of steps, yielding a valid EMF-model graph G′.

Proof. Let TG be a type graph and G a graph typed by TG s.t. the conditions
formulated above hold. We check termination and the satisfaction of the postcon-
ditions formulated in Sect. 4 for each step and then argue for overall termination.

Step (1). For every containment edge type c = A B
opr

1

c

m..n
in TG,

the set of required-node-creation rules contains a rule :A ⇒ :A :B
opr c



with a negative application condition ac that prevents the rule from being ap-
plied at nodes that already meet the lower bound m. But as long as it is not met,
the rule is applicable. Since m 6= ∗ by definition, those rules can only be applied
finitely often with the same match. Therefore the only possibility for Step 1 to
not terminate is a containment-cycle with all lower bounds > 0, which is ex-
cluded since TG is f.f.i. (f.i. would even be enough). Thus, Step (1) terminates
with a graph G′ as result where No-cont-lb-violation holds.

Step (2). For every non-containment edge type e = A B
opr

k..l

e

m..n

in TG, the set of required-edge-insertion rules contains a rule :A :B ⇒

:A :B
opr e

with an application condition ac ensuring that the rule can
not be applied to nodes of types A and B if there is already an edge of type e
between them or the lower bound of A or the upper bound of B (if it is an edge of
opposite type) are already fulfilled. Because of these application conditions and
since no new nodes are created during the execution, Step (2) terminates after
finitely many steps as soon as every lower bound of non-containment relations
is satisfied, or there is no suitable target node available for any unsatisfied non-
containment relation (this is exactly the statement of Post(2)). Note, that the
result G′ of this step of the algorithm is independent of the order of execution and
choice of matches in the following sense: The number of missing non-containment
edges of a certain type is equal for every possible resulting graph. Only the places,
where edges are missing, can be different.

Step (4). If a required-edge-checking rule was applicable in Step (3), a target
node for a certain non-containment edge type is missing. Since we assume TG
to be f.f.i., at least one possible target node can be created without violating
any upper bounds. If no target node can be created directly, at least a possible
container can. These two possibilities are reflected by Post(4.1), Pre(4.2), and
Post(4.2). As soon as such a node is created, Step (4) is finished and Step (5)
calls Step (1) again.

Steps (3) and (6). Required-edge checking rules do not change the graph
and only finitely many checks are performed, so Step (3) always terminates. Also,
the setting of required empty attributes is finished after finitely many steps and
does not change anything which influences the kind of validity we are discussing.

Overall termination. Let e be a critical edge and let low(e) = m denote
its lower bound. We assume TG to meet the (CECC). Suppose that e satisfies
condition (a) of Def. 9. This implies upp(e−1) = ∗. If it was not possible to
create an edge of type e during Step (2) often enough, we have at some point
created m appropriate target nodes for an edge of type e. Since each of those
target nodes can serve as target for an unlimited number of edges of type e,
after this point all edges of type e will be created during Step (2). Now suppose
that e satisfies condition (b) of Def. 9. Then it is ensured that at some point a
target node for e can always be created directly, because at least one possible
container of a target node has an unlimited upper bound: If a target node for e
had to be created often enough, the randomness of the creation of target nodes
(if no direct container is available) makes for that. After that point, it is always



possible to create the target node directly. Additionally, if more than one possible
target node exists, Eq. 1 states that it makes no difference for the newly arising
required containment and non-containment edges, which target is created. In
summary, after finitely many iterations of the algorithm, the algorithm becomes
deterministic: Every time Step (3) is called, the only missing edges are of types
for which there exists only one way to create a target node, or for which it makes
no difference which target node is created. Since we assume TG to be f.f.i., and we
only create elements that need to exist in a valid model, the algorithm altogether
terminates. The resulting graph needs to be a valid EMF-model graph since this
is the only situation in which the algorithm stops. ut

The above proofs give us almost immediately two further results:

Corollary 1. If the algorithm terminates, when applied to an EMF-model graph
G, the result is a valid EMF-model graph G′.

Proof. The proofs of the previous theorems showed that we apply rules as long
as there exist violations of upper or lower bounds. Thus there are only three
possible outcomes when starting the algorithm: No termination, break of the
algorithm in Step (4), because it is not possible to create a needed target node,
or termination with a valid model. ut

Corollary 2. If G already is a valid EMF-model graph, application of the algo-
rithm to G will result in G again.

Proof. By construction of the rules, as discussed in the proofs of Theorems 1 and
2, the applicability of rules that create or delete graph elements of valid models
is prevented by suitable designed application conditions. ut

6 Discussion

In this section, we discuss the usefulness of the approach in more general settings.

Moving Instead of Trimming. In some cases moving the elements into other
containers (sources) without violating their upper bounds instead of deleting
them would be possible. But this does not always work: E.g., the consistency
requirements for rules which move cycle-capable containment edges are quite
strict [4]. And more importantly because of finite upper bounds it is possible
that there is a maximal number of instances of a certain node type which are
allowed to occur in EMF-model graphs. No graph that contains more nodes for
one type n than allowed can be repaired without deletion. But as long as this
is considered, the moving of supernumerous elements into other already existing
containers (sources) or newly created ones (if possible) does not change the
validity of Thm. 1 and therefore neither that of Thm. 2.

Finitely Instantiable Versus Fully Finitely Instantiable Meta-Models.
While deleting during the trimming part of the algorithm, we intended not to
delete during the second part at the cost of not being able to repair every instance



of finitely instantiable type graphs TG: Deletion would have to take place in
Step (4) of the algorithm if no target node can be created. In this case, the
bounds of all containment edges would be satisfied, but the lower bound of
at least one non-containment edge violated. This means that multiplicities of
non-containment edges would not only demand or forbid the existence of non-
containment edges, but additionally impose constraints on the number of certain
types of nodes. Here, it may be more advisable to adapt the multiplicities of the
meta-model than to loose information by deletion.

To summarize, when applying the considered approach to finitely, but not
fully finitely instantiable meta-models, the following possibilities exist: (a) In-
stance gets repaired. (b) Algorithm breaks in Step 4 because a needed target
node cannot be created. A solution might be achieved by creating finitely many
new nodes of root type, or there is no termination, even when creating new nodes
of root type. (c) No termination. Characterizing these situations by features of
the type graph or the instance which is to be repaired is a future work.

7 Related Work

We briefly relate our work to rule-based approaches and then to logic-based
approaches. More detailed information can be found at [11].

Rule-based approaches such as [5,6,13,14,16] present rule-based techniques
for fixing inconsistencies at different locations in models and predicting side
effects. A novel evaluation is carried out to show that the (translated) choices
for fixing inconsistencies in a single location are correct and complete. In all
these approaches, the resulting models are not shown to be valid. Additionally,
the user has to find manually a way to repair the whole model (if any).

Several logic-based approaches such as [1,9,10,18,19] provide support for au-
tomatic inconsistency resolution from a logical perspective. Partial models, their
meta-models, and additional constraints are translated into logical formulas.
Solvers such as SAT solver (Alloy analyzer) or constraint logic program are used
to satisfy them, thereafter. The translation is evaluated using several experi-
ments or test cases. All these approaches provide automatic model repair. In
[15], the authors developed a search-based tool which uses a regression planning
algorithm in Prolog to find and resolve inconsistencies through the generation of
one or more resolution plans. The approach is evaluated through several stress-
tests. These approaches do not allow user interactions during model repair.

8 Conclusion

In this work, we proved the correctness of an algorithm that can repair EMF
models automatically or semi-automatically and discussed its usability. Using the
theory of algebraic graph transformation as formal background, we were able to
give precise conditions under which the algorithm is guaranteed to terminate.
Furthermore, we showed its reliability: The resulting models are valid and con-
form to all EMF constraints and thus can be opened by the EMF editor. Since it



is possible to translate (Essential) OCL constraints into graph constraints [3,17],
we are confident that at least an important subset of them could be dealt with
in a similar way and we plan to expand our approach in this direction.

Acknowledgement We are grateful to Gabriele Taentzer and the anonymous
reviewers for their helpful comments. This work was funded by the German
Research Foundation (DFG), projects “Generating Development Environments
for Modeling Languages” and “Triple Graph Grammars (TGG) 2.0”.

References

1. Apt, K.R., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge
Univ. Press, Leiden (2006)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: MODELS, pp.
121–135. Springer (2010)

3. Bergmann, G.: Translating OCL to Graph Patterns. In: MoDELS, pp. 670–686.
Springer (2014)

4. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. (SoSyM) pp. 227–250 (2012)

5. Egyed, A.: Fixing Inconsistencies in UML Design Models. In: ICSE (2007)
6. Egyed, A., Letier, E., Finkelstein, A.: Generating and Evaluating Choices for Fixing

Inconsistencies in UML Design Models. In: IEEE/ACM. pp. 99–108 (2008)
7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. EATCS, Springer (2006)
8. Eclipse Modeling Framework (EMF). http://www.eclipse.org/emf
9. Hegedüs, Á., Horváth, Á., Ráth, I., Branco, M.C., Varró, D.: Quick fix generation

for DSMLs. In: VL/HCC. pp. 17–24. IEEE (2011)
10. Macedo, N., Guimarães, T., Cunha, A.: Model repair and transformation with

Echo. In: ASE. pp. 694–697. IEEE (2013)
11. Nassar, N., Radke, H., Arendt, T.: Rule-based Repair of EMF Models: An Auto-

mated Interactive Approach. In: In Proc. ICMT. Springer (2017)
12. EMF Model Repair. http://uni-marburg.de/Kkwsr
13. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: A Consistency

Checking and Smart Link Generation Service. ACM 2(2), 151–185 (2002)
14. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair

actions. In: Software Engineering. pp. 455–464. IEEE (2003)
15. Puissant, J.P., Straeten, R.V.D., Mens, T.: Resolving model inconsistencies using

automated regression planning. SoSyM pp. 461–481 (2015)
16. Rabbi, F., Lamo, Y., Yu, I.C., Kristensen, L.M., Michael, L.: A Diagrammatic

Approach to Model Completion. In: (AMT)@ MODELS (2015)
17. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating Essential

OCL Invariants to Nested Graph Constraints Focusing on Set Operations. In:
Graph Transformation, pp. 155–170. Springer (2015)

18. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A Methodology for Verifying Re-
finements of Partial Models. Journal of Object Technology pp. 3:1–31 (2015)

19. Sen, S., Baudry, B., Precup, D.: Partial Model Completion in Model Driven Engi-
neering using Constraint Logic Programming. In: In Proc. INAP’07 (2007)

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edn. (2009)


	Rule-Based Repair of EMF Models: Formalization and Correctness Proof

